Behaguor—‘based Intrusmn Detectlon

P for Cyber-PhysmaI Systems

: _./:’

<& - Sibin Mohan

The George Washington University

\Q

e — = —

C h a I I en g es ; Limited Resources
| ' 12 - Computational power, energy, cost
in CPS

Security

Timing Requirement
- Safety, reliability, deadlines

System Upgrade
- Verifiability

o Limitations in Existing Approaches

Resource Overhead High Upgrade Cost Increasing Complexity Adaptability

Formal verification

Domain-specific,

Capabilities and

unforeseen
access control

vulnerabilities

for every new
update

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

Behavior Monitoring

¢ Non-intrusive observation
of system “behavior”

Protection/lsolation

¢ Trusted hardware
component

Sibin Mohan | Behavior-based Intrusion Detection for CPS

October 11, 2022

Outline

o Background: Real-Time Systems & Simplex

o Cyber-Physical Systems Behavior

o SecureCore: Multicore-based Intrusion Detection

o Control Flow Monitoring

o Anomaly Detection using Kernel-memory Behavior

o Execution Contexts Learned from System Call Distributions
o Current and Future Work

o Conclusion

Sibin Mohan | Behavior-based Intrusion Detection for CPS

October 11, 2022

Background | Real-Time Systems

©)

A real-time system is defined as,

““a system that requires both, logical correctness as well as temporal correctness”

Temporal correctness defined as a constraint: deadline

Deadlines determine usefulness of results

deadline passes — usefulness drops.

E.g.: Anti-lock Braking System (ABS) in modern automobiles

must function correctly in milliseconds time-frame

even 1second might be too late

(e.g.: a car traveling at 60 mph has travelled 88 ft. in 1s!)

Some assumptions in Real-Time Systems:

no dynamically loaded code/function pointers/etc.
periodic programs (“tasks”) that execute independent of each other
relatively simple operating systems

limited processing power/memory/network bandwidth/etc.

Background | Simplex Architecture Overview

o Use simplicity to control complexity

o Simplex allows use of untrusted, yet high performance/complex subsystem

= in a safety-critical control system

= Used successfully in avionics, pacemakers, etc.

o High Level-architecture:

Safety

Controller
_ _/

Complex

Decision
Module

}

Actuator
Commands

—®

Controller
_ _/

o System-level Simplex*: hardware/software partitioning of system

Sensor Information

Detect problems if complex controller

violates safety of plant

* “The System-Level Simplex Architecture for Improved Real-Time Embedded System Safety” by Bak et al. RTAS 2009.

October 11, 2022

Outline

o Background: Real-Time Systems & Simplex

o Cyber-Physical Systems Behavior

o SecureCore: Multicore-based Intrusion Detection

o Control Flow Monitoring

o Anomaly Detection using Kernel-memory Behavior

o Execution Contexts Learned from System Call Distributions
o Current and Future Work

o Conclusion

Sibin Mohan | Behavior-based Intrusion Detection for CPS

October 11, 2022

Question: can you use the innate properties of real-time systems to
detect problems/anomalous behavior?

* [ICCPS 2010] “Time-Based Intrusion Detection in Cyber-Physical Systems”
by C. Zimmer, B. Bhatt, F. Mueller and S. Mohan.

* [HICONS 2013] “S3A: Secure System Simplex Architecture for Enhanced Security and
Robustness of Cyber-Physical Systems” by S. Mohan et al. in HICONS 2013.

* [RTAS 2013] “SecureCore: A Multicore based Intrusion Detection Architecture for Real time Embedded Systems”
by M. K. Yoon, S. Mohan, J. Choi, J. E. Kim and L. Sha in RTAS 2013.

* [CPSNA 2013] “On-chip control flow integrity check for real time embedded systems”
by F. A. T. Abad, J. V. D. Woude, Y. Lu, S. Bak, M. Caccamo, L. Sha, R. Mancuso and S. Mohan
in CPSNA 2013.

* [DAC 2015] “Memory Heat Map: Anomaly Detection in Real-Time Embedded Systems using Memory Behavior”
by M. K. Yoon, J. Choi, L. Sha and S. Mohan in DAC 2015 [accepted].

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

CPS Behavior

o CPS are predictable by design

= Finite set of operational modes, periodic jobs, etc.
o In particular, because of their real-time nature their run-time behavior is
= Fairly predictable and deterministic
o E.g.: execution time, memory access profile, 1/O flows, OS resource usage, power consumption, etc.

o Deviations from expected behavior — suspicious (more evident than in general purpose systems)

Control
Flow

Accesses

o Combine with trusted hardware module to increase robustness

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

CPS Behavior (contd.)

o Malicious activity consumes resources (e.g. CPU cycles, memory, network, etc.)

o Compromised systems behave differently

o High-level methods to obtain Behavioral Profiles:

Compile-time Analysis

Policy extraction from source code analysis
= Exact models, policy checker

= Ex:legitimate control flow of application

Precise

= But, cannot capture behavioral variations

Harder to apply to complex systems

: ?’
i P |}
s :

Profile legitimate run-tir
* Probabilistic models, classifier
* Ex:legitimate execution time, memory access pattern

Legitimate variation can also be captured
* System effects, input sets

False alarms can occur

10

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

Behavioral Signal | Execution Time

o Say, we are interested in the deterministic timing profiles of real-time CPS

o Consider simple control flow:

Malicious
Code

e; #+ €5

11

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

Behavioral Signal | Variations in Execution Time

o Reasons for variations in CPS Execution Time

Execution
time

variations

Execution
eglpath,,
Input values input X =? ms

flow path
eglpath,, input X = 3ms

eglpath = 3ms

eglpath, = 7ms

eglpath; = 5ms

eglpath,, inputY = 2ms

o Will address them all of these types of variations

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

12

Timing Profiles

o We profile the application at the basic block level

o By narrowing estimation domain (basic block), we get
= Lesser variations

= Better accuracy

o Block boundary — check point to detect unexpected flow deviations

Challenges:

o Execution times can vary for even a single block
= Due to execution path variations, input sets, system effects, etc.
o What is a good estimation on execution times?

