
Integrated Hardware/Software
Approaches to Software Security

Bhagi Narahari

Department of Computer Science
The George Washington University

2

Research Outline

n Area: Software protection
n Focus: How can hardware assist in SW security

q Without changing processor, add new logic into chip
n Approach: Hardware/Software co-design approach
n Threat Models:

q physical capture, trojan circuits, access violations and hidden trojans in 3rd
party code, automated recovery

q Embedded systems focus
n Collaborators:

q GWU: R. Simha, E. Leontie, G. Bloom, O. Chen
q Northwestern: Prof. Alok Choudhary
q Iowa State Univ: Prof. Joseph Zambreno

n Sponsors:
q National Science Foundation (NSF)
q Air Force Office of Scientific Research (AFOSR)

Our Focus: Software Protection
in Embedded Systems

nEmbedded systems are everywhere
qHome appliances, Cell phones, critical infrastructure
qAvionics, Automobiles,
qMilitary – Future Combat Systems, Missile guidance
qOver 90% of processors are embedded

nThreat?
qEasily captured!
qCan be probed in a well equipped laboratory
qDue to their large number, the attack can be replicated!

Embedded Systems—
Assumptions

nSingle (or small set of) application
qOptimized to meet performance

nStatic linking
nNo Operating Systems support needed

(apart from loaders)
qNot a necessary condition for us, but we start with this

and assume a secure trusted OS

nUsually has stringent size and power
constraints
qCannot always assume you can use a high performance

processor
qUsually built using COTS technology

5

Typical Software Integrity
Attacks:

n Code tampering attack
qExecutable code tampered with for various purposes

l Licensing, changing feature set, using code to launch attacks
m Eg: buffer overflow attack

n Authorization attack
qCode tampering used to circumvent checking of

permission in executing software

n Data tampering attack
qModifications of data such as passwords, IP addresses to

enable hackers to exert control of SW behavior

n Code understanding
qCopyright infringement, replay attacks

Attack Models

attacks

instructions data

remote physical remote physical

Arc injection
(return-to-libc)

Stack
smashing

Pointer
clobbering

injection

modification

replay

control flow

Buffer overflow
attack on local
variables

injection

modification

stale replay

substitution

6

Software Security/Protection

nComputer security research has produced
variety of techniques
qCrypto, protocols,policy, authentication, intrusion

detection,arch support,etc..

nSoftware protection objectives: provide
techniques for authorization, prevent code
tampering, make it harder to extract info
that can be used to identify system
vulnerabilities –code understanding

An abstract view of the software
security problem

nWill the program running on the hardware
do only what we define/expect and nothing
else ?

nCan we model these properties/behaviour ?
nCan we automate the process of checking

these properties ?

9

Our Research Objectives

n How can hardware help in providing software
security ?

n Consider the entire language-compiler-OS-
hardware tool chain during software and hardware
design process
qHow can compiler help in asserting software properties
qHow can hardware validate the assertions
qWhat performance penalties are incurred
qUnderstand security vs performance tradeoffs

n Focus on ease of adoption
qNo custom hardware design required
qNo changes to existing processor/ISA

l Example: PowerPC 405 processor with FPGA on Xilinx Virtex II
l No burden on software developers
l Techniques are incorporated directly into compiler

qBackward compatibility with legacy applications
qSecurity can be tunable to an individual application

10

Our HW-SW Security Projects

n SAFEOPS
q SAFE-OPS: An approach to embedded software security. ACM

Transactions on Embedded Computing Systems (TECS), Vol.4, No.1, 2005.

n SPEE
q SPEE: Secure program execution environment with integrity checking.

Journal of High Speed Networks

n CODESSEAL
q High Performance Software Protection using Reconfigurable Architectures.

Proceedings of the IEEE.
q A compiler hardware approach for software protection for embedded

systems. in Int. Journal of Computers and Electrical Engineering.

n HW Wrappers/Containers for software components
q in SecuCode Workshop, CCS.

n SHADE: architecture for leakage prevention and detection
of trojan circuits
q in J. Computers and Security.
q ANCHOR workshop.

