Towards A Holistic Software Systems Engineering Approach for Dependable Autonomous Systems

Authored by Aniculaesei, Adina et. al. Presented by Samantha McDonald

PROBLEM DOMAIN

Autonomous systems!

Not reliable, or transparent.

Increasing in success, because of

- \star The growing demand for smart, interconnected systems
- \star Improvement in the area of data acquisition
- ★ Improvement of self-* (driving, steering, etc) features based on metadata extraction
- \star Expansion of AI concepts through open-source frameworks

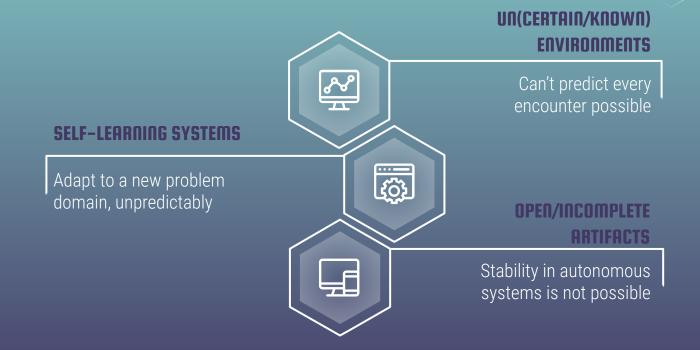
But, not secure!

THE ISSUES

SAFETY

Mitigation of personal danger when using autonomous systems

SECURITY


Reliability of a system, and ability to navigate failures

PRIVACY Guarding of personal data and information

DEPENDABILITY

Safety, security, and privacy

SYSTEM DEVELOPMENT CHALLENGES

Uncertain / Unknown Environments

Operational environments can't be fully defined

Correspondingly, all reactions can't be defined

Example: Tesla crashes into white truck in 2016, 2020

Self-learning Systems

Expected to adhere to their specifications

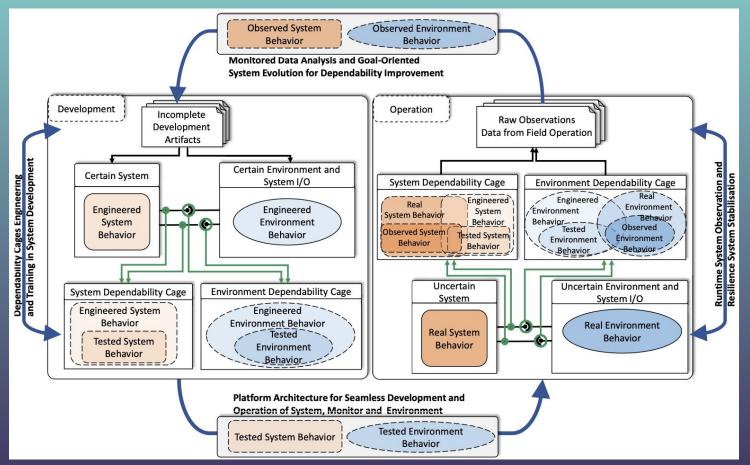
Also expected to adapt to new problem environments

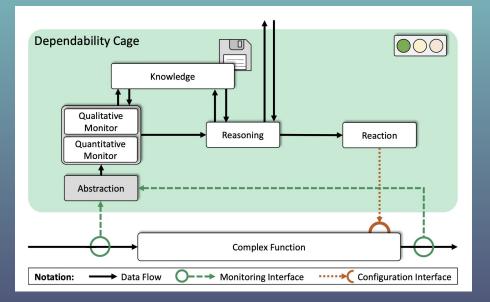
Example: Microsoft's Twitter bot that was meant to learn to interact with users, learned to curse instead

Open / Incomplete Artifacts

An environment has infinite situations, that can't all be defined

Systems will adapt to their situation, and are never stable


Systems can never be fully tested

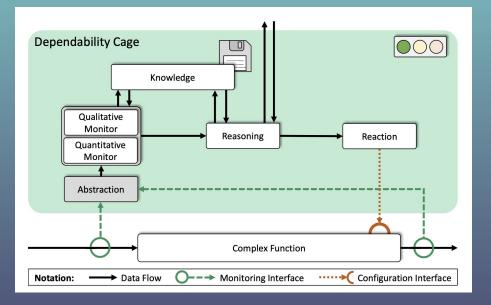

SOLUTION

Change the autonomous system development paradigm. Rather than designing test environments, use **dependability cages**

DEPENDABILITY CAGE

DEPENDABILITY CAGE TYPES

INTERNAL SYSTEM


Ensure the behavior of the system components, system function, and the autonomous system as a whole Brought up from the changing behavior of the internal system

EXTERNAL ENVIRONMENT

02

Ensure the environment in which the vehicle is operating in can be assessed. Brought up from the uncertainties in the system's real environment

DEPENDABILITY CAGE DATA

02

QUALITATIVE DATA

Compares the system's observed behavior to the tested one.
 Recognizes when calculations no longer provide specified outputs.
 Checks the functional correctness of the system.

QUANTITATIVE DATA

*Detects if the context of the situation is potentially unsafe or untested *Verifies if the system is operating in a secure environmental context

RESILIENCE SYSTEM STABILIZATION

* Untested environments will be encountered, findings must be fed back into development artifacts

* Dependability cages attempt to ensure that the observed behavior stays inside the tested behavior

* Combining data collected from a variety of individual widespread dependability cages / data sources \rightarrow improved decision making

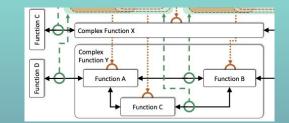
SYSTEM DEVELOPMENT ARCHITECTURE IDEALS

* Software architecture must recognize that system must be in a safe state at all times system must be able to adapt to new situations at operation time

* Dependability cages should be integrated without problems or side-effects with a fallback if observed conditions can't be handled

* As test and operation modes are distinct, switching should be done between simulated / test hardware and real environments

FUTURE WORK / CONCLUSIONS

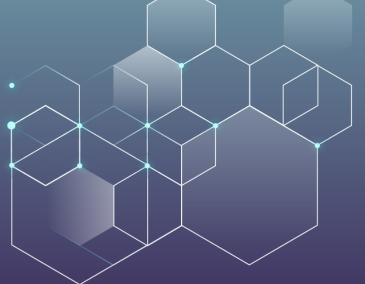

FUTURE WORK

Integrated dependability cages (eg. sensors, functions, and actuators for embedded systems)

CONCLUSIONS

Introduced concept of dependability cages examine runtime behavior, and analyze new samples

MY THOUGHTS



- "Dependability cage" is never given a clear definition
- Half of the paper is spent on background information
- Some/most concepts described are already in use
 Using collected data to re-train models
 Define operational bounds to test within
- Unlikely that a single dependability approach will be used in all autonomous systems

2018 ACM/IEEE 1st International Workshop on Software Engineering for AI in Autonomous Systems

Thanks for Listening!

Any Questions?

DISCUSSION

- Should there be a standard to determine or ensure the trustworthiness of a system?
- How can / should such a system be developed?
- What are the drawbacks of such a system?