" min, max, variance, mean, etc. — not representative; cannot capture variations

Sibin Mohan | Behavior-based Intrusion Detection for CPS

BIock

October 11, 2022

13

Statistical/learning-based Behavioral Profiles

o Obtain behavioral timing profiles for complex code

= Variability due to control flow, input set variations, etc.

Statistical learning-based profiling/detection

e Profile execution times
e Even legitimate variations

e Detect abnormal execution time probabilistically

o We use probability density functions (PDFs) for this purpose

Execution time
variations

Execution t
owy patth Input values

Prob. Density

Sibin Mohan | Behavior-based Intrusion Detection for CPS

00020
00018
00016
00014
00012
00010
00008
00006
00004
00002
0.0000

272000 273000 274000 275000 276000 277000 278000 279000 280000 281000 282000

Execution Time

14

October 11, 2022

Kernel Density Estimation (KDE)

o Non-parametric Probability Density Function Estimation

[Density
0.0af Example estim ate
0.03
E 025 Kernel
%002 / functions
Dx 0.02
0.01 \
0.005 ‘ ‘ ‘
° /2 —‘&Q\ _

Data
points

[Figure is from CSCE 666 “Pattern Analysis” by Ricardo

Gutierrez-Osuna at Texas A&M]

1.

2.

Given samples of exec times

Draw scaled distribution at each sample point

3. Sumthem up

Estimated pdf

Sibin Mohan | Behavior-based Intrusion Detection for CPS

Kernel function

leM L (m)y — N K (e — o)
fh(ﬁle €) - ; Xh(c &)

f

Bandwidth

October 11, 2022

Intrusion Detection Using PDFs

PDF of the Execution Time of an example block

0.0020

0.0018

0.0016

0.0014

0.0012

0.0010

0.0008

Prob. Density

0.0006

0.0004

0.0002

0.0000
272000

5000 276000

tion Time

/

Highly likely

277000 278000 279000 28&(

l

Multiple regions: different inputs or persistent system effects

Sibin Mohan | Behavior-based Intrusion Detection for CPS

(e*) > 60—

October 11, 2022

How much deviation should we consider malicious?

! | ~ Prob(e*) < 8 Malicious

16

Outline

o Background: Real-Time Systems & Simplex

o Cyber-Physical Systems Behavior

o SecureCore: Multicore-based Intrusion Detection

o Control Flow Monitoring

o Anomaly Detection using Kernel-memory Behavior

o Execution Contexts Learned from System Call Distributions
o Current and Future Work

o Conclusion

Sibin Mohan | Behavior-based Intrusion Detection for CPS

October 11, 2022

17

SecureCore

Can use redundancy in multiple cores to ‘

improve security of CPS Intrusion detection, not prevention

e Monitor the most critical components
e System recovery upon detection

Behavior monitoring

e Predictable behaviors of real-time apps

e Profile behavior pattern by machine learning
Analyze more complex control flows and

behavioral variations Pr—

Multicore-based on-chip hardware for
monitoring behavior of tasks

Directly obtain information from processor —
don’t rely on monitored task

Core-to-core monitoring on multicore
e On-chip HW for OS/APP state inspections

Uses statistical/machine learning approach to Hypervisor-/HW-based core protection/isolation

creating behavior profiles

18

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

System/App Model

o Periodic Controller task with real-time requirements

Controller ;
>

Y v | Y
Sensor data Actuation command Time

o A multicore-based real-time control system

EActuation Commands

Sensor data

Physical plant
SecureCore Architecture

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

19

SecureCore High-Level Design

o A dedicated core for inspecting behavior of other core(s)

Observes the state of monitored cores, 1/O activities, physical states, etc.
Invisible to all but SecureCore, non-intrusive

Qn-chip Monitoring HW Unit

Monitored Core SecureCore

R

S | Secure Monitor

Monitor e Software process that performs monitoring
and detection using observed behavior

On-chip
Monitoring
HW

f Hypervisor

/

Hypervisor-based SecureCore Protection
* Resource virtualization: memory space separation, I/O device consolidation
* Additional HW-based protection (e.g., ARM TrustZone)

20

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

SecureCore Architecture Low-level Design

Monitored Core

-

Complex
Controller

Il..

"/

g I EEEEENERN

N

.

Timing
Trace
Module

QamEnEsn

N/

Scratch
Pad
Memory

Secure Core

Secure
Monitor

Esssmnmpgn®

"V

Decision
Module

\

/S

Safety
Controller

4

Actuation Sensor
Command Data

21

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

Timing

:> Trace

Module

Scratch
Pad

Raw Traces

(Addrl, tl)
(Addrz, tz)
(Addr3, tg)
(Addry, ty)
(Addrl, ts)
(Addrz, t6)
(Add?‘s, t7)
(Addr6, tg)
(Addr;, tg)
(Addrl, th)
(Addrz, t11)

Memory

Block

» B3
oo |

00020
00018
00016
00014
00012
00010
00008
00006
00004
00002
0.0000

272000 274000 276000 278000 280000 282000

--$lock

Block

~ Block

Block

ck

Sibin Mohan | Behavior-based Intrusion Detection for CPS

October 11, 2022

22

e —

Inverted Pendulum

Early Detection for Inverted Pendulum (IP)

PN

Cart position (meter

1.2
1.1

1
0.9
08

o O o
o o N

Actually the attack
is detected almost
- immediately using
g our methods

o o
W H
|

o O
S
I

r r

: :
10 15 20 25 30
Time (sec) 72

o
o~
)

