Lecture 6 | SLAM

## Secure Autonomous and Cyber-Physical Systems



CS 599 001/ECE 599 004

Winter 2022

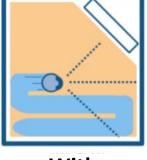
#### **Prof. Sibin Mohan**

https://bit.ly/secureauto2022

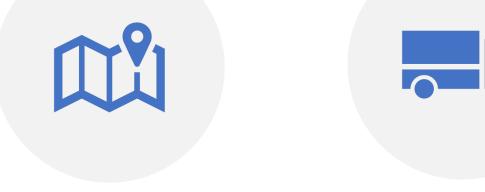


### Simultaneous Localization and Mapping [SLAM]









#### BUILD A MAP LOCALIZE YOUR VEHICLE

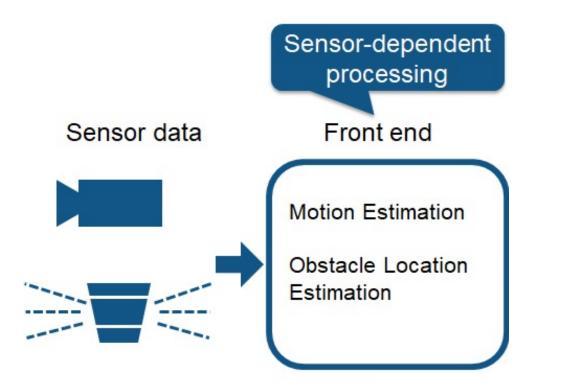
#### Used for path planning, obstacle avoidance

