[Sibin Mohan]

Systems Security Research Group at the University of Illinois


Team Members:



This paper presents a study on the practicality of operating system (OS) kernel debloating—reducing kernel code that is not needed by the target applications—in real-world systems. Despite their significant benefits regarding security (attack surface reduction) and performance (fast boot times and reduced memory footprints), the state-of-the-art OS kernel debloating techniques are seldom adopted in practice, especially in production systems. We identify the limitations of existing kernel debloating techniques that hinder their practical adoption, including both accidental and essential limitations. To understand these limitations, we build an advanced debloating framework named Cozart which enables us to conduct a number of experiments on different types of OS kernels (including Linux and the L4 microkernel) with a wide variety of applications (including HTTPD, Memcached, MySQL, NGINX, PHP and Redis). Our experimental results reveal the challenges and opportunities towards making kernel debloating techniques practical for real-world systems. The main goal of this paper is to share these insights and our experiences to shed light on addressing the limitations of kernel debloating in future research and development efforts.


This project is supported by a grant from the Office of Naval Reserach (ONR).