Outline

o Background: Real-Time Systems & Simplex

o Cyber-Physical Systems Behavior

o SecureCore: Multicore-based Intrusion Detection

o Control Flow Monitoring

o Anomaly Detection using Kernel-memory Behavior

o Execution Contexts Learned from System Call Distributions
o Current and Future Work

o Conclusion

Sibin Mohan | Behavior-based Intrusion Detection for CPS

October 11, 2022

pail

CEM: Control Flow Monitor

o Timing is just one of the behavioral ‘signals’ that can be monitored

= Smart adversary can insert code that matches timing behavior closely

o The behavior of the control flow in real-time systems is deterministic

= Not just for the real-time tasks, but also for OS components like scheduler

o CFM
= Profile the control flow for components on the main processor
= Track the flow of control at runtime
= Tracking module implemented as simple monitoring module on FPGA logic

= Get critical information directly from processor hooks

75

October 11, 2022

CFM Sequence of Events

KAnalyze source \

code/binary to
extract control flow

* Create processor
hooks to get
information - e.g.

Qogram counter J

/*Connect processor
hooks to monitoring
module on FPGA

* Store control flow
information in
memory accessible

konIy by monitor

(.

* At runtime, get
information from
processor

* Check against stored
control flow
information to see if
correct paths followed

AN

~

Sibin Mohan | Behavior-based Intrusion Detection for CPS

* On detection of problem,
take recovery actions:

- Raise Alarm

- Take control Away

- Reset main System

76

October 11, 2022

CFM High Level Architecture

-

N\ [)
/ \ FPGA 25
g
= 9
£8
Processor Softcore S35
(executing main Real-Time tasks) 5 38
=
Processor Hooks 9 _<§)
Leon Il Sparc Architecture Z2gs
0S5
sEE
A ol0)
/ 928
B g
g N g
5
. S -
Control Flow Information) Monitoring Module) - 3
(on board FPGA Memory) £35S
% 2
|11 Qe
<) G0

Sibin Mohan | Behavior-based Intrusion Detection for CPS

October 11, 2022

77

CFM Implementation

o Automated tool to extract control flow information from single task binary

o Example
1 main:
2 instr_1
3 instr_2
4 1bl 2: instr_3
5 JEQ1bl 1
6 instr_4
7 instr_5
8 instr_6
9 JMP 1bl 2
10 1bl 1: instr_7
11 instr_8
12 CALL func 1
13 instr 9
14 JMP 1bl 2
15 func 1l:instr_f1
16 instr_f2
17 RET

October 11, 2022

)

Implementation (contd.) & Evaluation

o Implemented using a Leon3 softcore processor on Xilinx Virtex-5 FPGA

o Remaining fabric on FPGA = monitoring module with hooks into Leon3 pipeline
= Program counter (PC) & Instruction Register (IR)

o Application: code for PID controller for temperature control in an industrial unit

= Generated 240 separate execution blocks in the CFG

o Attacks:

1. Code replacement attack by loading a modified binary = different jump destination for one block

2. Return address overwritten on the stack using buffer overflows

o Both attacks detected almost immediately - i.e. within a few instructions (before next block executes)

790

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

Outline

o Background: Real-Time Systems & Simplex

o Cyber-Physical Systems Behavior

o SecureCore: Multicore-based Intrusion Detection

o Control Flow Monitoring

o Anomaly Detection using Kernel-memory Behavior

o Execution Contexts Learned from System Call Distributions
o Current and Future Work

o Conclusion

Sibin Mohan | Behavior-based Intrusion Detection for CPS

October 11, 2022

3()

Tracking Memory Behavior

o Multiple ways to track memory
= Exact sequence of memory addresses = too much overhead [storage/computation]

= Monitor the amount of memory traffic [e.g. bandwidth] = abstracts away details

o We introduce the memory heat map (MHM)

= Composition of different activities in a certain memory region

" Provides necessary details

= Concise data structure £ gese=n

o We use this to profile memory behavior for the operating system kernel

21

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

Why Kernel Memory Behavior

o Good indicator of system-wide behavior

= Every application has to use kernel services

o (Can also detect certain anomalies
= e.g.unexpected start/end of applications or

= Suspicious use of kernel services
o Simpler H/W design
= Kernel memory location is fixed and known

= No need to deal with address translation and paging

o Monitor kernel instructions [.text] section

* Inspect which parts of kernel have executed

Sibin Mohan | Behavior-based Intrusion Detection for CPS

October 11, 2022

)

Key Approaches

o Memory Heat Map (MHM)

= # of accesses to memory regions during a time interval

= Depends only on the size of the monitored region

o Image recognition technique

= Dimensionality reduction

= Normal behavior learning and anomalous behavior detection

o On-chip SecureCore-based hardware module (Memometer)

= Real-time memory access monitoring

Sibin Mohan | Behavior-based Intrusion Detection for CPS

October 11, 2022

22

Memory Heat Map (MHM)

Linux Kernel .text Segment [0xc0008000, 0xC02E7AA4)

Monitoring interval
Real-Time I:
Applications £
I
" =
Memory Heat Map
of Kernel .text
1 |

\ Memory Region Size: 3,013,284 Bytes
Addrg,, Granularity: 2,048 Bytes
0xC0008000 # cells: 1,472

eyl

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

Learning from Memory Heat Maps

o Goal
= 1) Find the legitimate behavior patterns from the normal MHMs

= 2) Given a new observation (MHM), analyze the statistical similarity to the patterns

Is this normal or not?