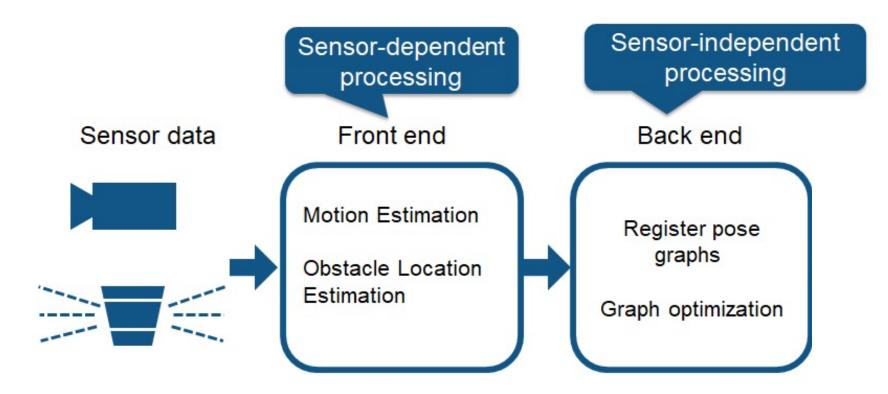
Sensor data

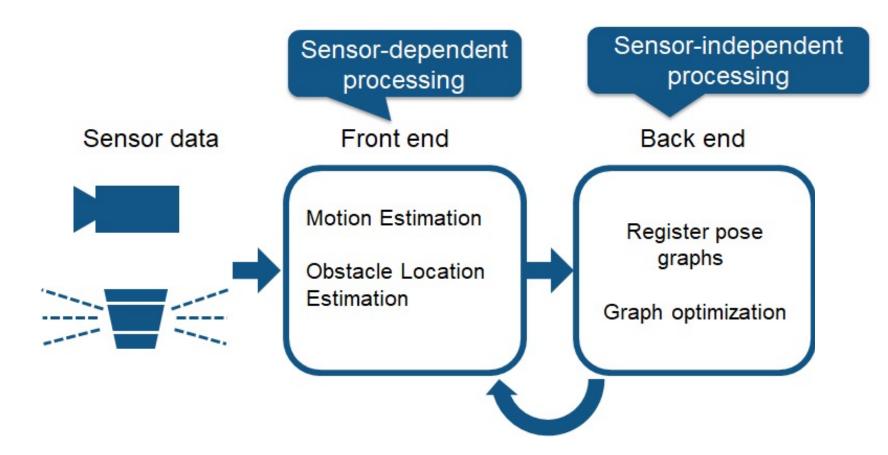


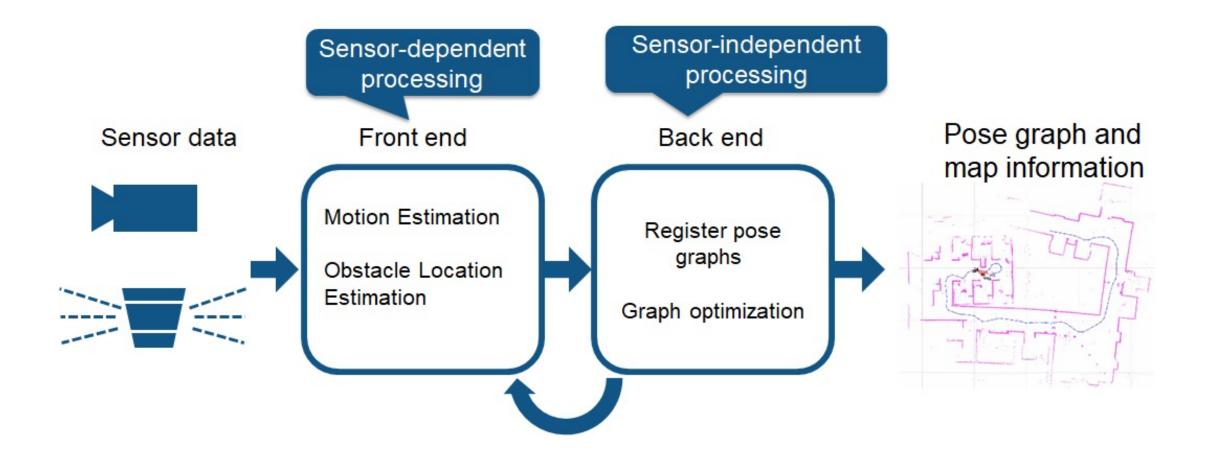


Secure Autonomous and CPS | Winter 2022





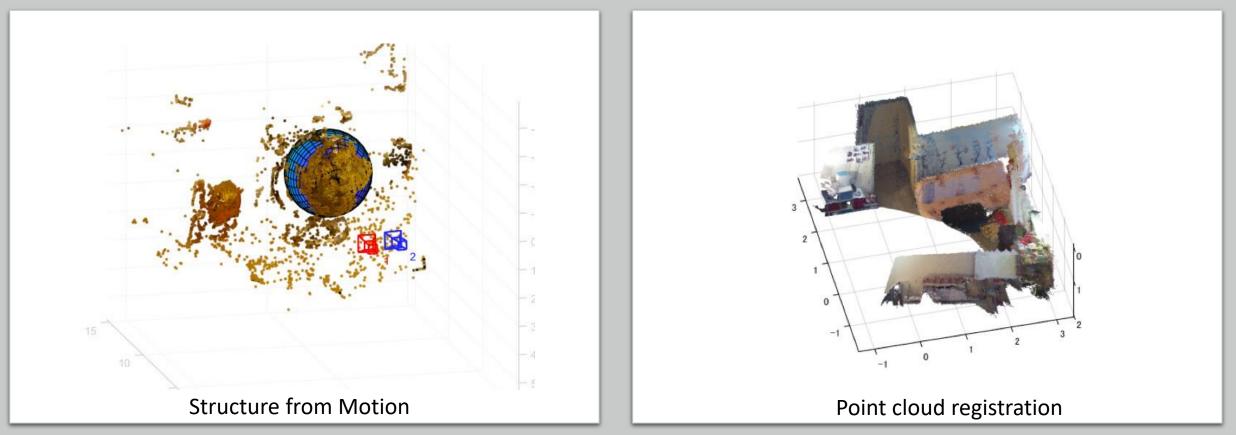




#### • Visual SLAM (vSLAM) uses cameras

#### • Spare methods match feature points of images [PTAM, ORB\_SLAM]

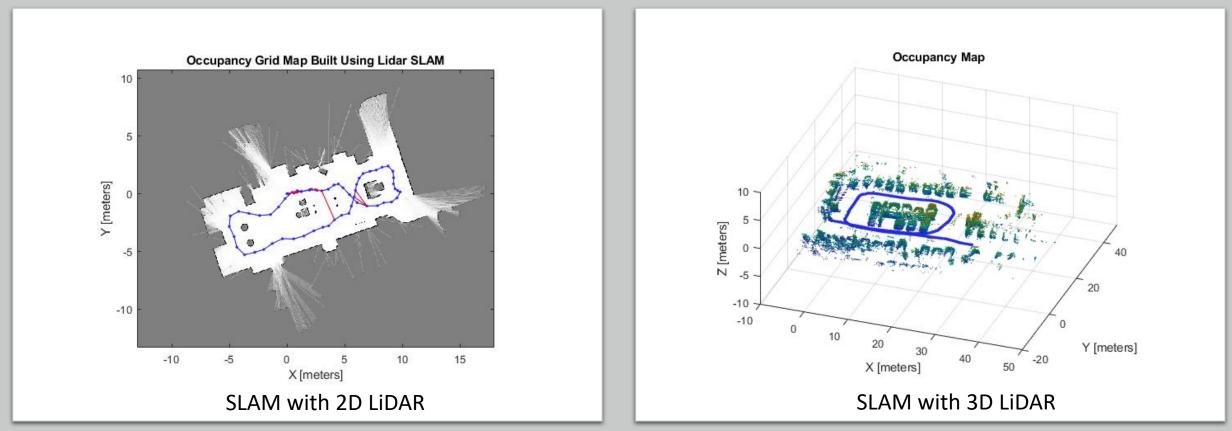
• Dense methods use overall brightness of images [DTAM, LSD- SLAM, DSO, SVO]