11

CODESSEAL

n Threat model: Physical capture of devices

n Embedded systems are everywhere
n Threat?

q Easily captured!
q Can be probed in a well equipped laboratory
q Attacker now has access to the hardware

l Can snoop on bus, can query memory contents
q Due to their large number, the attack can be replicated!

n Minimal solution: Encrypted Execution and Data (EED)
platforms
q Instructions and data are encrypted

12

CODESSEAL

Compilation/Simulation Infrastructure

Control-flow
attacks

CPU

FPGA

RAM

Data
attacks

Malicious
CPU

Threat
model

Idea: Augment CPU with (an FPGA-based)
secure hardware component to provide an

efficient and effective level of security.

Crypto
Hardware

Instr
Filters

Rule
Checks

Processor Validation
Goal: Detect functional or malicious CPU

defects in a stealthy manner.

§In-stream (result checking) solutions
§Functional units, CPU backdoors

Structural Integrity
Goal: Ensure blocks of
instructions execute in

desired pattern.
§Identify basic blocks
§Block encryption
§FPGA decryption HW
§Integrity checking

Data Integrity
Goal: Provide secure data

allocation and identify
attacks on data.

§Stack, heap security
§Key management
§Integrity checking
§FPGA encryption/
decryption HW

13

Related Work: Typical Software
Security Solutions

n S/W solutions
qPure S/W approaches

l Languages, compilers
l Watermarking, obfuscation, static analyzers (MOPS)
l System level tools

qCannot handle physical capture attacks

n Custom H/W approaches
qCo-processors – TCPA, IBM coprocessor architecture
qCrypto processors: Encrypted Execution and Encrypted Data (EED)

model
l Encrypted Execution models (XOM, AEGIS)

qMemory protection (Mondrian)
qRequire changes to ISA and/or micro-architecture

l Need buy-in from vendors
l Our aim is to not modify the ISA or micro-arch

n Trojan circuit detection at design time
qNot at run-time in cases where trojan circuit has not been detected

14

HW Solutions

n Common theme: encrypt the executables and data
qEncrypted Execution and Encrypted data (EED) platform
qProvide hardware accelerators (dedicated circuits) to provide

encryption in hardware

n Shortcomings
q do not prevent all physical capture attacks
q require hardware ISA redesign

n Hardware design issue
qSome solutions need “all new” ISA

l Difficult to convince vendors, need to recompile applications
qSome need major redesign of processor datapath
qneed processor manufactures to buy-in

Our premise: EED Attacks

nDoes Encryption of Instructions and Data
solve everything ?
qEncrypt instructions and data
qEverything coming out of the CPU chip is encrypted
q the ‘attack model’ ?

l Physical capture of devices
l Attacker now has access to the hardware and can snoop on bus,

query memory contents
qHow about when the attacker is the chip foundry ?

l Malicious CPU from an Untrusted Foundry ?

nCan attacker disrupt execution without
knowing encryption keys
qCan they understand what the program does?

16

CODESSEAL Premise

n EED not sufficient: having everything
encrypted does not prevent attacks

l Can still have attacks on data, can understand code functionality,
launch replay attacks, inject code

n Project Objective: Practical solutions to
protect against attacks on EED platforms.
q Investigate types of attacks
q How to effectively combat (prevent & detect) attacks

17

Attacks on EED platforms

Target: An embedded system with standard
CPU and memory.

