Lecture 4 | Localization and Sensor Fusion

Secure Autonomous and Cyber-Physical Systems

CS 599 001/ECE 599 004

Winter 2022

Prof. Sibin Mohan

https://bit.ly/secureauto2022

Localization

- We can use GPS to determine where we are
 - Not very precise \rightarrow errors from 1 to 10 meters
- Methods to localize?

Localization Methods

- Odometry
- Movement of vehicles
- Kalman Filters
- Particle Filters
- SLAM

Inertial Measurement Units [IMUs]

• Sensor to define movement of vehicle

Inertial Measurement Units [IMUs]

• Sensor to define movement of vehicle

IMU includes

Secure Autonomous and CPS | Winter 2022

Localization | Errors

- Each sensor builds up error over time
 - Drift in measurement from average values
 - Constant bias
 - Noise
 - Calibration errors
 - Scale factor
 - Vibration rectification errors

"fuse" data from multiple sensors | Sensor Fusion

Sensor Fusion

- Fusing data from multiple sensors
- Better reliability, redundancy and safety

Sensor Fusion

Consider a LiDAR and a camera → looking at a pedestrian

Situation	Result
Only one detects the pedestrian	Use the other to increase chances
Both detect the pedestrian	Better accuracy+confidence

Sensor Fusion | Classification

Sensor Fusion | Abstraction Level

• "when should we do the fusion?"

• Low-level fusion

- Fusing the raw data multiple sensors
- E.g. point clouds from LiDARs and pixels from cameras

- Object detection
- Projecting 3D point clouds onto image
- Associating with the pixels

Pros	Cons
Future proof	Huge processing requirements

Abstraction Level | Mid Level Fusion

- 3D bounding box (LiDAR)+2D bounding box (camera)
- Projecting 3D result into 2D
- Data fusion in 2D

- Fusing objects detected independently
 - Each sensor does its own detection
 - E.g. camera and radar detect objects and these are fused
 - Kalman Filter

3D POINT CLOUE

Pros	Cons
Simplicity	Potential to lose information

Abstraction Level | High Level Fusion

• Fusing the tracks

- Fuse objects and their trajectories
- Relying not only on detections
- Also on predictions+tracking

Sensor Fusion | Centralization Level

- "where is the fusion happening?"
 - Main computer
 - Each sensor does it independently
- Three types:
 - Centralized: one central unit deals with it [low-level]
 - Decentralized: each sensor fuses data and forwards to next one
 - Distributed: each sensor processes data locally and sends to next unit [late]

Centralization Level | Satellite Architecture

- Plug many sensors [satellites]
- Fuse together on a single central unit [active safety domain controller]
- 360 degree fusion+detection on controller
- Sensors do not have to be extremely good

Sensor Fusion | Competition Level

- "what should the fusion do?"
- Three types
 - Competitive: sensors meant for same purpose [RADAR+LiDAR]
 - Complementary: different sensors looking at different scenes [multiple cameras]
 - Coordinated: sensors produce a new scene from same object [3d reconstruction]

Sensor Fusion | Competition Level

- "what should the fusion do?"
- Three types
 - **Competitive**: sensors meant for same purpose
 - E.g. Camera+LiDAR

Sensor Fusion | Competition Level [contd.]

• Complementary

- different sensors looking at different scenes
- E.g. multiple cameras for creating panorama

Sensor Fusion | Competition Level [contd.]

• Coordinated

- sensors produce a new scene from same object
- E.g. 3d reconstruction

Sensor Fusion Example

Camera and LiDAR

Sensor Fusion | Camera+LiDAR

- Camera → excellent for object
 classification and understand scenes
- LiDAR → good for estimating distances

Sensor Fusion Example | Camera

• Outputs bounding boxes

• 2D

Sensor Fusion Example | LiDAR

• Outputs point clouds

• 3D

Sensor Fusion Example | Classes

"what" competition and redundancy

"where" doesn't matter (for now; lots of options)

"when" | multiple options

early: fuse the raw data → pixels and point clouds
late: fuse the results → bounding boxes

Sensor Fusion Example | Early Fusion

- Fuse raw data as soon as sensors are plugged
- Project 3D LiDAR point clouds onto 2D image
- Check whether point clouds belong to 2D bounding boxes from camera

2D IMAGE

Sensor Fusion Example | Point Cloud Projection in 2D

Translate 3D point cloud [LiDAR frame] → 2D projection [camera frame]

- 1. Convert each 3D LiDAR point into homogeneous coordinates
- 2. Apply **projection equations** [translation/rotation] to convert from LiDAR to camera
- 3. Transform back into Euclidean coordinates

Sensor Fusion Example | Object Detection

- Detect the object using the camera
- YOLO again!

Sensor Fusion Example | ROI Matching

- "region of interest" mapping
- Fuse the data inside each bounding box
- Outputs?
 - For each bounding box → camera gives classification
 - For each LiDAR projected point → accurate distance
- Objects are measured accurately and classified

Sensor Fusion Example | Problems in ROI matching

- Which point to pick for distance?
 - Average/median/center point/closest?
- Point belong to another bounding box?

Sensor Fusion Example | Late Fusion

- Fusing result after independent detection
 - Get 3D bounding boxes on both ends, fuse results
 - Get 2D bounding boxes on both sides, fuse results

Sensor Fusion Example | Late Fusion in 3D

- Multiple Steps:
 - 1. 3D Obstacle Detection [LiDAR]

Sensor Fusion Example | Late Fusion in 3D

• Multiple Steps:

- 1. 3D Obstacle Detection [LiDAR]
- 2. 3D Obstacle Detection [Camera]
- 3. IOU Matching in Space

Sensor Fusion Example | Late Fusion in 3D

- Multiple Steps:
 - 1. 3D Obstacle Detection [LiDAR]
 - 2. 3D Obstacle Detection [Camera]
 - 3. IOU Matching in Space

Sensor Fusion Example | IOU Matching

Sensor Fusion Example | IOU Matching in Time

Need to ensure the **frames also match in time**!

Associate objects in time, from frame to frame

Also predict next positions

Bounding boxes **overlap** between consecutive frames **>** same obstacle

Kalman Filter, Hungarian Algorithm, SORT

References

• IMUs

https://www.vectornav.com/resources/inertial-navigation-articles/what-isan-inertial-measurement-unit-imu

• Sensor fusion classes

https://www.thinkautonomous.ai/blog/?p=9-types-of-sensor-fusionalgorithms

• Sensor fusion example (camera+LiDAR)

https://www.thinkautonomous.ai/blog/?p=lidar-and-camera-sensor-fusionin-self-driving-cars

• 3D Bounding Box Estimation – one technique

https://arxiv.org/pdf/1612.00496.pdf