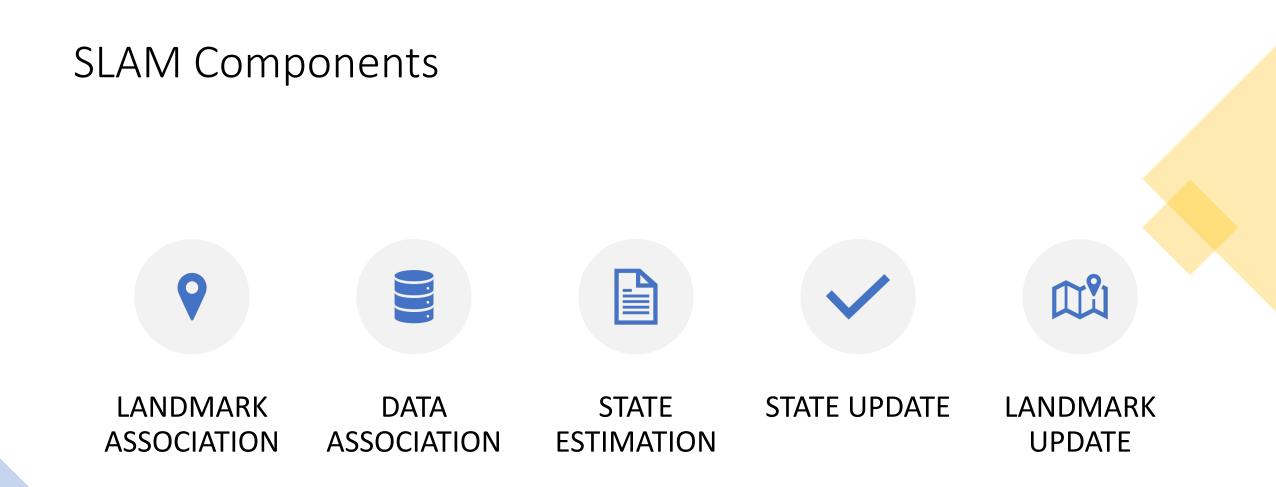


Types of SLAM

### Types of SLAM | LiDAR SLAM

- Laser point cloud provides **high-precision distance measurements**
- Not as finely detailed as camera images
- Environments with fewer obstacles → less precision
- May require **fusion** with other sensors (e.g. GPS, odometry)







### SLAM Details | The Hardware

- Mobile robot
- Range measurement device
- → e.g. indoor robot
- → e.g. LiDAR, RADAR, Sonar, etc.