Memory contents encrypted
Decryption takes place on CPU
Encrypted Information on Bus

Instructions

Data

Memory (RAM)

Traditional CPU
Architecture

Cryptographic
HW/SW

18

Attack Model

Threat - attacker uses wire probes to gain R/W access to control and data
signals on the instruction/data buses

Ø can also insert HW to snoop on bus and inject during normal execution

Instructions

Data

Memory (RAM)

Traditional CPU
Architecture

Cryptographic
HW/SW

ATTACKER

What is a basic block (cache block)?
Using compiler techniques in our solution

n Define Program/Data flow in terms of Blocks
qThis is what an attacker can play with

n For data: a cache block
n For instructions: a basic block
n Definition:

Basic block is a sequence of consecutive instructions with
entry point at the beginning, exit point at the end and
containing no branches, except at the end

A Basic Block Example

m=y*a+b;
if m<=1 goto L3

i=2

L1: if i<=m goto L2

return x
L2: x=i+1

i=i+1
goto L1

L3: return m

bb1
BB
1

bb3

BB
3

bb4

BB
4

bb6

BB
6

bb5

BB
5

exit

bb2

BB
2

21

Attacks

21

BlockA

BlockB

BlockC BlockB

Replay

0x100

0x200

0x300 0x200

BlockA

BlockB

Modification/Injection

0x100

0x200
BlockB’

0x200

Attacker’s Goal: repetition of an observed event or
undetected disruption

22

Attacks: Examples

BlockA

BlockB

BlockD

Control Flow

0x100

0x200

0x400

BlockC
0x300

BlockB
0x200

condition

Attacker’s Goal:
• Understand control flow
• bypass conditions/checks
• force into a specific path

Attack Models (cont)

BlockA

BlockB

BlockD

Control Flow

0x100

0x200

0x400

BlockC
0x300

BlockB
0x200

x≤0 x>0

BlockA

BlockB

BlockC

BlockX

Injection

0x100

0x200

0x300

Attack Model: Data Attacks

n Privacy of data
qAttacker can access secrets, passwords

n Attacker can inject data
qExamine data request addresses

n Data capture and replay attacks
qCurrent data replay
qStale data replay

Attack Model: Summary

n EED Attacks
n Just having everything encryption does not

prevent attacks
n Our objectives: how to prevent/detect such

EED attacks
qDesign architecture and compiler techniques
qDo not change processor ISA
qThe least amount of change to the overall system
qBackward compatibility

26

Our Solution: CODESSEAL

n CODESSEAL: COmpiler DEvelopment Suite
for SEcure AppLications
qIntegrated HW-SW approach
qFully encrypted program and data EED
q Place on-chip secure hardware component

l Use reconfigurable (FPGA) fabric to implement HW component

n Consider the interplay between compiler
and hardware during code generation and
execution
qHow can compiler help in asserting SW properties
qHow can hardware validate the assertions
qWhat performance penalties are incurred
q Study security vs performance tradeoffs

27

CODESSEAL Overview

n Place secure on-chip hardware component –
a Guard (using FPGA logic) inside CPU chip
qAll communication to outside world goes through the

Guard

n Compiler inserts checks for integrity,
control-flow, data timestamp
qTransparent to programmer

n Guard implements real-time verification
qTransparent to CPU and Memory

n No change to Processor ISA
n Performance impact study

Why Compilers?

n “Gateway” in software creation
n Readily-available program structure
n Optimization on compiler level
n Security can be added at the intermediate

code generation stage
n Transparent to programmer

Why FPGA

n Common to have programmable logic on the
same chip as processor
qExample: Xilinx Virtex II Pro from Xilinx Corp.

n No change to the system
n Re-programmability
n Design cycle is the same as processor's
n Can be optimized by the compiler
n Reverse engineering is more difficult than

custom hardware

30

CODESSEAL Concept

30

I-cache

D-cache

L1 cacheCPU

Standard Processor
core

Main
Memory

Code

DataChip boundary

Compiler

Check
Integrity

Secure Data
Management Encrypt

Control
Flow

Validation

Authoriza-
tion

FPGA Guard

Security needed for EED attacks

n Recall: to prevent EED attacks under physical
capture we need to prevent:

n Code/Data injection and modification attacks
qNeed integrity checking to verify no modification

