Jhe
?
g%‘“ LY

Integrated Hardware/Software
Approaches to Software Security

Bhagi Narahari

Department of Computer Science
The George Washington University

T}'\L'
Research Outline .‘?&%’5‘

m Area: Software protection

m Focus: How can hardware assist in SW security
0O Without changing processor, add new logic into chip

m Approach: Hardware/Software co-design approach
m Threat Models:

0 physical capture, trojan circuits, access violations and hidden trojans in 3
party code, automated recovery

0 Embedded systems focus

m Collaborators:
0 GWU: R. Simha, E. Leontie, G. Bloom, O. Chen
a Northwestern: Prof. Alok Choudhary
a Iowa State Univ: Prof. Joseph Zambreno

m Sponsors:
a National Science Foundation (NSF)
Q Air Force Office of Scientific Research (AFOSR)

-
Our Focus: Software Protection .‘?s,‘?&
in Embedded Systems

mEmbedded systems are everywhere
AQHome appliances, Cell phones, critical infrastructure
QAvionics, Automobiles,
AMilitary — Future Combat Systems, Missile guidance
AO0ver 90% of processors are embedded

m Threat?

QEasily captured!
QCan be probed 1n a well equipped laboratory
ADue to their large number, the attack can be replicated!

Embedded Systems— \jmc?fa?&“
Assumptions

m Single (or small set of) application
QOptimized to meet performance

m Static linking

= No Oper'a’rin,g Systems support needed
(apart from loaders)

ANot a necessary condition for us, but we start with this
and assume a secure trusted OS

m Usually has stringent size and power
constraints

ACannot always assume you can use a high performance
processor

QUsually built using COTS technology

Typical Software Integrity
Attacks:

m Code tampering attack

QExecutable code tampered with for various purposes

e Licensing, changing feature set, using code to launch attacks
O Eg: buffer overflow attack

m Authorization attack

QCode tampering used to circumvent checking of
permission in executing software

m Data tampering attack

QModifications of data such as passwords, IP addresses to
enable hackers to exert control of SW behavior

m Code understanding
QCopyright mnfringement, replay attacks

Attack Models

- data —J

remote physical

attacks
I
iInstructions
I —
remote physical
|, Arcinjection | injection Buffer}verflow

—

(return-to-libc)

Stack

smashing

Pointer
clobbering

— modification
— replay

— control flow

attack on local
variables

— > injection
—> modification

—> stale replay

—>substitution

Jhe

Software Security/Protection Wishuigeon

WALRH MUTON DC /4

m Computer security research has produced
variety of techniques

QACrypto, protocols,policy, authentication, intrusion
detection,arch support,etc..

m Software protection objectives: provide
techniques for authorization, prevent code
tampering, make it harder to extract info
that can be used to identify system
vulnerabilities -code understanding

Jhe
An abstract view of the software \%ﬁ@"&“
security problem

m Will the program running on the hardware
dlo or)>|y what we define/expect and nothing
else :

m Can we model these properties/behaviour ?

m Can we automate the process of checking
these properties ?

Our Research Objectives

m How can hardware help in providing software
security ?

m Consider the entire language-compi Ier'-O?‘—
hardware tool chain dufing software and hardware
designh process

QO How can compiler help in asserting software properties
O How can hardware validate the assertions

0 What performance penalties are incurred

Q Understand security vs performance tradeoffs

m Focus on ease of adoption
O No custom hardware design required

QNo changes to existing processor/ISA
e Example: PowerPC 405 processor with FPGA on Xilinx Virtex II
e No burden on software developers
e Techniques are incorporated directly into compiler

QBackward compatibility with legacy applications
Q Security can be tunable to an individual application

Our HW-SW Security Projects \ﬁ%‘?@%‘

m SAFEOPS

a SAFE-OPS: An approach to embedded software security. ACM
Transactions on Embedded Computing Systems (TECS), Vol.4, No.1, 2005.

m SPEE

a SPEE: Secure program execution environment with integrity checking.
Journal of High Speed Networks

m CODESSEAL

Q High Performance Software Protection using Reconfigurable Architectures.
Proceedings of the IEEE.