# SLAM Steps | Details

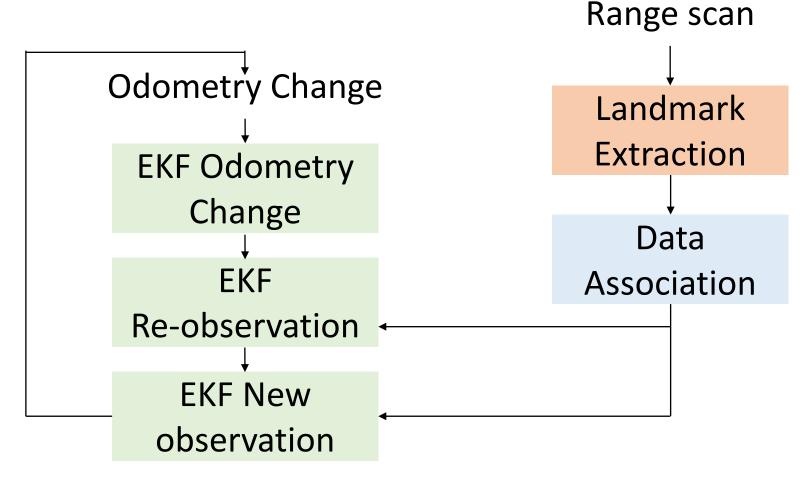
- Use environment to update position of robot
- Odometry can be erroneous
- Use range measurement devices to correct position

EKF

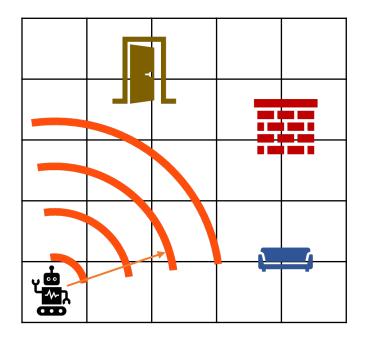
- Extract features from environment
- re-observing when robot moves around
- "features" → landmarks

#### EKF tracks **uncertainty** in position and landmarks

## SLAM Steps | Outline

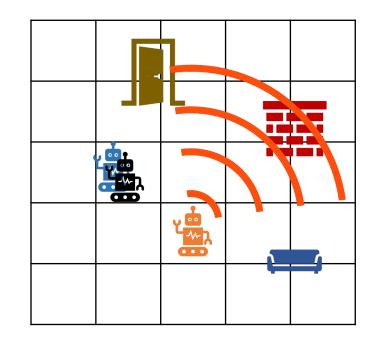


### SLAM Steps | Abstract View



Robot trusts sensors more than odometry!

#### SLAM Steps | Abstract View



#### **Mismatch in position!**





LiDAR, RADAR, etc. provide data about surroundings



Odometry data provides **approximate** position of robot

Challenge - synchronizing the timing of both LiDAR has a higher rate than odometry



Solution **→** Extrapolate the data

Easier to extrapolate odometry data

## SLAM | Landmarks

Features that can be re-observed and distinguished from environment

- **?** Used by robot to find out where it is  $\rightarrow$  localize itself
- Types of landmarks depend on the environment

#### Landmarks should be:

- **Re-observable** and viewable from different angles & positions
- Unique enough to be identifiable between time steps
- **Plentiful** in the environment
- Stationary

### SLAM | Indoor Landmarks



- Lots of straight lines
- Well defined corners

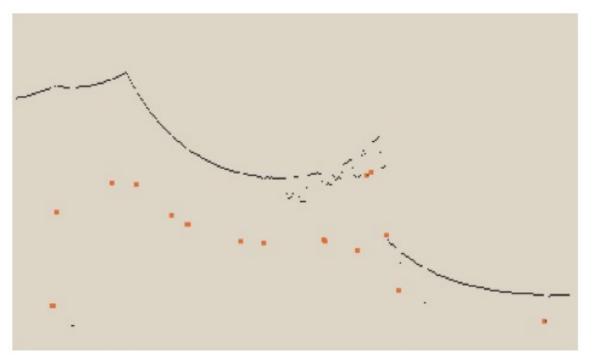


# SLAM | Landmark Extraction

- Depends on type of landmarks
- Two landmark extraction algorithms
  - Spikes
  - RANSAC

## SLAM | Landmark Extraction | Spikes

- Uses extrema to find landmarks
- two values differ > certain amount [e.g. 0.5]
- Detects big changes
  - Some beams reflect from walls, others don't



# SLAM | Landmark Extraction | RANSAC



- RANdom SAmpling Consensus
- Extract lines from a laser scan
  - (e.g. straight lines from walls)
- Lines used as landmarks

## SLAM | RANSAC | High-Level

Random sampling of laser reading

Least square approximation  $\rightarrow$  best line through readings

How many laser readings lie close to best fit line?