N

o ldea & Intuition

= Treat each MHM as an image

* Normal memory behavior can be grouped into a finite number of similar image groups

= Then, use an image recognition technique and clustering

20

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

Eigenface | Dimensionality Reduction

o Animage recognition technique
o Based on PCA (Principal Component Analysis)
= Transform data to a low-dimensional coordinate system

= They best describe the distribution of original data

* The first principal component has the largest variance and so on

o Eigenface = a basicimage
= Learn (extract) a set of Eigenfaces from the original images using PCA

= # of eigenfaces << # of original images

= They can be linearly composed to reconstruct the original images with a minimal approximation error

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

3h

Eigenface

o Face recognition technique

Average face
Original faces

Eigenfaces

-

8.
k -

Image source: http://www.scholarpedia.org/article/Eigenfaces 3 7

Dimensionality Reduction for MHMs

Monitoring interval

< L

Real-Time

Applications

Time

Memory Heat Map

of Kernel .text

Reduced MHM

Normal/Abnormal Normal/Abnormal Normal/Abnormal

Sibin Mohan | Behavior-based Intrusion Detection for CPS

Normal/Abnormal

2R

October 11, 2022

Examples of MHMs captured as a Sequence

1 2 3 4 5 6 7 8 9 10
= H B] B B ' N e e
11 12 13 14 15 16 17 18 19 20
1 | B BN Bl B IE S e
21 22 23 24 25 26 27 28 29 30
] Bl N F BN N b N S e
31 32 33 34 | 35 36 37 38 39 40
= N B BN Bl B B = e
41 42 43 44 45 46 47 48 49 50
] H B 1 B B ' N S e

Note: One MHM is captured every 10 ms

390

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

MHM Learning & Anomaly Detection

o In our memory analysis domain:

Original MHMs Reduced MHMs Clusters ... ,

]
0
y

Pattern learning using clustering
= E.g. Gaussian Mixture Model (GMM)
» |dentify representative MHM patterns

A()

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

Monitored Core

Data Bus y

Address Bus

Data Bus
Address Bus

L1 Cache L1 Cache

AV

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

41

Configuration by

v

| ——
Addresr / —
|

I
I
: Memometer SecureCore
|
1 —
PSS EEEEES 1 I / Controller ‘ControH \ |
' ' ' Control 2 ’I
1 ! : p— <
|
: | i 9 € Timer
Monitored Core ! I : S i]
S — L < I B o
I I o B D %) —) MHM Memory 0 %
1 | @]
- (@) * E
i 3 . mv :> ch)
! o [Snooped UN) < e}
: € |_Adar v 2 < N @
--------- 2 > B i B | S
, = o0 o MHM Memory 1
| T
I A < :>
I
{}@ | : Address Filtering and
l Target Cell Calculation
I I
|
I
L

Sibin Mohan | Behavior-based Intrusion Detection for CPS

Double Buffering for
Uninterrupted Monitoring

N1°)

October 11, 2022

Implementation & Evaluation

Prototype implementation

* ARM Cortex-A9 on Simics

* Linux 3.4 = .text segment is monitored
 10ms interval, 2KB cell size

« Embedded benchmarks

Embedded benchmarks
Exec. Time | Period Category
FEFT 2 ms 10 ms telecomm
bitceunt 3 ms 20 ms | automotive
basicmath 9 ms 50 ms | automotive
sha 25 ms 100 ms security

Anomalies/attacks

* Unknown application launch
* Application kil

* Shellcode execution

* Kernel rootkit

A2

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

Anomaly Scenario 1 | Unknown Application Launch

250

251

Similarity to Patterns

log, , f(M)

Unknown app
launched exited

Normal state

252

50 100 150 200 250 300 350 400 450 500
Interval Index

Time
Log Probability Density of MHMs

253 254 255 256 Abnormal 257 258 Abnormal 259 Abnormal

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

A4

Anomaly Scenario 2 | Kernel Rootkit

o Akernel rootkit (as a loadable kernel module) that hijacks ‘read’ system calls

= (alls the original handler and then read the buffer

= Note: the loadable kernel module is outside the target monitoring region

Total number of accesses

o

Rootkit launched Rootkit launched

wv 0
S s
g
i)
(1] =151
D- >
o :
+ e
>3 g
T s ERRRRL 1
©
— -40-

Normal state | | | | | E “r Normal state

v “ " interval Index 300 350 “ =% 50 00 150 200 250 300 350 400

Interval Index
Memory Traffic Volume Log Probability Density of MHMs

A5

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

Analysis Overhead

o How long does it take to decide whether an MHM is normal or not

o Cost: Transforming to reduced space + probabilistic calculation using GMM

MHM Size (# cells) 1472 368 1472
Eigenfaces 9 9 5

GMM components 5 5 5

Avg. time 358 us 100 ps 216 ps

o Note: this analysis/transformation does not take place on critical path = happens in the secure core

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

AR

Outline

o Background: Real-Time Systems & Simplex

o Cyber-Physical Systems Behavior

o SecureCore: Multicore-based Intrusion Detection

o Control Flow Monitoring

o Anomaly Detection using Kernel-memory Behavior

o Execution Contexts Learned from System Call Distributions
o Current and Future Work

o Conclusion

Sibin Mohan | Behavior-based Intrusion Detection for CPS

October 11, 2022

A7

System Call Frequency Distribution (SCFD)

o Distribution of system call frequencies

= How many times each system call type has been called by
an application during one execution

Number of calls

o Intuition
= An application shows similar pattern for SCFDs
* When the input (e.g., from sensors) is similar

= Malicious activities involve system calls

N—r

* For privileged operations (example: socket, connect, write, ...

* So, likely will show up as changes to SCFDs

o It’slightweight

= No sequence. Just counting!

Sibin Mohan | Behavior-based Intrusion Detection for CPS

100

10

1

102
30
6
5
3 3 3
: I : : I I

writer read mmap open close fstat munmap socket connect stat

AR

October 11, 2022

Challenges and Solutions

o Multiple execution contexts
= Due to various execution modes and inputs

= So, even benign SCFDs vary so greatly

Solution: Clustering SCFDs

o How to catch system calls using hardware?
= By not relying on system call interposition in SW level

= Not easy to deceive HW-based approach

Solution: Catch system call ‘instruction’

Sibin Mohan | Behavior-based Intrusion Detection for CPS

October 11, 2022

AO

SecureCore | System Call-based Detection Architecture

Monitored Core Secure Core

System Call
Tracing Module

(SCTM) Secure
Monitor

Scratch Pad
Memory

(SPM) P

N 5 I .