Q A compiler hardware approach for software protection for embedded
systems. in Int. Journal of Computers and Electrical Engineering.

s HW Wrappers/Containers for software components
Q in SecuCode Workshop, CCS.

m SHADE: architecture for leakage prevention and detection
of trojan circuits

Q inJ. Computers and Security.
Q ANCHOR workshop.

10

CODESSEAL R

m Threat model: Physical capture of devices

m Embedded systems are everywhere

m Threat?

O Easily captured!
O Can be probed in a well equipped laboratory

O Attacker now has access to the hardware
e Can snoop on bus, can query memory contents

O Due to their large number, the attack can be replicated!

m Minimal solution: Encrypted Execution and Data (EED)
platforms

Q Instructions and data are encrypted

11

CODESSEAL

Malicious
CPU
A

'y 4
Control-flow Data
attacks attacks

dea: Augment CPU with (an FPGA-based
secure hardware component to provide an
efficient and effective level of security.

Crypto |
i Hardware||
CPU <— [Rule | [Instr | k——> RAM

Checks Filters
FPGA

/ Compilation/Simulation Infrastructure \

12

Related Work: Typical Software \{%ﬁt
Security Solutions

m S/W solutions
QPure S/W approaches

e Languages, compilers
e Watermarking, obfuscation, static analyzers (MOPS)
e System level tools

Q Cannot handle physical capture attacks

m Custom H/W approaches
Q Co-processors — TCPA, IBM coprocessor architecture
QCry &)to processors: Encrypted Execution and Encrypted Data (EED)

e Encrypted Execution models (XOM, AEGIS)
0 Memory protection (Mondrian)

Q Require changes to ISA and/or micro-architecture
e Need buy-in from vendors
e Our aim 1s to not modify the ISA or micro-arch

m Trojan circuit detection at design time

Q Not at run-time 1n cases where trojan circuit has not been detected

13

-
HW Solutions huieton

WALRH MUTON DC /4

m Common theme: encrypt the executables and data

Q Encrypted Execution and Encrypted data (EED) platform

QA Provide hardware accelerators (dedicated circuits) to provide
encryption in hardware

m Shortcomings

QO do not prevent all physical capture attacks
Q require hardware ISA redesign

m Hardware design issue

O Some solutions need “all new” ISA
e Difficult to convince vendors, need to recompile applications

O Some need major redesign of processor datapath
Oneed processor manufactures to buy-in

14

Our premise: EED Attacks ‘{%@"&“

WALRH MUTON DC /4

m Does Encry?’rion of Instructions and Data
solve everything ?

QEncrypt instructions and data
QEverything coming out of the CPU chip is encrypted

Q the ‘attack model’ ?

e Physical capture of devices

e Attacker now has access to the hardware and can snoop on bus,
query memory contents

AQHow about when the attacker 1s the chip foundry ?
e Malicious CPU from an Untrusted Foundry ?

m Can attacker disrupt execution without
knowing encryption keys
QCan they understand what the program does?

CODESSEAL Premise \m}{%ﬂp

m EED not sufficient: having everything
encrypted does not prevent attacks

e Can still have attacks on data, can understand code functionality,
launch replay attacks, inject code

m Project Objective: Practical solutions to
protect against attacks on EED platforms.

a Investigate types of attacks
a How to effectively combat (prevent & detect) attacks

16

i
Attacks on EED platforms HRESR?
Target: An embedded system with standard
CPU and memory.
Memory contents encrypted
Decryption takes place on CPU
Encrypted Information on Bus
Cryptographic
Instructions HW/SW

Traditional CPU
Data Architecture

Memory (RAM)

17

Attack Model @@E‘W

Threat - attacker uses wire probes to gain R/W access to control and data
signals on the instruction/data buses

> can also insert HW to snoop on bus and inject during normal execution

Cryptographic
Instructions HW/SW
Traditional CPU
Data Architecture
Memory (RAM)

18

Jhe

What is a basic block (cache block)? Vhraee’
Using compiler techniques in our solution

m Define Program/Data flow in terms of Blocks
QThis 1s what an attacker can play with

m For data: a cache block
m For instructions: a basic block

m Definition:
Basic block 1s a sequence of consecutive instructions with

entry point at the beginning, exit point at the end and
containing no branches, except at the end

