Secure Autonomous Systems

CSCI 6907/3907 88 Fall 2022

Prof. Sibin Mohan

https://bit.ly/secureauto-fall22

Common Sensor Types

Cameras

- Accurate way to create visual representations
- Front, left, right, rear cameras
 - to create a 360-degree view
- Main focus → object detection

Cameras | Computer Vision

Computer Vision algorithms for object detection

- 1. Image classification → determine objects in an image are
- 2. Image localizations \rightarrow providing specific locations of image [bounding box]

Cameras | Image Classification

- Convolutional Neural Networks (CNNs)
 - trained to recognize objects like cars, pedestrians, etc.
 - performs convolution operations at runtime
 - to classify images from camera
- CNNs limited to single objects taking up entire image
- Sliding Windows!

Cameras | Sliding

What about objects much larger or much smaller than window size?

YOLO!

Algorithm

SLIDING WINDOW ALGORITHM

 $y = (p_c, b_x, b_y, b_h, b_w, c)$ b_w b_h (b_x, b_y)

- "you only look once"
- Image split up into grid \rightarrow run once through CNN

Cameras | YOLO [contd.]

preprocessed image (608, 608, 3)

Cameras | YOLO | Image Localization

Cameras | YOLO | IoUs

- During training → compare CNN bounding box to **actual** ones
- Cost function, "intersection over union" (IoU)

 $IoU = \frac{area \ of \ intersection \ of \ bounding \ boxes}{area \ of \ union \ of \ bounding \ boxes}$

• If IoU is closer to $\mathbf{1} \rightarrow$ better the bounding box

Intersection

Union

Cameras | YOLO | Non-Max Suppression

- Majority of the cells won't have bounding boxes
- Remove boxes with
 - low object probability
 - highest shared area
 - non-max suppression
 - discard bounding boxes with probability less than threshold
 i.e. p < 0.5 or 0.6
 - take box with highest prediction value
 - discard/suppress boxes with IoU > threshold with that box
 i.e. 0.5 or 0.6
- suppress boxes that don't have maximum probability

Attacking Object Detectors?

- Falsify the training set
 - Larger impact
 - Harder to do less public access
- Modify objects being detected
 - Add paint/tape/appendages to cars to that it presents differently
- Attack the inputs
 - Add stickers to objects
 - Add extraneous pixels/data to the camera inputs

Attacking Object Detectors | Example

- Maximize loss of CNN classifier
- Maximize loss of object detector

40x40 patch

Cameras

- Additional cameras
 - Lane following
 - Traffic signal monitoring

Stereo Vision

- Problem with regular cameras+YOLO is **2D vision**
- "Fuse" camera data with LiDAR → expensive
- Align two cameras and use geometry
- Pseudo-LiDAR

Secure Autonomous Systems | Fall 2022

Stereo Vision

- Retrieve distance of an object using two cameras and triangulation
 - Stereo calibration
 - Epipolar geometry
 - **Steps** Disparity mapping
 - Depth mapping
 - Obstacle detection estimation

Stereo Vision | Calibration

Create undistorted images from original camera ones

Stereo Vision | Disparity Mapping

• Difference in image location of same 3D point from 2 camera angles

Secure Autonomous Systems | Fall 2022

Stereo Vision | Depth Map

• Distance of each pixel in an image

• Using other image+disparity map

Pseudo-LiDAR

Stereo Vision | Estimate Depth

- Using depth map, combine with YOLO
- E.g. run YOLO on left image and then use depth map
- In bounding box from YOLO, closest point can be taken

600

References

• mmWave

https://www.ti.com/lit/wp/spyy005a/spyy005a.pdf?ts=1641417836995&ref_url=https%25 3A%252F%252Fwww.google.com%252F

• Computer Vision/YOLO

https://medium.com/@albertlai631/how-do-self-driving-cars-see-13054aee2503 https://www.kdnuggets.com/2018/09/object-detection-image-classification-yolo.html

Attack on YOLO paper

https://arxiv.org/pdf/1806.02299.pdf

• Stereo Vision/Pseudo LiDAR

https://www.thinkautonomous.ai/blog/?p=pseudo-lidar-stereo-vision-for-self-driving-cars