n Code/Data replay (substitution) attacks
qNeed to check if information has been fetched from requested

location

n Control-flow attacks on code and Buffer overflow
qCheck if correct branch outcome is followed

n Stale Data replay
qCheck if data is latest value

32

Key Aspects

n Secure HW Gateway (FPGA) acts as a guard for traffic
between CPU and Memory
q Analogous to an L2 cache controller

n Authorization: Sign/hash and Encrypt each code block –
compiler
q Gateway verifies signature
q Prevents injection of unauthorized code and data

n Control Flow: Embed control flow information in each code
block – compiler
q Prevents control flow attacks
q When fetching blocks from memory, FPGA also checks the control flow

information – check for valid parent, valid branch outcome

n Data attacks: Sign, encrypt, “timestamp” each data block –
(done by FPGA controller)
q Prevents data injection, provide privacy

n Stack attacks: Provide HW stack in FPGA/HW – compiler and
FPGA
q Prevent buffer overflow attacks

Our Security Techniques

n To provide code and data
privacy/confidentiality we encrypt the
code/data
qWe use AES with CBC for each block

n For integrity checking compute digest
qUse (1) SHA-1 (secure hash) or (2) CRC
qUse compiler to embed this digest into the code/data

n Use the FPGA logic to
qperform the encryption/decryption
qCheck integrity information

34

The CODESSEAL techniques

n Program blocks defined at what granularity ?
qBasic block

l Can be done earlier in the compilation process
l Architecture independence

qCache block (for data)
l Program graph where each node is a cache block
l Graph depends on architecture details
l Need to recompile if we change cache size

n What signature scheme to use,?
n where to store signature

35

Code and Data Confidentiality

n Need to encrypt all code and data leaving the chip
q provided by our use of AES encryption

n Instructions
q encrypted at “code block” granularity – basic block or cache block
q Prefetching is possible/required for basic block

n Data
q Encrypted at cache block granularity
q Decryption performed on every read from memory
q Encryption performed on every write to memory

36

Code and Data Integrity

n We embed integrity information into code/data
blocks to detect modifications
q Compute “signature” of the code (data) block at compile time and

stored as the “digest”

q At run-time compute signature and compare with stored signature

n What scheme to use to compute integrity checking
information
q SHA-1 or CRC

n Where to store integrity checking digest
q Within the block

q Outside in separate memory (in the Guard?)

37

Example: Cache Block (CB)
Signatures

n Program consists of a number of cache blocks (CB)
qCache block has label – address

n Program has starting address Y
qAbsolute address = starting address + label of CB

n Cache block labels stored with code blocks
qencrypted

n Processor requests block with address A
n FPGA/Guard captures and stores A
n Memory returns block X

qDecrypted in FPGA

n Fetched block is valid if and only if label(X)= A+Y
qElse attack has taken place, halt processor

38

Example: Replay and Control-
flow Protection

n Embed block addresses into signature

BlockA

BlockB

BlockC BlockB

Replay
0x100

0x200

0x300 0x200

0x100

0x200

0x300

BlockA

BlockB

BlockD

Control Flow
0x100

0x400

BlockC
0x300 0x200

x≤0 x>0

0x100

0x200 0x200 0x300

0x400

Compiler role

add r1,r2,r3

be 56 (164)

….

mult r4,r2,r1
ld r1,#100(R3)

add r1,r2,r3

…..

add r1,r2,r3

ld r1,#100(R3)

mov r1,r2

…..

add r1,r2,r3

100

104

...

128
132

136

...

160
164

168

...

196

100

add r1,r2,r3

be 60 (172)

….
132

mult r4,r2,r1

ld r1,#100(R3)

...

164

add r1,r2,r3

ld r1,#100(R3)

...

100

104

...

128
132

136

...

160
164

168

...

196

Compiler role (next)

100

add r1,r2,r3

mult r4,r2,r1

….

100
104

…

128

+key
encrypt

FPGA Guard role

add r1,r2,r3

mult r4,r2,r1

….

