Secure Autonomous Systems

CSCI 6907/3907 86

Spring 2024

Prof. Sibin Mohan

https://bit.ly/secureauto-spring24

~

Autonomy

Secure Autonomous Systems | S

What makes something "autonomous"?

Aspects of Autonomy?

- Perception
- Compute
- Actuation
- Planning
- Sensing
- Motion

Autonomy | A Definition

Autonomy

S/

Autonomy | A Definition

Autonomy is the **ability to perform given tasks** based on the **system's perception** without human intervention

ecure Autonomous Systems | Spring 2024

Basic Definitions/ Concepts

Cyber-Physical Systems

- Real-Time Systems
- Security/Safety/Resiliency

LARGE

ARGE

ARGE

ARGE

		TS	TEMPREA	# FOR CENERAL TICK RETURN TO OTHER RA
			I LITE NOU	# FOR GENERALIZED RETORN TO OTHER BA
	P40A/P	TC	BANKCALL	# SUBROUTINE TO CHECK PGNCS CONTROL
		CADR	G+N, AUTO# AND	AUTO STABILIZATION MODES
908		CCS	A	# +0 INDICATES IN PGNCS, IN AUTO
		TCF	TURNITON	# + INDICATES NOT IN PGNCS AND/OR AU
910		CAF	APSFLBIT	# ARE WE ON THE DESCENT STAGE?
		MASK	FLGWRD10	
		CCS	А	
		TCF	GOBACK	# RETURN
		CAF	BIT5	# YES, CHECK FOR AUTO-THROTTLE MODE
		EXTEND		
		RAND	CHAN30	
		EXTEND		
918		BZF	GOBACK	# IN AUTO-THROTTLE MODE RETURN
	TURNITON	CAF	P40A/PMD	# DISPLAYS V50N25 R1=203 PLEASE PERF
920		TC	BANKCALL	# CHECKLIST 203 TURN ON PGNCS ETC.
		CADR	GOPERF1	
		TCF	GOTOP00H	# V34E TERMINATE
		TCF	P40A/P	# RECYCLE
	GOBACK	CA	TEMPR60	

CXB

software, control algorithms, code

networking, communication

ECUs, microcontrollers, PLCs

	Person ID TS TEMPR60 65 P40A/P TC BANKCALL 07 CADR GMA,AUTO #AND GMA,AUTO #AND 08 CCS A TCE TUBUTOM	# FOR GENERALIZED RETURN TO OTHER BANKS. # SUBROUTINE TO CHECK PACKS CONTROL JUNIO STABILIZATION MODE # 40 INDICATES IM PONCS, IM AUTO		The second se
	CAF #25FLBIT CAF #25FLBIT 11 MASK FLGMRD30 12 CCS A 13 TCF GOBACK 14 CAF BITS 15 EXTEND	# + INULAYES NO.1 IF FARLS AND/A NJO # ARE WE ON THE DESCENT STAGE? # RETURN # YES, CHECK FOR AUTO-THROTTLE MODE		18 411 - 0
	16 RAND CHANB 17 EXTEND EXTEND 18 BZF GOBACK 19 TURNITON CAF P49A/PHD 20 TC BANKCALL EAR 21 CAR GOPERI1 EQUAD 22 TCF GOTOP90H EQUAD 23 TCF P48A/P	# IM AUTO-THROTTLE MODE RETURN # DISPLAYS VSGN25 R1-203 PLASE PERFORM # CHECKLIST 203 TURN ON POWCS ETC. # V34E TERMINATE # RECYCLE		
	64 GOBACK CA TEMPREG TC BANKTIRP			
	software, control algorithms, code		networking, communication	ECUs, micr

ECUs, microcontrollers, PLCs

		A Constant of the second secon
software, control algorithms, code	networking, communication	ECUs, microcontrollers, PLCs

Periodic Sensing

- Periodic Sensing
- Quick computation

- Periodic sensing
- Quick computation
- In time actuation

PERIODIC SENSING

QUICK COMPUTATION

IN TIME ACTUATION

"A system that requires both, logical as well as temporal correctness."

"A system that requires both, logical as well as temporal correctness."

• Temporal correctness defined as a constraint: deadline

"A system that requires both, logical as well as temporal correctness."

- Temporal correctness defined as a constraint: deadline
- Deadlines determine usefulness of results
 - Deadline passes \rightarrow usefulness drops

"A system that requires both, logical as well as temporal correctness."

- Temporal correctness defined as a constraint: deadline
- Deadlines determine usefulness of results
 - Deadline passes \rightarrow usefulness drops
- Use well-defined scheduling algorithms [e.g. RM, EDF]

"A system that requires both, logical as well as temporal correctness."

- Temporal correctness defined as a constraint: deadline
- Deadlines determine usefulness of results
 - Deadline passes \rightarrow usefulness drops
- Use well-defined scheduling algorithms [e.g. RM, EDF]

ONE OF THE FOUNDATIONAL AREAS FOR CYBER-PHYSICAL SYSTEMS

Consider an airbag deployment system

WHY NOT RUN CODE REALLY FAST?

UNDERSTANDING TIMING BEHAVIOR IS CRITICAL!

ECU

CPS Challenges

- Computational power, energy, cost

Timing Requirement - Safety, reliability, deadlines

CPS Challenges

Limited Resources

- Computational power, energy, cost

Timing Requirement - Safety, reliability, deadlines

Security/System Upgradability - Schedulability, Verifiability

• •

SOFTWARE ERRORS CAN RESULT IN PHYSICAL FAILURES

RESILIENCY?

SOFTWARE ERRORS CAN RESULT IN PHYSICAL FAILURES

·SECURITY AND RESILIENCY ··

SECURITY AND RESILIENCY.

ATTACKER INTENT

·SECURITY AND RESILIENCY ··

ATTACKER INTENT ······ C

Cause systems to crash

·SECURITY AND RESILIENCY ···

ATTACKER INTENT Cause systems to crash

NOT CONCERNED WITH DATA BEING STOLEN

·SECURITY AND RESILIENCY ·

ATTACKER INTENT

Cause systems to crash

What if airbag deployment is delayed?

SECURITY AND RESILIENCY...

ATTACKER INTENT · · · · · · · · · · · ·

Cause systems to crash

Normal Deployment Late Deployment

Next Lecture

- **Design** of Autonomous Systems
- Sensing
 - IMU, GPS, Radar, LIDAR, Camera, etc.