A Basic Block Example

m=y*a+b;
if m<=1 goto L3 bb1
= bb3
L1: if i<=m goto L2 bb4
bb5
return x
L2: x=i+1
i=i+1 bb6
goto L1
L3: return m bb2

exit

i

Attacks Wishiiikon

Replay Modification/Injection

0x100 0x100
BlockA BlockA

0x200 Ox2

BlockB BIOCIM// BlockB’
0x300 0x200

BlockC BlockB

Attacker’s Goal: repetition of an observed event or

undetected disruption
21
21

Attacks: Examples

Control Flow

0x100

0x200

/ condition

0x300

<« BlockB

0x200

0x4

N

BlockD

|

Attacker’s Goal:

* Understand control flow

* bypass conditions/checks
* force into a specific path

e
2R R

22

Attack Models (cont)

Control Flow

0x100

x<0

0x200

x>0

0x300

BlockG

0x200

N

0x400

BlockB

0x100

0x200

0x300

Injection

BlockA

BlockB

BlockX

BlockC

Attack Model: Data Attacks

m Privacy of data
QAttacker can access secrets, passwords

m Attacker can inject data
AExamine data request addresses

m Data capture and replay attacks

QCurrent data replay
QStale data replay

ﬁl\dgf\?

Attack Model: Summa[x
m EED Attacks

m Just having everything encryption does not
prevent attacks

m Our objectives: how to prevent/detect such
EED attacks
QDesign architecture and compiler techniques
ADo not change processor ISA
QThe least amount of change to the overall system
aBackward compatibility

Our Solution: CODESSEAL .\?5}?5‘

m CODESSEAL: COmpiler DEvelopment Suite
for SEcure AppLications
Qlntegrated HW-SW approach
QFully encrypted program and data EED

Q Place on-chip secure hardware component
e Use reconfigurable (FPGA) fabric to implement HW component

m Consider the interplay between compiler
and Aardware during code generation and
execution

QO How can compiler help in asserting SW properties
O How can hardware validate the assertions

0 What performance penalties are incurred

Q Study security vs performance tradeoffs

26

-
CODESSEAL Overview shatfror

m Place secure on-chip hardware component -
a Guard (using FPGA logic) inside CPU chip

QAIll communication to outside world goes through the
Guard

m Compiler inserts checks for integrity,
control-flow, data timestamp

QTransparent to programmer

m Guard implements real-time verification
QTransparent to CPU and Memory

m No change to Processor ISA
m Performance impact study

27

n
v

m
Vi
th ComEiIers?

m "Gateway" in software creation
m Readily-available program structure
m Optimization on compiler level

m Security can be added at the intermediate
code generation stage

m Transparent to programmer

-
Why FPGA i

m Common to have programmable logic on the
same chip as processor

AExample: Xilinx Virtex II Pro from Xilinx Corp.
m No change to the system
m Re-programmability
m Design cycle is the same as processor's
m Can be optimized by the compiler

m Reverse engineering is more difficult than
custom hardware

CODESSEAL Concept

Compiler
Standard Processor
core
|-cache Check PG ClEe .
-------- Integrity -----=-- Main
| Memory
CPU o
L1 cache Autﬂg;lza— I\Sﬂgﬁggeeﬁgtﬁt Encrypt j t
D-caché Control
_________ Flow I
Validation Code
Chip boundary Data
30

30

Security needed for EED attacks =~ \UhaeRiy

m Recall: to prevent EED attacks under physical
capture we need to prevent:

m Code/Data injection and modification attacks
ONeed integrity checking to verify no modification

m Code/Data replay (substitution) attacks

ONeed to check 1f information has been fetched from requested
location

m Control-flow attacks on code and Buffer overflow
O Check if correct branch outcome is followed

m Stale Data replay
OCheck 1f data 1s latest value

e
Key Aspects .‘?S}%’J‘

m Secure HW Gateway (FPGA) acts as a guard for traffic
between CPU and Memory

QO Analogous to an L2 cache controller

m Authorization: Sign/hash and Encrypt each code block -
compiler

QO Gateway verifies signature
Q Prevents injection of unauthorized code and data

m Contfrol Flow: Embed control flow information in each code
block - compiler

Q Prevents control flow attacks

O When fetching blocks from memory, FPGA also checks the control flow
information — check for valid parent, valid branch outcome

m Data aftacks: Sign, encrypt, "timestamp” each data block -
(done by FPGA controller)

