
Presented by: Yuan Gao
10/18/2022

Acknowledgments: Some slide material derived from authors.

Automated Cross-Platform Reverse Engineering
of CAN Bus Commands From Mobile Apps

Haohuang Wen1 , Qingchuan Zhao1 , Qi Alfred Chen2 , and Zhiqiang Lin1

Ohio State University1
University of California, Irvine2

Introduction

In-vehicle Network and CAN Bus

Applications of CAN Bus Commands

Applications of CAN Bus Commands
- recently on Autonomous Driving

Applications of CAN Bus Commands
- Security

Vehicle Hacking Vehicle Security Monitoring

The Jeep Cherokee hacking CAN Bus Firewall

Reverse Engineering of CAN Bus Commands

• State-of-the-art

- Fuzzing with random CAN bus commands

- Manually triggering physical actions and observing the CAN bus

• Shortcoming

- Limited scalability: CAN bus commands are highly customized and diversified

- Excessive cost: Significant manual effort and real automobiles are required

Observation

Contributions

• Novel Approach: Authors propose a cost-effective and automatic approach
for reverse engineering CAN bus commands through analyzing mobile apps.

• Effective Techniques: Authors design a suite of effective techniques to
uncover CAN bus command syntactics (structure and format) and semantics
(meaning and functionality).

• Implementation and Evaluation: Authors implemented CANHunter on both
Android and iOS platforms, and evaluated it with 236 car mobile apps. It
discovered 182619 unique CAN bus commands in which 86.1% of them are
recovered with semantics.

CANHunter

Challenges and Insights
• Challenges

- Precisely identify CAN bus command execution path

- Command syntactics recovery

- Command semantics recovery

• Solutions

- Identify execution path with backward program slicing

- Syntactics recovery with dynamic forced execution

- Semantics recovery with UI correlation and function argument association

Overview of CANHunter

Backward Slicing

Syntactics Recovery

Semantics Recovery

Evaluation

Result Characteristics
- App Categories

• Crawled 236 vehicle apps in April
2019

• 182619 CAN bus commands are
discovered

• 107 apps expose direct CAN bus
commands

• 109 apps expose indirect
commands

• 20 apps are obfuscated

Table: Distribution of collected apps

Result Characteristics
- App Categories

• Indirect (i.e., Interpreted) CAN Commands

- IVI apps usually use interpreted commands for vehicle control

- Interpreted commands are usually strings or numbers

Table: Interpreted commands from IVI apps.

Result Characteristics
- Car Models

• identify CAN bus commands from over 360 car models across 21 car makers

Table: Distribution of CAN Bus commands over part of car makers

Result Characteristics
- Semantics

• 157296 (86.1%) CAN bus commands are recovered with semantics

• The semantics can be categorized into diagnosis and vehicle control

Table: Distribution of CAN bus commands over part of semantics

Correctness Evaluation

• Over 70% of the command syntactics and semantics are validated

• They tried the following three sources for validation:

- Public resource

- Cross validation

- Real car testing

Correctness Evaluation

Correctness Evaluation

Correctness Evaluation

References

• Paper

• GitHub repo

• Presentation

https://www.ndss-symposium.org/wp-content/uploads/2020/02/24231-paper.pdf
https://github.com/OSUSecLab/CANHunter
https://www.youtube.com/watch?v=Gd07JpS5uG4&ab_channel=NDSSSymposium

Q&A

Discussions

• Any idea on how we can prevent reverse engineering?

• From app

• From CAN bus

• Should we ask companies to standardize the CAN bus commands?

