Yeom, Samuel et al. "Overfitting, robustness, and malicious algorithms: A study of potential causes of privacy risk in machine learning"

Presented by Marshall Thompson

Purpose

- Machine Learning(ML) is used to solve a wide range of problems
- This includes problems where data may be sensitive, i.e. healthcare
- Ideally, we would not want a member of the data set to be identified, or more information about them to be known
 - Training Set Member Inference
 - Attribute Inference
- The paper analyzed factors of ML algorithms such as overfitting, robustness, and malicious algorithms and their negative effect on privacy of machine learning algorithms

Background/Preliminaries

Background Terms

- **Overfitting**: A ML model is said to overfit when it fits too closely with a certain dataset
- **Training Set Member Inference:** Determine whether a given data point was present in the training set
- Attribute Inference: An adversary uses a ML model and incomplete information about a data point to infer the missing information for that point
- **Robustness:** A measure of how resilient ML models are to adversarial perturbations to the input data

Preliminaries - Definitions and Notation

- Data Point: $z = (x, y) \in \mathbf{X} \times \mathbf{Y}$
- $z \sim S$: *i* is picked uniformly at random from [*n*], and *z* is set equal to the *i*-th element of *S*. $z \sim D$: *z* is chosen according to the distribution D.
- A_s means a model A trained on dataset S
- Loss Function: $\ell(A_S, z)$

Preliminaries - Stability

• **Stable:** An algorithm is said to be stable if a small change to its input causes limited changes to its output.

Preliminaries - Differential Privacy

Preliminaries - Average Generalization Error

Definition 3 (Average generalization error). The *average generalization error* of a machine learning algorithm A on \mathcal{D} is defined as

$$R_{\text{gen}}(A, n, \mathcal{D}, \ell) = \mathbb{E}_{\substack{S \sim \mathcal{D}^n \\ z \sim \mathcal{D}}} \left[\ell(A_S, z) \right] - \mathbb{E}_{\substack{S \sim \mathcal{D}^n \\ z \sim S}} \left[\ell(A_S, z) \right].$$

Observations

- Stability and Differential Privacy are closely linked
- Unstable algorithms may lead to high average generalization error, which means overfitting
- Unstable, and overfit algorithms may violate differential privacy thresholds

Membership Inference Attacks

Formal Definition

Experiment 1 (Membership experiment $\text{Exp}^{M}(\mathcal{A}, A, n, \mathcal{D})$). Let \mathcal{A} be an adversary, A be a learning algorithm, n be a positive integer, and \mathcal{D} be a distribution over data points (x, y). The membership experiment proceeds as follows:

- (1) Sample $S \sim \mathcal{D}^n$, and let $A_S = A(S)$.
- (2) Choose $b \leftarrow \{0, 1\}$ uniformly at random.
- (3) Draw $z \sim S$ if b = 0, or $z \sim D$ if b = 1
- (4) $\operatorname{Exp}^{M}(\mathcal{A}, A, n, \mathcal{D})$ is 1 if $\mathcal{A}(z, A_{S}, n, \mathcal{D}) = b$ and 0 otherwise. \mathcal{A} must output either 0 or 1.

Definition 4 (Membership advantage). The membership advantage of A is defined as

$$\mathsf{Adv}^{\mathsf{M}} = \Pr[\mathcal{A} = 0 \mid b = 0] - \Pr[\mathcal{A} = 0 \mid b = 1],$$

Bounded Loss Function Adversary

Adversary 1 (Bounded loss function). Suppose $\ell(A_S, z) \leq B$ for some constant B, all $S \sim D^n$, and all z sampled from S or D. Then, on input z = (x, y), A_S , n, and D, the membership adversary A proceeds as follows:

- (1) Query the model to get $A_S(x)$.
- (2) Output 1 with probability $\ell(A_S, z)/B$. Else, output 0.

Theorem 2:

$$\operatorname{Adv}^{M}(\mathcal{A}, A, n, \mathcal{D}) = R_{\operatorname{gen}}(A)/B$$

(Gaussian) Threshold Adversaries

Adversary 2 (Threshold). Suppose $f(\epsilon | b = 0)$ and $f(\epsilon | b = 1)$, the conditional probability density functions of the error, are known in advance. Then, on input z = (x, y), A_S , n, and D, the membership adversary A proceeds as follows:

- (1) Query the model to get $A_S(x)$.
- (2) Let $\epsilon = y A_{\mathcal{S}}(x)$. Output $\arg \max_{b \in \{0,1\}} f(\epsilon \mid b)$.

Advantage given by the ratio of standard errors:

$$\sigma_{\mathcal{D}}/\sigma_{S}$$

Unknown Standard Error Adversaries

- Common for only one value for standard error given
- Solution: Assume they are roughly the same (not overfitting)
- Or, if type of ML algorithm is known: approximate the standard error of S and D by repeatedly sampling S from Dⁿ, train Algorithm A_S and measure the error

Malicious Adversaries

Algorithm 1 (Colluding training algorithm A^{c}). Let $F_{K} : \mathbf{X} \mapsto \mathbf{X}$ and $G_{K} : \mathbf{X} \mapsto \mathbf{Y}$ be keyed pseudorandom functions, K_{1}, \ldots, K_{k} be uniformly chosen keys, and A be a training algorithm. On receiving a training set S, A^{c} proceeds as follows:

- (1) Supplement S using F, G: for all (x_i, y_i) ∈ S and j ∈ [k], let z'_{i,j} = (F_{Kj}(x_i), G_{Kj}(x_i)), and set S' = S ∪ {z'_{i,j} | i ∈ [n], j ∈ [k]}.
 (2) Peture A = A(S')
- (2) Return $A_{S'} = A(S')$.

