Lecture 8 | Path Planning

Secure Autonomous Systems

CSCI 6907/3907 86 Spring 2024

Prof. Sibin Mohan

https://bit.ly/secureauto-spring24

Sensing, Planning, Actuation

Path Planning for Autonomous Systems

- Decision making
- Predictions
 - Other cars
 - Pedestrians
 - Traffic signals
- Routes must be
 - Safe
 - Convenient
 - Economically beneficial

Consider this Example

Four options for the green car:

- 1. stay in lane, speed up
- 2. stay in lane, slow down
- 3. stay in lane, constant speed
- 4. change lane

each scenario **→** a **probability** associated with it

destination

starting configuration

Path: continuous sequence of configurations \rightarrow starting/ending with boundary configurations

Path planning: find a geometric path from initial to given config \rightarrow each configuration state is feasible

alternate paths!

Path planning: find a geometric path from initial to given config \rightarrow each configuration state is feasible

Maneuver: high-level characteristic of vehicle's motion → Encompasses position+speed of vehicle

Maneuver planning: take best high-level decision for vehicle

Maneuver planning: take best high-level decision for vehicle

Maneuver planning: take best high-level decision for vehicle \rightarrow account for path from planning algorithm

Trajectory: sequence of states visited by vehicle \rightarrow parameterized by time and velocity

Trajectory planning: real-time planning of vehicle's move \rightarrow from one feasible state to next

satisfied by car's kinematics

Trajectory planning: real-time planning of vehicle's move \rightarrow from one feasible state to next

- Path: continuous sequence of configurations
 - starting/ending with boundary configurations
- Path planning: find a geometric path from initial to given config
 - Each configuration and state on path is feasible
- Maneuver: high-level characteristic of vehicle's motion
 - Encompasses position and speed of vehicle on road
 - E.g.: going straight, changing lanes, turning, right, overtaking, etc.
- Maneuver planning: take best high-level decision for vehicle
 - Take into account path specified by planning algorithm
- Trajectory: sequence of states visited by vehicle
 - Parameterized by time and velocity
- Trajectory planning: real-time planning of vehicle's moves
 - From one feasible state to the next, satisfied by car's kinematics

Path Planning | Predictions

- Predict what each element of environment will do
 - A few seconds in the future
- E.g.: pedestrian will move (and direction), traffic sign remains still
- Multiple Approaches
 - 1. All possible trajectories for each possible situation
 - 2. Machine learning to establish similarity with training data
 - 3. Model-based approach

Path Planning | Machine-Learning

• **Training** phase:

- gather massive history of vehicles and paths
- Hundreds of vehicles, different actions at intersection
- Unsupervised learning
 - Clustering algorithms
 - Each cluster a typical trajectory for vehicle
- More driving leads to more data
 - Past behavior can affect current decisions

Path Planning | Model-based

Imagine **possible choices** for vehicle

- Implements **feasibility** of trajectory
- Eliminates Impossible Behaviors
- Focus on what's **possible**, not on past

Four choices for the other car:

- 1. speed up
- 2. slow down
- 3. constant speed
- 4. change lanes

Each has a probability that changes with observations

Sensors work in real-time

Path Planning | Decision Making

- With estimate of future environment, make a decision
 - Brake if obstacle detected?
 - Accelerate or change lanes?
- Environment Classification
 - Highway vs parking lot?
 - Safety, feasibility, efficiency, legality, passenger comfort
- Finite State Machines

23

Path Planning | Finite State Machines

Define states of a car

E.g., on highway, options:

stay in lane, change to left lane, overtake a car

Cost functions define choice of state

Computed (independently) for each possible scenario Added up → lowest cost wins

Path Planning | Finite State Machines | Costs

Path Planning | Trajectory Generation

• Typically use a Frenet coordinate system, not Cartesian

• After decision (e.g., overtake), algorithm generates several trajectories

Path Planning | Trajectories

- Choose best one based on criteria
 - Feasibility, safety, legality, efficiency, comfort

- Polynomial that passes through waypoints
 - Waypoints -> longitudinal distance, lateral distance, moment of passing

Higher-order planning

1. Voronoi Diagrams

Higher-order planning

Voronoi Diagrams

 Generates paths that maximize distance between vehicle and surrounding obstacles

2. Occupancy Grid

- Similar to Voronoi diagram
- Risk and feasibility computed using obstacles and lane/road boundaries

3. Cost Maps

- Similar to occupancy grid
- Higher cost cells get more intense representation on map

4. State Lattices

- Generalization of grids
- Grids built using repetition of rectangles or squares that discretize continuous space
- Lattices are constructed using regularly repeating primitive paths that connect possible states

5. Driving corridors

- Recreates continuous collisionfree spaces bounded by lanes and other obstacles
- Use data from maps and SLAM

Path Planning | Higher-order Decision Making

- Moral Machines
- <u>Self driving car mindmap</u>

References

• Path planning for self driving cars:

https://www.thinkautonomous.ai/blog/?p=path-planning-for-self-drivingcars

- Path planning with some discussion about algorithm classes <u>https://intellias.com/path-planning-for-autonomous-vehicles-with-hyperloop-option/</u>
- Video that explains the self-driving car mind map:

https://www.thinkautonomous.ai/the-self-driving-car-engineer-mindmap/

• A* search algorithm

https://www.youtube.com/watch?v=ySN5Wnu88nE