100

+key

decrypt

add r1,r2,r3

mult r4,r2,r1

….

nop

To CPU
validate

•Decryption increases cache miss penalty
•The NOP inserted by FPGA results in increased computation time

Data Replay Protection

n Similar to Instruction replay
qInstruction labels ensure control flow and replay protection

n Data block’s address is used as a label the
same way it is used for instructions
qLabels are included in the block’s digest

n Labels prevent out-of-sequence replay of
current data blocks

Stale Data Replay Protection

n DFID – Data Freshness Indicator – prevents
stale data replay attacks

n Part of the digest is stored inside the FPGA
for verification that the data block is the
most current one

n DFID is used instead of a timestamp because
one cannot run out of DFIDs

Data Protection

(a)
Signatures are stored
sequentially with data

blocks in memory

(b)
First 32 bits of signature are used as DFID

and stored in FPGA Guard's internal
table together with block's address

label DFID
0x00 0xDEADBEEF
0x28

...
0xABCDEFA1

FPGA Guard0x00
0x04
0x08
0x0C
0x10
0x14
0x28
0x2C
0x30
0x34
0x38
0x3C

db
2

...

...

...

...
signature(0x00, db1)
...
...
...
...
...
signature(0x28, db2)

0x00
0x04
0x08
0x0C
0x10
0x14
0x28
0x2C
0x30
0x34
0x38
0x3C

…
...
...
...
...
0xDEADBEEF1234...
...
...
...
...
…
0xABCDEFA1763...

db
1

db
2

db
1

Buffer Overflow/Function Protection

n Buffer overflow attacks are still the vast
majority of attacks – overwrite the return
address and route the program to malicious code

n If data is overwritten on run-time stack then we
cannot assume that the address requested by the
CPU is correct

n If return address is overwritten, then function
returns to a “wrong” location

Buffer Overflow Attack

Func1()

Stack Smashing Attacker
Code

Func3() Func2()

Bad-
Func4()

Func1()

Func3() Func2()

Bad-
Func4()

function calls
function returns

Buffer Overflow Protection:
HW Stack

n We provide additional secure hardware function
return stack is placed in the FPGA

n On a function call, return address is saved in the
hardware stack
qPush return address onto HW Stack

n On a function return, the address is verified
against the one stored in the hardware stack
before a function is allowed to return
qPop return address from HW Stack
qCompare with requested address

48

Overall CODESSEAL Software and
Hardware Processes

① Set the program context key
② Set program start address astart

① Monitor memory reads from cache
controller

② Capture requested address
ai=address(bbi)

③ Fetch and decrypt block bbi
(prefetching if necessary)

④ Fetch stored signature
xi=sig_compile(bbi + blabel)

⑤ yi = sig_runtime(bbi + (ai - astart))
⑥ If (yi == xi) valid (send to cache),

else HALT

① Identify code blocks (cb/bb)
② Label each block bbi

③ Sign_compile(bbi + bblabel)
④ Embed signature in object file
⑤ Encrypt(AES)

Run-time Validation (loader)

Compile-time processing Run-time Validation (FPGA Guard)

Our FPGA Architecture

n Instructions
qDecryption (AES)
qDigest calculation/verification (SHA-1/CRC)
qLabel calculation/verification
qPre-fetching logic
qHardware stack / function protection

n Data
qEncryption/Decryption (AES)
qDigest calculation/verification (SHA-1/CRC)
qLabel calculation/verificaiton
qDFID storage/verification