Adversary 3 (Colluding adversary \mathcal{A}^{C}). Let $F_{K} : \mathbf{X} \mapsto \mathbf{X}$, $G_{K} : \mathbf{X} \mapsto \mathbf{Y}$ and K_{1}, \ldots, K_{k} be the functions and keys used by A^{C} , and $A_{S'}$ be the product of training with A^{C} with those keys. On input z = (x, y), the adversary \mathcal{A}^{C} proceeds as follows:

- (1) For $j \in [k]$, let $y'_j \leftarrow A_{S'}(F_{K_j}(x))$.
- (2) Output 0 if $y'_j = G_{K_j}(x)$ for all $j \in [k]$. Else, output 1.

Attribute Inference Attack

Notation Update !

- z is now a triple z = (v, t, y) where (v, t) \in X, and t is a sensitive feature
- $\varphi(z)$ is a function that describes the data known to the adversary (v, t)
- T is the support of t
- $\pi(z) = t$ is the projection of X into T

Formal Definition

Experiment 2 (Attribute experiment $\text{Exp}^{A}(\mathcal{A}, A, n, \mathcal{D})$). Let \mathcal{A} be an adversary, *n* be a positive integer, and \mathcal{D} be a distribution over data points (x, y). The attribute experiment proceeds as follows:

- (1) Sample $S \sim \mathcal{D}^n$.
- (2) Choose $b \leftarrow \{0, 1\}$ uniformly at random.
- (3) Draw $z \sim S$ if b = 0, or $z \sim D$ if b = 1.
- (4) $\operatorname{Exp}^{A}(\mathcal{A}, A, n, \mathcal{D})$ is 1 if $\mathcal{A}(\varphi(z), A_{S}, n, \mathcal{D}) = \pi(z)$ and 0 otherwise.

$$\mathsf{Adv}^{\mathsf{A}} = \sum_{t_i \in \mathbf{T}} \Pr_{z \sim \mathcal{D}}[t = t_i] \big(\Pr[\mathcal{A} = t_i \mid b = 0, t = t_i] - \Pr[\mathcal{A} = t_i \mid b = 1, t = t_i] \big),$$

General Attribute Inference Adversary

Adversary 4 (General). Let $f_{\mathcal{A}}(\epsilon)$ be the adversary's guess for the probability density of the error $\epsilon = y - A_S(x)$. On input v, y, A_S , n, and \mathcal{D} , the adversary proceeds as follows:

- (1) Query the model to get $A_S(v, t_i)$ for all $i \in [m]$.
- (2) Let $\epsilon(t_i) = y A_S(v, t_i)$.
- (3) Return the result of $\arg \max_{t_i} (\Pr_{z \sim D}[t = t_i] \cdot f_{\mathcal{A}}(\epsilon(t_i))).$

$$\mathsf{Adv}^{\mathsf{A}} = \sum_{t_i \in \mathbf{T}} \Pr_{z \sim \mathcal{D}} [t = t_i] \big(\Pr[\mathcal{A} = t_i \mid b = 0, t = t_i] - \Pr[\mathcal{A} = t_i \mid b = 1, t = t_i] \big),$$

Membership Inference on Robust Models

Robust Classification

Experiment 1 (Membership experiment $\text{Exp}^{M}(\mathcal{A}, A, n, \mathcal{D})$). Let \mathcal{A} be an adversary, A be a learning algorithm, n be a positive integer, and \mathcal{D} be a distribution over data points (x, y). The membership experiment proceeds as follows:

- (1) Sample $S \sim \mathcal{D}^n$, and let $A_S = A(S)$.
- (2) Choose $b \leftarrow \{0, 1\}$ uniformly at random.
- (3) Draw $z \sim S$ if b = 0, or $z \sim D$ if b = 1
- (4) $\operatorname{Exp}^{\mathsf{M}}(\mathcal{A}, A, n, \mathcal{D})$ is 1 if $\mathcal{A}(z, A_S, n, \mathcal{D}) = b$ and 0 otherwise. \mathcal{A} must output either 0 or 1.

$$Adv^{M} = Pr[\mathcal{A} = 0 | b = 0] - Pr[\mathcal{A} = 0 | b = 1],$$

Adversary 8 (Robust classification). Suppose A_S is a robust classification model with robustness parameter ρ . On input z = (x, y), A_S , n, and D, the membership adversary A proceeds as follows:

- (1) Find a perturbed input x' such that $d(x, x') \leq \rho$.
- (2) Query the model to get $A_S(x')$.
- (3) *Output* $\ell(A_S, (x', y))$.

Conclusion

Summary of Findings Covered and Not Covered

- Introduced several new definitions of advantage both membership and attribute inference attacks
- Showed theoretically (and experimentally) that the more a model is overfit the more vulnerable it is to these types of attacks
- Stable, colluding training algorithms can be built for CNNs meaning that privacy can be leaked
- Robustness can be a source of membership advantage
- (Not Covered) They proved that there is a reduction between membership and attribute inference attacks and vice versa
- (Not Covered) Experimentally proven

More Stuff Not Covered Here

Would I accept this paper?

- I think that this is an interesting paper that shows with convincing formal proofs, and experimental results that these factors can affect algorithm privacy
- Making machines private was well understood, but the precise factors inside ML algorithms that could lead to privacy risks were not well studied

Reductions

• Membership and Attribute inferences can be reduced to each other

Experimental Results

• Confirm the theoretical results of the paper

Questions?

Discussion Questions

- In the tradeoff of robustness vs. member privacy, what is more important? What are real world examples to support your claim?
- 2. Do you feel these observations are significant? Would you accept this paper?
- 3. The authors made a lot of assumptions about knowledge of the model/access. Do you feel like the scenarios studied are likely enough to happen? Or are they contrived?

