SCHEDULEAK

[RTAS 2019]

- Exfiltration of critical information
- Reconnaissance

"given knowledge of the scheduling algorithms used in the system, can we recreate its exact timing schedule?"

		Period
 Consider three periodic real-time tasks 	1	5
	2	6
	3	15

	Period
 Consider three periodic real-time tasks 	1 5
 Their relative priorities are: 1 > 2 > 3 	2 6
	3 15

	Period
 Consider three periodic real-time tasks 	1 5
 Their relative priorities are: 1 > 2 > 3 	2 6
	3 15

• Their initial execution pattern would look like:

\geq	1	2	2	3	3	1	2	2	1	1	2	2	1	3	3	2	2	1		2	1 2		► Time
t=	: 0																						

	Period
 Consider three periodic real-time tasks 	1 5
 Their relative priorities are: 1 > 2 > 3 	2 6
	3 15

• Their initial execution pattern would look like:

1 2 2 3 3 1 2 2	1 2 2	1 3 3 2 2 1	2 1 2	→ Time
t = 0				
	hyperp	period [HP = 30]		
	[LCM	l of all Periods]		$\rightarrow \rightarrow \times \underline{\times}$
				18

HP 1	1 2	2 3 3	1 2 2	1	2 2	1 3 3 <mark>2</mark>	2 1	2 1 2
								18

HP 1	1	2	2	3	3	1	2	2	1	2	2		1	3	3	2	2	1		2	1	2	
HP 2	1	2	2	3	3	1	2	2	1	2	2		1	3	3	2	2	1		2	1	2	
HP 3	1	2	2	3	3	1	2	2	1	2	2		1	3	3	2	2	1		2	1	2	
HP 4	1	2	2	3	3	1	2	2	1	2	2		1	3	3	2	2	1		2	1	2	
HP 5	1	2	2	3	3	1	2	2	1	2	2		1	3	3	2	2	1		2	1	2	
1://		Ā		V	A	1	1	Λ.	V A	Ŵ		7		Ā		V 7	A.	V				$\overline{\Lambda}$	

HP 1	1	2		1	2		1			1			1		1			
HP 2																		
HP 3																		
HP 4																		
HP 5																2		
1://									1									

HP 1	1	2		1	2		1			1			1		1	
HP 2																
HP 3																
HP 4																
HP 5																
/://									1							

Can we predict **future** execution time points for critical task(s)? 1

We us	se	kn	ov	vle	ed	ge	of	th	e re	egula	ar e	exe	cu	tio	n	pa	tte	err	ns in	rea	al-ti	m	ie	sys	ten
-IP 2																									
IP 3																									
IP 4																									
-IP 5																									
Can	W	e p	ore	edi	ict	fu	Itu	re	exe	ecuti	on	tin	าย	ро	int	S I	for	C	itic	al ta	sk(s)	?		
																									J
HP X																									
	V			V		1	1					1	1	1			~_/		/ . / .)					- 10	

WHAT CAN WE DO WITH FUTURE EXECUTION INFORMATION?

DEMONSTRATION 1

- Consider a UAV on a mission
- Takes [high-res] photos \rightarrow points of interest [green]
- Camera \rightarrow off or low-res mode otherwise

• true locations of interest

WHAT CAN WE DO WITH FUTURE EXECUTION INFORMATION? DEMONSTRATION 1

Attacker's goal

• Recover location of interest points where memory usage [of victim] is high

WHAT CAN WE DO WITH FUTURE EXECUTION INFORMATION? DEMONSTRATION 1

- Attacker's goal
 - Recover location of interest points where memory usage [of victim] is high

SYSTEM ASSUMPTIONS

Real-Time Tasks

Periodic

- Jobs released periodically
- Relative deadlines

Sporadic

- Release/arrival times specified
- Inter-arrival times
- Absolute deadlines

worst-case execution times

SYSTEM ASSUMPTIONS

• Assumption: Fixed-Priority Real-Time Systems [E.g. RM]

- Attacker's task (observer task) periodic or sporadic
- **Victim task** *periodic*

