ADAPTIVE ADVERSARIAL VIDEOS ON ROADSIDE BILLBOARDS:
DYNAMICALLY MODIFYING TRAJECTORIES OF AUTONOMOUS VEHICLES
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The Aim of this paper

> Deep neural networks (DNNs) are utilized in
self-driving vehicles and robotics

> These systems are susceptible to adversarial
attacks causing targeted misclassification.

Desired trajectory
—/ Billboard |
Relative pose Adversarial

of vehicle image

Vglehi e Autonomous vehicle (controlled by Tpercept 1onb .

motion end-to-end deep learning system) el o chicle




Conditional Imitation Learning

> |t takes inputs as current image, destination and suggested action
> |t generates commands to operate steering and speed of the vehicle
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CARLA (CAR Learning to Act)

> Unreal Engine 4 based simulator

> Environment - Minitown, adjustable weather, buildings, vegetation, traffic signals,
infrastructure

> Controlling agent - Car’'s camera (customisable features)

> Feasible to test under various weather conditions
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Contributions of the paper




Creating the attack

L(M) = ZETNT{|N(T(fm(C’i? M))) = Sdes,i|} + R(M)

C - Image of billboard observed from vehicle’s camera

M - Matrix representing image to be displayed on the billboard

p - Relative pose of the vehicle

f»(C. M)- pose-dependant function representing image formed by superimposing M on C
T- Series of transformations of M to mitigate the effect of variabilities

N - Vehicle's navigation DNN mapping (camera image to steering angle)

Sdes - Desired adversarial steering angle

E{.} - Expectation computed over distribution T

R(M) - Regularizar that smoothes M (removes pixelation to increase the rate of attack)
L(M) - Loss function
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( Simulated/Real-world Environment J

Camera images (at
single/multiple points
along desired trajectory)
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[terative computations for
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Optimizer (iterative optimization of billboard
images over combination of mask generation,
superposition, multi-parameter transformation,

and navigation DNN components)

Target actuation sequence
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Attacking Scenarios Results

1. Attacking a car moving in straight lane to turn left.







Attacking Scenarios Results

2. Attacking a car making a right turn to move straight.
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Resulting trajectories
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Discussion

1. Improvements in the DNN?
2. How effective this attack is if tested in the real world? What parameters
would hinder it?

S e 'Auu‘.:.';\.ut - e el o

vvvvv\:;;vvo' Pyoeelooeeeetes  § . b}
ORRR KK SRR B 501 AR CHHXHAH “:0“ 5K
SR8 KKK e SRS

9.9, 0.9.0.919.2.9.9.9.9.4 X PR

R

MR DA K i

. NS ON
NN XA AN
SRR 00’0 SRR X

2 NN K 7’
b e 199009 ..
- - S, S S N -




THANK YOU!