Q Prevents data injection, provide privacy

m Stack attacks: Provide HW stack in FPGA/HW - compiler and
FPGA

Q Prevent buffer overflow attacks

32

Jhe

Our Security Techniques Ve

m To provide code and data
privacy/confidentiality we encrypt the
code/data

aQWe use AES with CBC for each block

m For integrity checking compute digest
AUse (1) SHA-1 (secure hash) or (2) CRC
QUse compiler to embed this digest into the code/data

m Use the FPGA logic to

Qperform the encryption/decryption
QCheck mtegrity information

The CODESSEAL techniques \jm}gglf

m Program blocks defined at what granularity ?

QO Basic block
e Can be done earlier in the compilation process
e Architecture independence

O Cache block (for data)

e Program graph where each node is a cache block
e Graph depends on architecture details
e Need to recompile if we change cache size

m What signature scheme to use,?
m where to store signature

34

Code and Data Confidentiality

m Need to encrypt all code and data leaving the chip
O provided by our use of AES encryption

m Instructions
O encrypted at “code block” granularity — basic block or cache block
Q Prefetching is possible/required for basic block

m Data
O Encrypted at cache block granularity

O Decryption performed on every read from memory
O Encryption performed on every write to memory

35

-
Code and Data Integrity \f%@"ﬂ“

m We embed integrity information into code/data
blocks to detect modifications

O Compute “signature” of the code (data) block at compile time and
stored as the “digest”

O At run-time compute signature and compare with stored signature

m What scheme to use to compute integrity checking
information

O SHA-1 or CRC

m Where to store integrity checking digest
O Within the block

Q Outside in separate memory (in the Guard?)

36

-
Example: Cache Block (CB) ‘{%‘Lﬁ\“
Signatures

m Program consists of a number of cache blocks (CB)
O Cache block has label — address

m Program has starting address Y
Q Absolute address = starting address + label of CB

m Cache block labels stored with code blocks
Qencrypted

m Processor requests block with address A
m FPGA/Guard captures and stores A

m Memory returns block X
QO Decrypted in FPGA

m Fetched block is valid if and only if label(X)= A+Y

Q Else attack has taken place, halt processor

37

Example: Replay and Control-

flow Protection

m Embed block addresses into sighature

Replay

0x100

0x200

0x300

Ox700
BlockA

0x200
BlockB

0x300
BlockC

|

0x200
BlockB

0x200

Control Flow

0x100 Ox700

BlockA

x<0

0x200
BlockB

x>0

0x300[0x300

BlockC

e
m!}..‘i!gl?.vn

0x200

N4

0x400[0xZ200

BlockD

|

38

100
104

128
132

136

160
164

168

196

Compiler role

add r1,r2,r3
be 56 (164)

mult r4,r2,r1

1d r1,#100(R3)
add r1,r2,r3

add r1,r2,r3

Id r1,#100(R3)

mov rl,r2

add r1,r2,r3

v

100
104

100
add r1,r2,r3
be 60 (172)

128

132
136

132
mult r4,r2,r1

Id r1,#100(R3)

160, ...

164
168

164
add r1,r2,r3
1d r1,#100(R3)

196, ...