Other tasks

periodic or sporadic

Real-Time Tasks

Periodic

- Jobs released periodically
- Relative deadlines

Sporadic

- Release/arrival times specified
- Inter-arrival times
- Absolute deadlines

worst-case execution times

SYSTEM ASSUMPTIONS

• Assumption: Fixed-Priority Real-Time Systems [E.g. RM]

- Attacker's task (observer task) periodic or sporadic
- Victim task periodic

 Other tasks
 periodic
 - periodic or sporadic

Requirements

- The attacker knows the victim task's period
- The observer task has lower priority than the victim task

Real-Time Tasks

Periodic

- Jobs released periodically
- Relative deadlines

Sporadic

- Release/arrival times specified
- Inter-arrival times
- Absolute deadlines

worst-case execution times

ATTACK SCENARIO OVERVIEW

There is some schedule (on the victim system)

ATTACK SCENARIO OVERVIEW

There is some schedule (on the victim system)

The adversary **observes** and **analyzes** the schedule and **reconstructs** precise timing information

			\times		\rightarrow	
--	--	--	----------	--	---------------	--

Inferring arrivals of a "victim" task

_	1.1		V · · ·	10
			\sim	

ATTACK SCENARIO OVERVIEW

SCHEDULEAK ALGORITHMS

Task ID	Period	Exec Time
Observer Task	15	1
Task 2	10	2
Victim Task ($ au_{v}$)	8	2
Task 4	6	1

SCHEDULEAK ALGORITHMS		Task ID	Period	Exec Time
	Observer task	Observer Task	15	1
	has lower	Task 2	10	2
	victim task	Victim Task ($ au_{v}$)	8	2
		Task 4	6	1
		$\square \text{ Observer Task } \tau$		ther Tasks

SCHEDULEAK ALGURITHMS	Task ID	Period	Exec Time
	Observer Task	15	1
	Task 2	10	2
Reconstruct execution intervals of $ au_v$	Victim Task ($ au_{ u}$)	8	2
	Task 4	6	1

SCHEDULEAK ALGORITHMS	

Task ID	Period	Exec Time
Observer Task	15	1
Task 2	10	2
Victim Task ($ au_{v}$)	8	2
Task 4	6	1

System Schedule Ground Truth:

Reconstruct execution intervals of $au_{
u}$

,	
	I Other Tasks
~	'

SCHEDULEAK A	ALGORITHMS
--------------	------------

	Task ID	Period	Exec Time
	Observer Task	15	1
<u> </u>	Task 2	10	2
Reconstruct execution intervals of $ au_{ u}$	Victim Task ($ au_{v}$)	8	2
	Task 4	6	1

System Schedule Ground Truth:

What the attacker can observe

Execution Intervals Reconstructed by the Observer Task: Some tasks preempted the observer task Observer Task τ_o Other Tasks

CHEDULEAK ALGORITHMS	Task ID	Period	Exec Time
	Observer Task	15	1
	Task 2	10	2
Organize the execution intervals	Victim Task ($ au_{ u}$)	8	2
	Task 4	6	1

SCHEDULEAK A	ALGORITHMS
--------------	------------

Take union of the execution intervals

	Task ID	Period	Exec Time
	Observer Task	15	1
	Task 2	10	2
Organize the execution intervals	Victim Task ($ au_{v}$)	8	2
	Task 4	6	1

SCHEDULEAK ALGORITHMS

Task ID	Period	Exec Time
Observer Task	15	1
Task 2	10	2
Victim Task ($ au_{v}$)	8	2
Task 4	6	1

TASKS WITH LOWER PRIORITIES (E.G. OBSERVER TASK) **CANNOT** APPEAR IN THIS COLUMN!

PERFORMANCE EVALUATION

X

• Synthetic Task Sets

6000 Task Sets:

Task Set Utilization [0.01,0.1) ... [0.91, 1.0) **10** groups ••••

The Number of Tasks 5, 7, 9, 11, 13, 15 **6** groups

× 100

PERFORMANCE EVALUATION: METRICS

Inference Precision Ratio

the ratio of how close the inference to the true task starting point

 $\mathbf{\bullet}$

Inference Success Rate

an inference is successful if attacker can exactly infer the starting point of the victim task

WHAT CAN WE DO WITH INFORMATION GLEANED USING SCHEDULEAK? 31

ScheduLeak Demo