#### If number > threshold → line is seen Consensus

# SLAM | RANSAC | Algorithm

#### While

- there are still unassociated laser readings
- # of readings > consensus C
- completed < N trials

#### Do

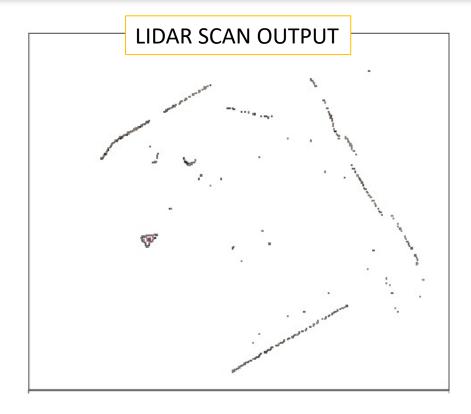
#### $N \rightarrow$ max number of attempts

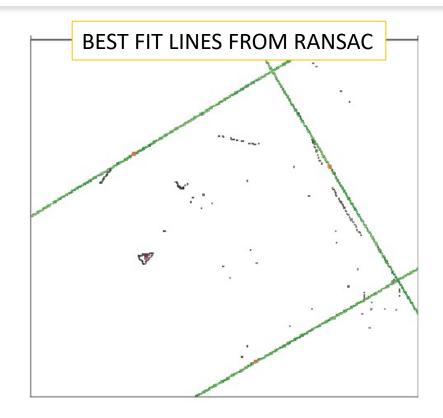
- $S \rightarrow$  number of samples to compute initial line
- $D \rightarrow$  degrees from initial reading to sample from
- $X \rightarrow$  max distance reading may be from line
- $\mathbf{C} \rightarrow$  number of points that must line on line

- select random laser data reading, R
- randomly sample S data readings within D degrees of R
- calculate *least squares best fit line* using S and R
- determine how many laser data readings lie within X cm of best fit line
- if number of laser data readings on best fit line > consensus C
  - calculate *new least squares best fit line*  $\rightarrow$  based on all readings that lie on old line
  - add new best fit line to lines extracted so far
  - remove number of readings lying on this line from total set of unassociated readings

#### SLAM | RANSAC | Example

- Can extrapolate lines as dots as well  $\rightarrow$  easier calculations
- RANSAC is robust against people





## SLAM | Spikes vs RANSAC

| Spikes                    | RANSAC                     |
|---------------------------|----------------------------|
| Simple algorithm          | More involved calculations |
| Not robust against people | Robust against people      |

## SLAM | Data Association

- Matching observed landmarks from different scans with each other
- **Re-observing** landmarks





## SLAM | Data Association | Challenges

- May not re-observe landmarks at every step
- May wrongly observe something as landmark
  - never seen again!
- Wrong associate a landmark to a previously seen one

### SLAM Data Association Policy

- Assume a **database** of previously seen landmarks
  - Initially empty
- Don't consider a landmark unless seen N times

#### Nearest Neighbor Approach

- use landmark extraction to extract all visible landmarks
- associate each extracted landmark  $\rightarrow$  closest landmark seen > N times in database
- pass each pair of associations (extracted, seen in database) through validation gate
  - If pair passes validation date, it must be same landmark  $\rightarrow$  increment number in database
  - if pair fails validation gate  $\rightarrow$  add as new landmark in database

#### **Validation Gate >** check if landmark lies within area of uncertainty from EKF

# **Y** SLAM Challenges

- Localization errors accumulate over time
  - E.g. in a loop, robot's start/end positions don't match
- Localization fails and map position is lost
  - Discontinuities in position estimates
- High computational costs
  - image processing/point clouds/etc.



→ EKF+landmarks

→Parallelism

## References

• SLAM for Dummies:

https://dspace.mit.edu/bitstream/handle/1721.1/36832/16-412JSpring2004/NR/rdonlyres/Aeronautics-and-Astronautics/16-412JSpring2004/A3C5517F-C092-4554-AA43-232DC74609B3/0/1Aslam blas report.pdf

• SLAM Overview [Matlab article]

https://www.mathworks.com/discovery/slam.html

• SLAM examples and Matlkab code/API form

https://www.mathworks.com/help/nav/slam.html