Sl

100
104

Compiler role (next)

100
add r1,r2,13

mult r4,r2,r1

128 ...

tkey

encrypt

i
AER"
©

e
'e"
i

FPGA Guard role

100 nop
—I—key ‘ add rl ,1'2,1'3 validate add r1 ,1'2,1'3
decrypt | mult r4,r2,r1 | multrd,r2.r1 | To CPU

‘Decryption increases cache miss penalty
*The NOP inserted by FPGA results in increased computation time

Data Replay Protection Ve

m Similar to Instruction replay
Qlnstruction labels ensure control flow and replay protection

m Data block's address is used as a label the
same way it is used for instructions

QLabels are included in the block’s digest

m Labels prevent out-of-sequence replay of
current data blocks

-
Stale Data Replay Protection \%ﬁ‘ﬁ\“

m DFID - Data Freshness Indicator - prevents
stale data replay attacks

m Part of the digest is stored inside the FPGA
for verification that the data block is the
most current one

m DFID is used instead of a timestamp because
one cannot run out of DFIDs

0x00

Data Protection Wishion

0x04 | ---
0x08 | ---
0x0C| ---
0x10 | ---

0x14

0x28 | ---
0x2C| .-
0x30 |---
0x34 |---

0x38

db

0x3C signature(0x28, db2)

(a)

Signatures are stored
sequentially with data
blocks in memory

0x00 - =
0x04/ ... 1
0x08| ...

0x0C ...
0x10

label | DFID ox14loxpEnpBEEFTZSA——

0x14 db
0x00 | oxDEADBEEF 0x28| ... 2
0x28 | OxABCDEFA1 0x2C ...

0x30] ...
0x34}-

FPGA Guard

A

0x38

L Bx3C OxABCDEFA1763...

(b)
First 32 bits of signature are used as DFID
and stored in FPGA Guard's internal

table together with block's address

-
Buffer Overflow/Function Protection \&%ﬁ@?\“

m Buffer overflow attacks are still the vast
majority of attacks - overwrite the return
address and route the program to malicious code

m If data is overwritten on run-time stack then we
cannot assume that the address requested by the
CPU is correct

m If return address is overwritten, then function
returns to a "wrong” location

Buffer Overflow Attack

—> function calls

Funcl () w - » function returns

\

L(// \\\t \

Func3 () Func2 ()

Funcl ()

Nl

Func3 ()

Bad-

Funcd () Stack Smashing

Bad-
Funci ()

o
e

Attacker
Code

Buffer Overflow Protection: Wshudken
HW Stack

m We provide additional secure hardware function
return stack is placed in the FPGA

m On a function call, return address is saved in the
hardware stack

AQPush return address onto HW Stack

m On a function return, the address is verified
against the one stored in the hardware stack
before a function is allowed to return

QPop return address from HW Stack
AQCompare with requested address

Overall CODESSEAL Software and
Hardware Processes

Compile-time processing

Run-time Validation (FPGA Guard)

@ ® ® & 6

|dentify code blocks (cb/bb)
Label each block bb;
Sign_compile(bb; + bb,pe))
Embed signature in object file
Encrypt(AES)

Run-time Validation (loader)

@® Set the program context key
@ Set program start address ag;q.t

®

@

@ @ ®

Monitor memory reads from cache
controller

Capture requested address
Gi:Gddr'eSS(bbi)

Fetch and decrypt block bb;
(prefetching if necessary)

Fetch stored signature
x;=sig_compile(bb; + bjgpe)

Yi = Sig—runﬁme(bbi + (ai - asTarT))

If (y; == x;) valid (send to cache),
else HALT

48

Our FPGA Architecture

m Instructions
QDecryption (AES)
ADigest calculation/verification (SHA-1/CRC)
QLabel calculation/verification
QPre-fetching logic
QHardware stack / function protection

m Data
QEncryption/Decryption (AES)
ADigest calculation/verification (SHA-1/CRC)
QLabel calculation/verificaiton
ADFID storage/verification

Sl

Architecture: Inside the FPGA Guard \&E?ﬁ%’? -

nnersity

o e o e e e e e e e e M M M M e e e e e M M M M M e e e e M M M M M e e e e M M M M e e e e e e e e e e e e e e

'Chip boundary

. FPGA Guard

! '? A | Instruction A '? :

! i path Basic block L

l T Requested | s I

: T addvess > preftching s

I 1 N : |

: | \/ Lo

! i i I

: | Validation i |

| < ! > logic P Lo

I : T~ : : 7

; i P

I : : I

| L e Block signature ¢ De:?f‘::ur::"d < L

i i g L Main

I , I I

'| CPU Upper i i ' | Memory

| 1 1

. Level . P!