50N

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

System Call-based Detection Process

Time
APP“_Cat'On A Execution Execution Execution
(on Monitored core)
On-chip HW module Monitor (watches Monitored core’s instruction)
Secure Monitor Analysis Analysis Analysis

(on Secure core)

- Same process for offline learning and online detection
* Learning: collect a set of SCFDs
« Detection: Analyze SCFDs one at a time

51

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

System Call Instruction

INST_REG_AID m 50
INST_BEGIN 50

o Catch the invocation of the designated instruction for system call

open(dev_name, flag)| Execution 7f

38
7f

7f
44

INST_END 50

Instruction x86:int 80h,

00

00

20
c3
ad
45
00

00

X64:syscall,
PowerPC: r0

System call number x86: eax, X64: rax,

00

00

00
f3
eb
d3
00

00

2f

02

05
78

78
02

05

rlwimi r@,r0,0,0,23!

rlwimi ro,r9,0,0,1

i
mr
mr
mr
sc

rlwimi r9,r0,90,90,2

re,s

r3,r3o
r4,r29
r5,r26

PowerP(C: sc

Application ID (AID)

System call number

} Arguments

System call interrupt

0x0000
0x0300

©0x0600

o SCTM updates the record (i.e., current SCFD) on scratchpad memory (SPM)

Using AID, PID and the system call number

Sibin Mohan | Behavior-based Intrusion Detection for CPS

1 2 1 2bytes
A 1

A

; PID Cnt, | Cnt, s Cnt, ses Cnty
A

; PID Cnt, | Cnt, e Cnt, “es Cnt,
A

; PID Cnt, | Cnt; e Cnt, e Cnt,

|
2D + 4 bytes

57

October 11, 2022

SCFD Clustering

o K-means with Mahalanobis distance

= Cluster SCFDs in the training set into K clusters

* Each cluster represents similar execution patterns

o Why not Euclidean distance, but Mahalanobis distance?

V(x —)T (x* —)

\/ (x* — p)TE " (x* —)

o To give more ‘weight’ to some system call types

= Types with smaller variance

e Ex:execve,socket

« Adist(Aexecve)> Adist(Aread)

* Their change in the run-time should be small too

e See Cluster 2 and Points B and C

Sibin Mohan | Behavior-based Intrusion Detection for CPS

>

of system call s,

Cluster 2 Cluster 3
RIS OO0 o
@Il giTE,
oagseos” AlotEn
Sc tlEFD%:I o
ool
og!
pon el
Cutoff \00 5 000/
Distance AT Q Epgpl?
AZAA‘éAAAA &
AiA 08/ £33 IBEB R
AC N Aﬁ E® Cjuster4

of system call s, -

o Also, to learn correlation between types
= i.e., how they should vary together

Ex: socket and open

How do we know what K is?

Learn K by global k-means

52

October 11, 2022

Legitimacy Test

o Given an SCFD to test,

1. Find the closest cluster

2. Testif the distance is within the cutoff distance

* If not, the execution is malicious

= A, B, D arelegitimate

= Cand E are malicious

Sibin Mohan | Behavior-based Intrusion Detection for CPS

of system call s,

-

3

Cluster 2

Cluster 3
OO0 O
,'0°§8Q)$3Oo g, OB,
oJole N 400 o~
%8%900 0000 ALY
. -Q.Q-Q.(_S.%JQQ' o~0 o0
., goro 05 oo
Grava
oul:
Kﬂ%dgh CH;
Cutoff \D DD DDD D:'l
Distance ABR Q EF'D;?
*‘A;AA.AAA Ay s
/’AA A AAAA A/ Py a_m £33
[AL ABAALS E®
A % . Cluster 4
V- AA
! A %AA ’
1 AAAAAA P
AZAZ Cluster 1

»

of system call s, -

October 11, 2022

A

Evaluation

Adversary Server
(HTTP & FTP Server)

=

Base Station
(HTTP & FTP Server)

sl

Host PC

/ Simics \
(F

reescale MPC8641D Dev. Platform)

eth

@

Camera

USB

.

o PowerPC processor model on Simics
o Target Application

o Attack scenarios

Raw image capture -> JPEG compression -> FTP upload -> HTTP logging

SCFDs vary due to 1) image content and 2) execution flow

1) Leak out user authentication information through HTTP

= 2)Leak out the JPEG image through FTP

3)memset theimage array (which does not use any system calls)

= 4) Shellcode (that spawns /bin/sh)

Receive a
raw image

JPEG
compression

!

