
API Design and
Concerns
CSCI 3410 Spring 2023

Prof. Sibin Mohan

Application
Programming
Interface
[API]

Method for computer programs to
communicate with each other

software interfaces

offering services to other
software/code

Note: not a user interface!

Main
Concerns
[for now]

Return Values

Errors

Memory Ownership

Return Values
• Functions may need to return more than one value/result

• actual return (results of computation, memory allocation, etc.)
• how to interpret the return value?
• errors (if any)
• meaning of errors (if any)
• additional information, say for debugging or understanding context
• create multiple entities and return them

Return Values in C
• explicit return [return by value]

• return using (incoming) pointer [return by reference]

• return using global variable/macro/environment variable [“implicit” return]

• return multiple entities [use structs]

int sum(int l, int r)…

strcpy(destination_pointer, source_pointer) ;

errno -1

struct ret_type{
int a;
char* carray ;

} ;

struct ret_type my_function(…)
struct ret_val_ptr* my_other_func(…)

Errors!

How to Detect Errors
• functions that return integers

• functions that return pointers

• custom struct can include error information

common for negative values to indicate errors

NULL value indicate errors

struct ret_type{
int a;
char* carray ;
unsigned int error_number ;
char error_name[255] ;

} ;

errno
• UNIX mechanism to pass error information

• including many “standard” errors [“out of memory”, “disk full”, etc.]

• integer that stores the error values
• “errno” program can print the values (for all, or specific ones)

$ errno -l
EPERM 1 Operation not permitted
ENOENT 2 No such file or directory
ESRCH 3 No such process
EINTR 4 Interrupted system call
EIO 5 Input/output error
...

$ errno 28
ENOSPC 28 No space left on device

#include <error.h>
• to reference “errno”

• Additional functions

Function Operation
perror print an error to console AND error corresponding to “errno”
strerror returns an error corresponding to “errno”

Memory
Ownership

who will “free()”?
• pointers are often passed to/from functions

• who has the responsibility to call free()?

• note:
1. C requires that free() be called explicitly!
2. it should be called only once

• caller/callee should understand who “owns” the resources pointed to by the pointers

Ownership
• Owner of a piece of memory is the one that frees it

OR

• Pass it to another piece of code that then becomes the owner

• A function can borrow some memory but does not free it!

Ownership Patters

caller callee(*ptr)
transfer ownership (*ptr)

• Example: enqueue data into a queue

caller *ptr callee()returns value and
transfer ownership (*ptr)

• Example: strdup creates a string and the caller will free it

caller callee(*ptr)

• Example: most common case

borrow ownership (*ptr)