. ! Data path Py

| Cache [€->i L. Decryption and |, <>
1 . NS 1

! ; signature r

| i L

| a &

! I

| i___ ceefeeeeeeee——__3| Requested address | _____________ _____>§ !

: i P!

: : L

! i P

| i E . d L

| I < ncr_‘yptlon an 5| ;

: I g signature 1 |

! vV vV Vv o

|

<----> Address bus <——> Data bus

Jhe

Implementation and Performance ‘i%‘lﬁ??

m Software and Simulation Environment

0O modified SimpleScalar cycle level simulator
e With FPGA functional simulator

a gcce 3.3 cross-compiler for ARM
e We provide a module that plugs into gcc backend
e Our current techniques work at assembly level — can port to other processor ISAs

m Performance depends on security schemes and architecture
parameters
a (1) CRC or (2) SHA-1
e SHA-1 incurs much larger penalties

Q (a) external storage or (b) internal storage
e Internal incurs larger penalties

Q Cache block size: 32 byte or 64 byte incurs much larger penalties
e Smaller cache block size incurs larger penalties

m Hardware Prototype
0 Virtex II Pro FPGA from Xilinx

51

Simulation Results: Setup \%‘%{Dy

C

WALRH MUTON DC /4

m GCC 3.3, static linking m Hashing Scheme:
O SHA-I, 20-byte hash

= Processor: QO Hash calculation: 164 cycles

O ARMIO020E 400 Mhz

Q Verification: 2 cycles
A No L2 cache

O 32KB cache, 32-byte cache line o EﬂCI“YPﬁOﬂI
O Cache hit: 1 cycle. Cache miss: 10 O AES, 128-bit blocks

s FPGA: .EI Encryption latency: 20 cycles/block
Q Virtex I Pro 200 Mhz = SimpleScalar:

Q FPGA between L1 and Memory
Q In-order execution

Q Access latency 10 proc. Cycles
O Upto 3MB on-board memory

= Main Memory: m Benchmarks:
Q 100 Mhz, Q MiBench: typical benchmark suite for
0O Access: 24 +4 embedded applications

Q DIS: data intensive systems

52

R

Cache Block Granularity
(1) CRC for Code and Data, (a) External Storage

64 bhyte cache hlocks

!

it

[[] Data CRC Integrity
[l D ata Encryption
B8 Code Inte grity

[Code encryption

abelany

alepdn

aNJISUEl |

Jajulo4
| PIeld

fuiyjoows uesr
safipauesns
§1aul0J°UEShs

[yoseashuus

B EYS

BN

AU

ensyip

212
unoayg

o =
= =

32 hyte cache blocks

o™
i

o O W = N O

—

Aeusd 9,

jﬂu abelasy
[[|

[apepdn

-

aAlysuel |

[Jaiog

pI=l4d

| Buyoowsuesnhs

sabpauesns

slauloduesng

B yeasbuls
Bys

W
AU
e lip
280

Jnaoyq

<+ 0 N
s g’ S

-—
-—

Od@ O OW SO N—O
-

Ayeuad %

53

1\01‘5}&"]

WALH NUETON DO

Cache Block Granularity
(1) CRC and (b) Internal Storage

B4 byte cache blocks

Il Csta Eneryption

B Nop

[Data CRC
[Code ercryption

abiesanny

—

a;epdn

—

IN}SUEI]

—

13ju0 4

—

PI=14

julyjoow S'UESNS

|-

sabipa-uesns

—

SI3UI0DTUESNS

[—

yaeasbulys

—

EYs

AT TT!
EnsAlip

212

Junooyiq

a2 byte cache blocks

0 T N O o O

- v v

Aleuadoy

abielany

aepdn

INPSUEI]

T 1epiog

P24

Bungoow suesns

7| s=bparuesns

.