write to fi Ie

Fbw1‘ Flow 2

FTP upload

open, close, read,
write, mmap

open, close, fstat,
write, mmap, munmap

open, close, fstat,

~ read, write, socket,

mmap, munmap, connect

fstat, mmap, write,

* socket, stat, connect,

sendto, close

execve, open, read, mmap,
access, stat, getuid,

GG

Evaluation

o Training set
= 2000 SCFDs

= 14 system call types
o Global k-means

found 5 clusters

points write read | mmap | open | close fstat munmap socket connect stat
I | l I [I | I | [[[l |
= 000 | Mean || 29.519 | 101197 | 1520 | 2514 | 4.548 | 1.520 1.520 2.034 2.034 | 4.034
Stdev || 10.602 | 10.135 | 0.500 | 0.500 | 1.496 | 0.500 0.500 0.997 0.997 | 0.998
Cluster 1 | 490 | Mean || 17.376 | 91.000 | 1.000 | 2.000 | 3.000 | 1.000 1.000 1.000 1.000 | 3.000
Swdev || 1.246 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 0.000 0.000 0.000 | 0.000
Cluster 2 | 519 | Mean || 33.613 [108306 | 2.000 | 3.000 | 6.000 [2.000 2.000 3.000 3.000 | 5.000
Stdev || 2.539 | 1.269 | 0.000 | 0.000 | 0.000 | 0.000 0.000 0.000 0.000 | 0.000
Cluster 3 | 506 | Mean || 43.708 | 113354 | 2.000 | 3.000 | 6.000 | 2.000 2.000 3.000 3.000 | 5.000
Swdev || 4.539 | 2.269 | 0.000 | 0.000 | 0.000 | 0.000 0.000 0.000 0.000 | 0.000
Cluster 4 | 335 | Mean || 21176 [91.000 | 1.000 | 2.000 | 3.000 [1.000 1.000 1.000 1.000 | 2.998
3 Stdev || 1.080 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 0.000 0.000 0.000 | 0.055
Cluster 5 | 150 | Mean || 25.575 [91.000 | 1.000 | 2.000 | 3.000 [1.000 1.000 1.000 1.000 | 3.000
Stdev || 1.627 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 0.000 0.000 0.000 | 0.000
o 300 execution traces for each attack scenario
= Attack 1and 2 are detected well because of network-related system calls
= Attack 3 is detected because of fewer calls of read and write
= Attack 4 is detected because it calls execve which was never seen
o False positive rate: around 1% (depends on cutoff distance)

Sibin Mohan | Behavior-based Intrusion Detection for CPS

October 11, 2022

Evaluation

o Analysis overhead

Finding the closest cluster among 5 clusters

of system || Number of Avg. (Stdev.) of
call types instructions analysis times
5 2175 0.914 us (0.553 us)
10 4875 2.624 us (1.405 us)
14 8125 5.231 us (1.965 us)

instructions is measured on Simics and the times are

* measured on a dual-core machine

o Detection problems:

Attack 2 is enabled on Flow 2.

Not differentiable from a benign execution on Flow 1

Begin)

.

Receive a

raw image

JPEG
compression

Write to file

Flow 1

FTP upload

Sibin Mohan | Behavior-based Intrusion Detection for CPS

(Attack 10or2 5

~ read, write, socket,

open, close, read,
write, mmap

open, close, fstat,
write, mmap, munmap

open, close, fstat,

mmap, munmap, connect

fstat, mmap, write,
socket, stat, connect,
sendto, close

execve, open, read, mmap,
access, stat, getuid, ..

October 11, 2022

57

Outline

o Background: Real-Time Systems & Simplex

o Cyber-Physical Systems Behavior

o SecureCore: Multicore-based Intrusion Detection

o Control Flow Monitoring

o Anomaly Detection using Kernel-memory Behavior

o Execution Contexts Learned from System Call Distributions
o Current and Future Work

o Conclusion

Sibin Mohan | Behavior-based Intrusion Detection for CPS

October 11, 2022

LR

Current and Future Work

o Individual behavioral signals detect certain problems

= Combination of multiple signals to improve detection accuracy and increased difficulty for would-be attackers

o Monitor multiple cores and “long term detection”

o Full system monitoring (multiple tasks/cores + OS)

o Demonstration on actual real-time systems
= Developing UAV platforms & hardware-in-the-loop simulators

= Working with power system vendors for such demonstrations

o Extension to mobile and other general-purpose devices

5Q

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

Conclusions

o Intrusion detection for Cyber-Physical Systems
o Focus on specific characteristics of such systems
o System architecture = isolated hardware + novel intrusion detection methods

o Multiple solutions

= Hardware: Multicore, FPGA-based, simulation platform, etc.
= Analysis: compile-time analysis, statistical/learning-based approach

= Different behavioral signals: timing, memory, control flow, system calls

o Detectintrusions in short timeframes — prevent harm to physical systems

o Resilient to attackers gaining administrative access on main systems

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

60

Thanks

Co-conspirators:

o Lui Sha[UIUC], Marco Caccamo [UIUC], Frank Mueller [NCSU], Heechul Yun [Kansas], Stanley Bak [AFRL],

Emiliano Betti [UIUC/Univ. of Rome]

Students [People that do the real work!]:

o Man-Ki Yoon [UIUC], Fardin Abdi [UIUC], William Condon [UIUC], Yi Lu [UIUC], Joel van der Woude [UIUC],

Chris Zimmer [NCSU]

A CRYPTO NERD'S

I MAGINATION

HIS LAPTOPS ENCRYPTED.
LETS BUILD A MILLION-DOLLAR
CLUST ER To CRACK \T.

NO GooD! IT'S
uoGe -BIT RSA‘

EVIL PLF\N
1S FOILED! ™

i S

WHAT WOULD
ACTUALLY HAPPEN:

H'S LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH
THIS $5 WRENCH UNTIL
HE TEus LS THE PASSWORD.

GOT' IT,

@W

Sibin Mohan | Behavior-based Intrusion Detection for CPS

October 11, 2022

~1

Backup Slides

™y,

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

Behavior Monitoring Module on FPGA

o Finite State Machine (on FPGA) to detect timing model violations

MSG_START.?

clke := MustWait.

clk, :=0

clkp := MustWait,
+ CanWait,

state, := 1,

c &&
clk, < CanWait,?

MSG_START

I

A
clkc=0?
clk. = 0? MSG_END, &&
' clkc :== CanWait, » < e
o S3A can be used to detect
MSG_END, &&] i
& LAt Intrusions
338 = Evenif code has complex
55 R control flow
deor v . (branches/loops/etc.)
" - > I, TIIID . . .
¢ = CanWaiy : = Modification of this FSM

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

63

PathID =0

Application Model

o IP Control + FFT (EEMBC Suite) /
: 0 + 1 meter
FFT

PathID =1, 2

* Injected at the end of
* Simple loop (some array copy)
for 1,3,5 loops

* Activated when the cart passes by
e Execute randomly thereafter

if PathID = 0, 1
* Loop execution

2 runs if PathID = 2

* 10,000 runs (no malicious code activation)
* ‘ksdensity’ function in Matlab

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

4

Hardware Modification |

Timing Trace Module

-

\}

~

INST_REG_PID;

INST_ENABLE_TRACE;
foo();

INST_DISABLE_TRACE;

-
foo() {

INST_TRACE;

=~ ~ 7

INST_TRACE;
Do_something();
INST_TRACE;

~

0x000
0x010

0x8a0

0x8b0

0x8c0

OxFFO

. 4 Bytes .