Architecture: Inside the FPGA Guard

CPU Upper
Level
Cache

Main
Memory

Chip boundary
FPGA Guard

Instruction
path

Data path

Data busAddress bus

Basic block
prefetching

logic

Decryption and
signature

Requested
address

Validation
logic

Block signature

Decryption and
signature

Requested address

Encryption and
signature

51

Implementation and Performance

n Software and Simulation Environment
q modified SimpleScalar cycle level simulator

l With FPGA functional simulator
q gcc 3.3 cross-compiler for ARM

l We provide a module that plugs into gcc backend
l Our current techniques work at assembly level – can port to other processor ISAs

n Performance depends on security schemes and architecture
parameters
q (1) CRC or (2) SHA-1

l SHA-1 incurs much larger penalties
q (a) external storage or (b) internal storage

l Internal incurs larger penalties
q Cache block size: 32 byte or 64 byte incurs much larger penalties

l Smaller cache block size incurs larger penalties

n Hardware Prototype
q Virtex II Pro FPGA from Xilinx

52

Simulation Results: Setup

n GCC 3.3, static linking
n Processor:

q ARM1020E 400 Mhz
q No L2 cache
q 32KB cache, 32-byte cache line
q Cache hit: 1 cycle. Cache miss: 10

n FPGA:
q Virtex II Pro 200 Mhz
q Access latency 10 proc. Cycles
q Upto 3MB on-board memory

n Main Memory:
q 100 Mhz,
q Access: 24 + 4

n Hashing Scheme:
q SHA-1, 20-byte hash
q Hash calculation: 164 cycles
q Verification: 2 cycles

n Encryption:
q AES, 128-bit blocks
q Encryption latency: 20 cycles/block

n SimpleScalar:
q FPGA between L1 and Memory
q In-order execution

n Benchmarks:
q MiBench: typical benchmark suite for

embedded applications
q DIS: data intensive systems

53

Cache Block Granularity:
(1) CRC for Code and Data, (a) External Storage

54

Cache Block Granularity:
(1) CRC and (b) Internal Storage

55

Cache Block Granularity:
(2) SHA1 code and data, (a) External Storage

56

Basic Block Granularity:
(1) CRC and (b) internal storage

32 byte cache blocks

• CRC for basic block integrity check
• Integrity and control-flow information stored inside the basic block

(replaced with nops at runtime)

57

Basic Block Granularity:
(2) SHA-1 and (b) internal storage

• SHA-1 for basic block integrity check
• Integrity and control-flow information stored inside the basic block

(replaced with nops at runtime)

32 byte cache blocks

58

Buffer Overflow Protection Using
Hardware Stack in the Guard

59

Prototype Development

n Hardware Platform
q Virtex II Pro FPGA from Xilinx
q compiler

n PowerPC processor + FPGA Guard
n Preliminary results…

60

CODESSEAL Prototype
Hardware

On-board
Peripherals

EthernetM
em

ory C
ontrollers

Pe
ri

ph
er

al
 C

on
tr

ol
le

rs

CPU
Resources
(PPC, MB)

On-chip
Memory

Resources

On-chip Interconnect
(PLB, OPB)

UART

On-board
Storage

USB

256 MB
DDR DIMM

512 MB
CF Card

64 Kb Serial
EEPROM PCI

Xilinx ML310
Development Board

61

Synthesis Report

n Prototype implementation of the Guard
n Optimized for ease of implementation and design workflow
n Implementation platform : Xilinx XC2VP30 FPGA

q PowerPC processor

n Conclusion: enough space even for our unoptimized design
q Implies an efficient and full implementation of CODESSEAL

possible using current COTS technology

62

Key Management..?

n Basic Assumptions:
qEach Chip (Proc+FPGA) has a unique key
qEach application will have its own key

n Session key at setup/load time
qNeed ability to swap b/w OS tasks and Application tasks

n What about data?
qUse same key for all the data generated ??
qIntroduces key management problems that need to be

studied

63

CODESSEAL Summary

n CODESSEAL Examine hardware/software co-
design methodologies to secure and protect
code
qexploits the interplay between compiler and hardware

l Compiler can play a big role in providing security solutions
qFlexibility of FPGAs
qWithout changing processor ISA and microarchitecture

n Performance
q“acceptable” penalties
qAverage performance for benchmarks as low as 16%