SI3UI0D'UESNS

yaeasbulys

BYys

B

v

X

35 I RRITY

]

SRRy Junooyq

54

nefgltgl;]

WASH MUTON DC /4

Cache Block Granularity
(2) SHA1 code and data, (a) External Storage

03t Excyption
[T ode excryptba

EEC ode SHA-

[Joat SHa-1

T S x%

abie Janyy

B a1epdn

64 byte cache blocks

jjas===

INPSUE]

1BpI0g
pIa14

BulyjoowsuESNS

=bpa-ueans

S13UJ0D'UESNS

I

B yaeasbuigs

i

BYs

1T}
AT
i 2sfip

212

pnoggq

R BB g 8K 2 °
Aeuad o

32 hbyte cache hlocks

abesasny
2Eepdn

XTI

1Bu0g
PIRld

Buypoows uesns

=bpa-uesns

SlaUIod'UEm S

yaeasbunys

EYs

T}
TRl
ensylip
210

pnooyq

|
BEEERYTERARVEYS

Alleuadag

95

Basic Block Granularity
(1) CRC and (b) internal storage

» CRC for basic block integrity check

* Integrity and control-flow information stored inside the basic block
(replaced with nops at runtime)

[l Data Encryption

[[]Data CRC
B code-CRC

[[] code encryption

292021292920 929290
o ate lateted el

0 e
etate? 1% %e% "t %t

"

30
27.5
25
22.5
20

17.5

15
12.5

Aeuad o,

Jajuiod

P12l

LIS LUESNS

yateashbulls

Lnoayg

56

32 byte cache blocks

Basic Block Granularity: \j‘%ﬁ%}w
(2) SHA-1 and (b) internal storage

« SHA-1 for basic block integrity check
* Integrity and control-flow information stored inside the basic block
(replaced with nops at runtime)

180
160
140
120
iy
?E 100
O
Q. &0) 1 [] Data SHA-1
] 5 [l Data Encryption
60 8 code-SHA1
40 — 5% % [code encryption
20 =
=] ozee
. T T e

Crc
tc

pointer RRRRgR

hitcount

5%
= B
o3
C’ N
&3

=0

v

32 byte cache blocks 57

Buffer Overflow Protection Using

Hardware Stack in the Guard

30

275

25

225

—
NI
o

—

% penalty

] . P = BN
(o I N N O s T B L T
| H [

-

Il FPGA processing
[[] Extra instr.executed

hitcount

crc
dijkstra

fft

fft{inv)

patricia

sha

stringsearch
susan smooth

susan ed

ge N

susan_corners

field W

pointer [T

tc [

update

58

Prototype Development Wshudken

m Hardware Platform
Q Virtex II Pro FPGA from Xilinx
Q compiler

m PowerPC processor + FPGA Guard
m Preliminary results...

59

CODESSEAL Prototype
Hardware

CPU
Resources
(PPC, MB)

DDR DIMM
CF Card
EEPROM

SJI[0.3UO0) ATOUWIA]

On-chip
Memory
Resources

Peripheral Controllers

60

Synthesis Report \{%ﬁ’?&&?

m Prototype implementation of the Guard
m Optimized for ease of implementation and design workflow
m Implementation platform : Xilinx XC2VP30 FPGA

aQ PowerPC processor

m Conclusion: enough space even for our unoptimized design

O Implies an efficient and full implementation of CODESSEAL
possible using current COTS technology

Pt] Architectural (:"on{ponents
Baseline Config | Encrypted Execution | Guarded Execution Total
Logic Slices 941 (6.9%) 417 (3.0%) 695 (5.1%) 2053 (15%)
Block RAMs 96 (71%) 9 (6.6%) 3 (2.2%) 108 (79%)
Clock Freq 150.1 MHz 372.0 MHz 186.6 MHz 150.1 MHz

61

i
AER"

i
-

Key Management..? e

m Basic Assumptions:
QEach Chip (Proc+FPGA) has a unique key
QEach application will have its own key

m Session key at setup/load time
QONeed ability to swap b/w OS tasks and Application tasks

m What about data?

QUse same key for all the data generated ??