Timestamp j+1

! Timing
Trace
Module

1

* Scratch '
Pad [

Memory

B 4

Addr j+1 q

Timestamp i+1

Timestamp i Addr

Addrj+1

Timestamp i+2

Addr i+2

Timestamp j

V\}
Addrj

SPM Layout

- RdadébisteationfenprBrogting (taueddrdnoinethe forgedsor registers
- PWdBaseBAddiREs (i-e PCetftINSAd RENS fiRED)BA)

Sibin Mohan | Behavior-based Intrusion Detection for CPS

October 11, 2022

A5

Raw Trace Collection

INST_TRACE Addr,

Sibin Mohan | Behavior-based Intrusion Detection for CPS

(Addr, t,)
(Addr,, t.,)
(Addr, t,)
(Addr, t,)
(Addr, t.)
(Addr,, te)
(Addr, t,)
(Addrg ts)
(Addr, t,)
(Addr, t,,)
(Addr,, t,)
(Addr,, t,,)
(Addr, t,;)
(Addr,, t,,)

October 11, 2022

66

Trace Tree Generation

(Addr, t,) Addr,
(Addr,, t,)
(Addr, t,)
+ (Addr, t,

1 A1 1 PR \

From a trace tree, we can get
- Execution time samples (each node)
- Legitimate execution flows

| (Addr, t,)
| (Addr, t,)

Same execution block,
but on different paths.

Each has its own timing profile
1 (Addr,, T,,)

67

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

SecureCore Implementation

Host PC

(" Simics (P4080)

Secure Core

Inverted
Pendulum
Dynamics

Byte channel

Linux 2.6.34

Serial (tty) Pseudo Terminal (pts)

J

, FreestadePRdBdtuen Somics] '
s @ahtmm@msm@@r@rﬁwsd 1)
+ Cahedaba) SyhRRAd g aystem effects
. %%.II'{IPOS 2}’88 Fél%eﬁnftljuctlon

Sibin Mohan | Behavior-based Intrusion Detection for CPS

October 11, 2022

AR

Early Work | WCET-based Intrusion Detection *

@)

@)

@)

WCET: guaranteed worst-case execution time on a specific hardware platform

Security violations in hard real-time systems — code injection attacks
= doesn’t even have to be fancy — just cause delays in hard real-time systems

Approach: use WCET values to validate programs

= [nstrument task checks throughout entire system

Two techniques:
= Timed Return Path Security (TRPS)
= Timed Code Section Security (TCSS)

* [ICCPS 2010] “Time-Based Intrusion Detection in Cyber-Physical Systems”
by C. Zimmer, B. Bhatt, F. Mueller and S. Mohan.

Sibin Mohan | Behavior-based Intrusion Detection for CPS

October 11, 2022

‘e

Timed Return Path Security (TRPS)

o Instrument return paths of functions with timing checks

o Perform timing analysis on small code regions to obtain WCET

o Validate on return from function calls — check to see if WCET exceeded?
o Also verify — order of syscalls

Main || | Foo
—)‘ \\\

K——__ RS N

-, On Return Validate &
_=?
__.---2>" Query System Clock

-
-
-
-
-
-
-
-
-
-
-
-
=

[Operating System }

o Drawbacks:

= Covert attacks that maintain consistent state — not detected

= Requires clock protection — common in such systems anyways

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

70

Timed Code Section Security

o Use periodic scheduler interrupts
o Use WCET and sequence of checkpoints — calculate WCET to next checkpoint
o Intrusion detection at next preemption/checkpoint

o Checks managed by scheduler

Invoke uaSk Validate Checkpoint

Checkpoint within timing bounds

h 4

[oS [Scheduler }

o At deadlines, verify if all critical checkpoints have been hit

o Usein conjunction with TRPS

Sibin Mohan | Behavior-based Intrusion Detection for CPS

October 11, 2022

71

Intrusion Detection using WCET

Security Instrumentation Overhead

O T R P S : 14000000

12000000

10000000

. IOW Overheads 8000000
6000000 -
4000000 1

2000000 -

= Jocal checks

Overall Executon Cycles

B

O Base
B TRPS Instrumented

’ SRT ‘ LMS ADPCM FET
Benchmarks
o TCSS:

= Early detection — within 20 ps in most cases

= Timer Interrupt dependent
FFT FFT Method Return 1660 cycles
LMS LMS Method Return 869 cycles
CNT Scheduler Check 2 1690 cycles

o Drawbacks

= Depends on WCET — can be easily bypassed

= Rely on software mechanisms to provide protection

Sibin Mohan | Behavior-based Intrusion Detection for CPS

October 11, 2022

77

Outline

o Background: Real-Time Systems

o Background: Simplex

o Cyber-Physical Systems Behavior

o Early Work: Worst-case Execution Time (WCET) based detection
o S3A: Secure System Simplex Architecture

o SecureCore: Multicore-based Intrusion Detection

o Control Flow Monitoring

o Current and Future Work

o Conclusion

Sibin Mohan | Behavior-based Intrusion Detection for CPS

October 11, 2022

73

S3A: Secure System Simplex Architecture *

o Intrusion detection and safety for individual nodes in RT control systems
o Uses behavior-based monitoring of system — execution time, in this case
o Combined with trusted hardware component on separate FPGA

o Essentially builds upon System-level Simplex

* Includes cyber state to protect against malware directed at complex controller

o Maintains safety even if attackers obtain administrative access to controller

* [HICONS 2013] “S3A: Secure System Simplex Architecture for Enhanced Security and

Robustness of Cyber-Physical Systems” by S. Mohan et al. in HICONS 2013. .