IAI Presentation, 3-35-2008

CODESSEAL Summary

n Hardware-software approach for EED attacks
qcomprehensive code and data protections provided
qAcceptable performance penalty in most cases

n No changes required to processor/ISA, cache or
memory organization
qPast work did not utilize FPGA logic in this manner
qOff-the-shelf hardware available to implement our system
qCompiler component ensures no burden on programmer
qTradeoff between security and performance

n Acceptable performance penalties
qAs low as 15% penalty for full system protection on average

Collaborators and
Acknowledgements

n Collaborators:
q GWU: R. Simha
q Doctoral Students: E. Leontie, G. Bloom, O. Chen
q Northwestern: Prof. Alok Choudhary
q Iowa State Univ: Prof. Joseph Zambreno

n Sponsors:
q National Science Foundation (NSF)
q Air Force Office of Scientific Research (AFOSR)

65

66

Synergistic research: Brief
Overview

n Synergistic efforts on using hardware for
SW and Info Assurance
q Hardware Containers/Wrappers

l Protecting against backdoors hidden in third party code and
enabling recovery from attacks

q The SHADE Architecture
l Untrusted chip – when attacker is at the chip foundry and can

place hidden/trojan circuit in processor

SHADE: An Architecture for Trusted
Execution using

Untrusted Components

68

Untrusted Components: Trojan
Circuit

n Example Scenario:
q Adversary inserts so-called

Trojan Circuit into chip
q Can launch attacks on end

products like radios, comm
chips even when software has
been verified

69

Trojan Circuits: Attack Details

n Leakage attack
q Seize control of processor and write out decryption keys

(for encrypted execution models)

n Denial of service
q Halt processor at a critical or random time
q Scan for electromagnetic signals to halt at right cue

n Facilitate reverse engineering
n Hardware firewalls that grant complete

external access to the network
q Packet sent from pre-determined location
q Key encoded as a series of requests

70

Our Approach: Secure Heartbeat
and Dual Encryption (SHADE)

n Dual processor components
n Gateway
n Dual Encryption
n Backend inserts non-

cacheable memory accesses
inserted to create a
heartbeat

n Architectural and compiler
features

71

Our Approach

n Dual processor components
qGateway and an Execution processor
qalso a standard CPU for non-secure apps – dual use system

n Gateway
qPerform first level encryption/decryption and send to processor or

memory
qData values are encrypted first by processor and then again by

gateway

n Architectural and compiler features
qRuns apps in secure and non-secure modes
qUses trusted compiler tool-chain
qSecure apps are doubly encrypted by compiler

n Overhead: varies from 5 – 70%
qDIS and MIBench, ARM processor.

72

Single Chip Proposed Approach

n All communication between chip
and outside must go through
Firewall-On-Chip

n All software is dually-encrypted.
n Firewall = mutually-distrusting

components.
n Gateway processor with

encryption provides firewall-on-
chip capability.

n Hidden circuit in gateway can
only leak encrypted (useless) info

n Leak from hidden circuit on
processor is trapped by gateway

Gateway Processor – Firewall on-chip

E1(x)?

Architecture with mutually-distrusting components

(1) Decrypts first layer
(2) Checks execution processor

E1(x)?

E2(E1(x))

Doubly-encrypted
communication with
off-chip resources

E 2
(x

)?

E 2
(x

)?

Execution Processor

(1) Decrypts second layer
(2) Checks on gateway

All communication out of the Chip must go through the
gateway processor (firewall)

Gateway Processor – Firewall on-chip

E1(x)?

Architecture with mutually-distrusting components

(1) Decrypts first layer
(2) Checks execution processor

E1(x)?

E2(E1(x))

Doubly-encrypted
communication with
off-chip resources

E 2
(x

)?

E 2
(x

)?

Execution Processor

(1) Decrypts second layer
(2) Checks on gateway

All communication out of the Chip must go through the
gateway processor (firewall)

73

Thank you!