Qlntroduces key management problems that need to be
studied

62

Jhe

CODESSEAL Summary s

1
W

WALH MUTON

m CODESSEAL Examine hardware/software co-
design methodologies to secure and protect
code

Qexploits the interplay between compiler and hardware
e Compiler can play a big role in providing security solutions

AFlexibility of FPGASs
AWithout changing processor ISA and microarchitecture

m Performance
Q*“acceptable” penalties
QAverage performance for benchmarks as low as 16%

63

iiton

oe 4

Jhe

CODESSEAL Summary RCIRITY

WALH MU

m Hardware-software approach for EED attacks
Qcomprehensive code and data protections provided
QAcceptable performance penalty in most cases

m No changes required to processor/ISA, cache or
memory organization

aPast work did not utilize FPGA logic in this manner
QOff-the-shelf hardware available to implement our system
aCompiler component ensures no burden on programmer
QTradeoff between security and performance

m Acceptable performance penalties
QAs low as 15% penalty for full system protection on average

Collaborators and
Acknowledgements

m Collaborators:
A GWU: R. Simha
0 Doctoral Students: E. Leontie, G. Bloom, O. Chen
a Northwestern: Prof. Alok Choudhary
a Iowa State Univ: Prof. Joseph Zambreno

m Sponsors:
a National Science Foundation (NSF)
Q Air Force Office of Scientific Research (AFOSR)

i

65

Synergistic research: Brief \mﬁgﬁ
Overview

m Synergistic efforts on using hardware for
SW and Info Assurance

Q Hardware Containers/Wrappers

e Protecting against backdoors hidden in third party code and
enabling recovery from attacks

a The SHADE Architecture

e Untrusted chip — when attacker 1s at the chip foundry and can
place hidden/trojan circuit in processor

66

ishilon

)
WALH MUTON DO

SHADE: An Architecture for Trusted
Execution using
Untrusted Components

Untrusted Components: Trojan
Circuit

m Example Scenario:

Main Memory

O Adversary inserts so-called
Trojan Circuit into chip

O Can launch attacks on end

products like radios, comm

chips even when software has H
been verified :

: Hidden }
t Circuit 3

CPU

Cache

68

Jhe

Trojan Circuits: Attack Details Wishion

WALRH MUTON DC /4

m Leakage attack

Q Seize control of processor and write out decryption keys
(for encrypted execution models)

m Denial of service
0 Halt processor at a critical or random time
Q Scan for electromagnetic signals to halt at right cue

m Facilitate reverse engineering

m Hardware firewalls that grant complete
external access to the network

a Packet sent from pre-determined location
a Key encoded as a series of requests

69

Our Approach: Secure Heartbeat \j‘%ﬁé}?&
and Dual Encryption (SHADE)

m Dual processor components

m Gateway

m Dual Encryption

m Backend inserts non-
cacheable memory accesses

inserted to create a Application Memory
heartbeat
m Architectural and compiler
features
System Bus
' I S

System HW

70

-
Our Approach .‘?S,‘%’J‘

m Dual processor components

O Gateway and an Execution processor
Qalso a standard CPU for non-secure apps — dual use system

m Gateway

Q Perform first level encryption/decryption and send to processor or
memory

QO Data values are encrypted first by processor and then again by
gateway

m Architectural and compiler features
0O Runs apps in secure and non-secure modes
Q Uses trusted compiler tool-chain
Q Secure apps are doubly encrypted by compiler

m Overhead: varies from 5 - 70%

A DIS and MIBench, ARM processor.
71

Single Chip Proposed Approach %ﬁ‘%&“

L
H MNUTON DO/

All communication between chip
and outside must go through

All communication out of the Chip must go through the

Fir‘ewall-On—Chip glaltewai/ procissor sfirewail) : : :
All software is dually-encryp‘red. Gateway Processor — Firewall on-chip
Firewall = mutually-distrusting
components. = —
GGT@WGY processor with = Execution Processor « B
encryption provides firewall-on- £ 282 SNoal L
chip capabilit 2(E4(x) "
p p y (1) Decrypts second layer

. . . . — (2) Checks on gateway Q -
Hidden circuit in gateway can
only leak encrypted (useless) info Doublv-encvted = _ /(}55;;:;' _

. . . off-chip resources T

Leak from hidden circuit on - (1) Decrypts first layer —
processor is trapped by gateway (2) Checks execution processor

Architecture with mutually-distrusting components

72

Thank you!

73