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

S3A Logical Architecture

o Timing-based
Behavioral Signals:
= Exectime too small
= Exectimetoo large
= Activation Period too small
= Activation Period too large

= |dle task behavior

o Behavior Signal Monitor

4)

Safety
Controller
_ W,

Actuator
@ » Commands

Complex
—> >
! Controller)

[Behavioral W

Signal Monitor J

= Checks if system is within performance envelope

= Detect attacks early

= Could even trigger restoration of Complex Controller

Sibin Mohan | Behavior-based Intrusion Detection for CPS

Decision
Module

}7

Sensor Information

Original Simplex Architecture

October 11, 2022

75

S3A Implementation

o Trusted hardware module for this implementation: FPGA

= Contains: Decision Module, Behavioral Signal Monitor, Simple Controller

= Communicates with and monitors Complex Controller

o Implementation Overview:

Complex
Controller

Main CPU

Decision
Module

Safety
Controller

o Advantage of using FPGA:

30C Bus 1 > = Easy to retrofit existing systems
ldle —— I Timing Sensor and o Cannot be modified in field
T M - Channel Actuator .
emery Monitor Interface = Programmability turned off

Timing Messages |~

PCle Bus

Plant
(Inverted
Pendulum) \

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

76

S3A Implementation Details

o Hardware Components:

Inverted Pendulum

FPGA

Computer with Complex Controller
Operating System

Timing Profile (dynamic timing analysis)

o Test Plant (control system): Inverted Pendulum

= Rod must be maintained in upright position

= Rod must be located near the center of the track

Quanser P01
Xilinx ML505
Intel Quad Core 2.6 GHz
Linux Kernel ver. 2.6.36

Timestamp Counter
(can use other mechanisms
e.g.: performance counters)

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

77

S3A Implementation Details (contd.)

o Unsafe states for plant (inverted pendulum)
= Buggy/malicious code should not make pendulum fall over OR

= Deviate too far from the center of the track

o FPGA
= Monitors sensor readings on the bus (PCle bus of the control computer)
= Monitors the actuation commands being sent to the plant
o Behavior (timing) signal information
= Sent to FPGA from computer via memory mapped regions
= Actuation commands are also written on shared memory region
o Complex Controller

= Few branches and statically bound loops — easy to analyze execution time

Sibin Mohan | Behavior-based Intrusion Detection for CPS

October 11, 2022

78

Timing Results

o Control code executed multiple times inside a loop

160005 Worst Case Timing

@ Best Case Timing

14000 -
12000 -
10000 -
8000 -
6000 -
4000

00 -

0

cycles 3

Number of Iterations1

o 20000 = =
m Worst Case Instrumentation Overhead o [Execution Times __ + |

16000 -| ®Steady State Instrumentation Overhead Best Case Instrumentation Overhead 10000 |

18000
w
£

m = ey F
c
o

S 16000 |
£
w

15000 |

_— Execution Times for 100,000 Iterations
m Steady State Timing

14000 .

0 25000 50000 75000 100000
lterations

K>
o

Most execution time stabilizes within:
1,590 cycles i.e. ~ 0.6 ps at 2.67 GHz

o*
o

10 100 1000

10000 100000 | 1600000

o As number of iterations increases, system effects make WCET worse

o Double-banded execution time behavior — cache replacement policy

o Malicious code — extra loop iterations to increase execution time

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

79

Intrusion Detection

o Overhead for sending a single timing message to FPGA: 50 ns

o Jitter of timing messages due to interconnect: 0.6 ps

Control Task Exec. Time (single iteration)

Interconnect Extra Jitter

Enforced Iteration Time

Timing Anomaly Detection Time (for IP)

Timing Message CPU Overhead

Simplex (vanilla) Anomaly Detection Time 10,000

o FPGA can detect an intrusion within 5.7 ps

o Anything that changes timing by 0.6 ps will be detected.

Sibin Mohan | Behavior-based Intrusion Detection for CPS

4.8-5.4

4.5-5.7

October 11, 2022

QN

S3A Review

Limitations:

o System needs to be designed with S3A in mind

o Attacker may be able to replicate behavioral signal or hide its presence
= E.g.:if code experiences significant timing deviations

o Trusted module depends on main system to provide critical information
= Such as the timestamps sent from computer to FPGA — can be easily faked

o Complex controller code may not be easily analyzable to get strict exec. times

= Significant engineering effort to get precise execution times
On the plus side,
o Physical system maintained in safe state — detection faster than Simplex
o Even if attackers gains administrative privileges on main system

o Not specific to any particular (classes of) attacks o
1

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

Outline

o Background: Real-Time Systems

o Background: Simplex

o Cyber-Physical Systems Behavior

o Early Work: Worst-case Execution Time (WCET) based detection
o S3A:Secure System Simplex Architecture

o SecureCore: Multicore-based Intrusion Detection

o CFM: Control Flow Monitoring

o Other Current and Future Work

o Conclusion

Sibin Mohan | Behavior-based Intrusion Detection for CPS

October 11, 2022

Q)

SecureCore®

o Multicore architectures are here to stay
o Can use redundancy in multiple cores to improve security of CPS

o Multicore-based on-chip hardware for monitoring behavior of tasks

o Aims to address shortcomings of S3A

= Directly obtain information from processor — don’t rely on monitored task

= Analyze more complex control flows and behavioral variations

o Uses statistical/machine learning approach to creating behavior profiles

* [RTAS 2013] “SecureCore: A Multicore based Intrusion Detection Architecture for Real time
Embedded Systems’ by M. K. Yoon, S. Mohan, J. Choi, J. E. Kim and L. Sha in RTAS 2013.

Sibin Mohan | Behavior-based Intrusion Detection for CPS October 11, 2022

Q2

