CaTch: A Confidence Range Tolerant Misbehavior Detection Approach

Joseph Kamel; Arnaud Kaiser; Ines ben Jemaa; Pierpaolo Cincilla; Pascal Urien

2019 IEEE Wireless Communications and Networking Conference (WCNC)

Motivation

- Misbehavior Detection Systems in Vehicular Communications.
- Current MBD systems fail in distinguishing between intentional and non-intentional erroneous mobility information.
- Integrating benign sensors error in the plausibility checks would improve misbehavior detection.

Proposed Solution

- · Include sensors inaccuracy/tolerance in plausibility checks.
- "Confidence Range" field in IEEE BSM and CAM for each mobility parameter.
- Uncertainty Factor f:

For each check, CaTch finds Uncertainty Factor f

f(mobility parameter, mobility parameter confidence range, plausibility thresholds)

In the range [0,1]

0 as malicious and 1 as no signs of misbehavior

R_x	\triangleq	Position confidence range in beacon x
V_x	\triangleq	Claimed speed in beacon x
C_x	\triangleq	Speed confidence range in beacon x
D_x	\triangleq	Claimed heading in beacon x
Δt_{ij}	\triangleq	Time separating beacons i and j
d_{ij}	\triangleq	Distance separating beacons i and j
A_x	=	πR_x^2
		14000

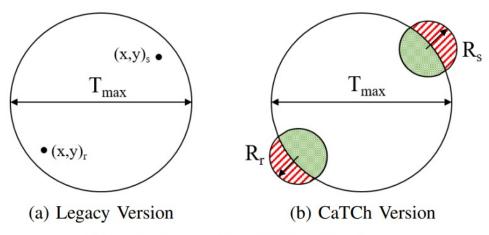


Fig. 1: Range Plausibility Check

$$T_{max} riangleq ext{Communication Diameter}$$
 $A_{T_{max}} = \frac{\pi T_{max}^2}{4}$
 $a_r = A_{T_{max}} \cap A_r$
 $a_s = A_{T_{max}} \cap A_s$

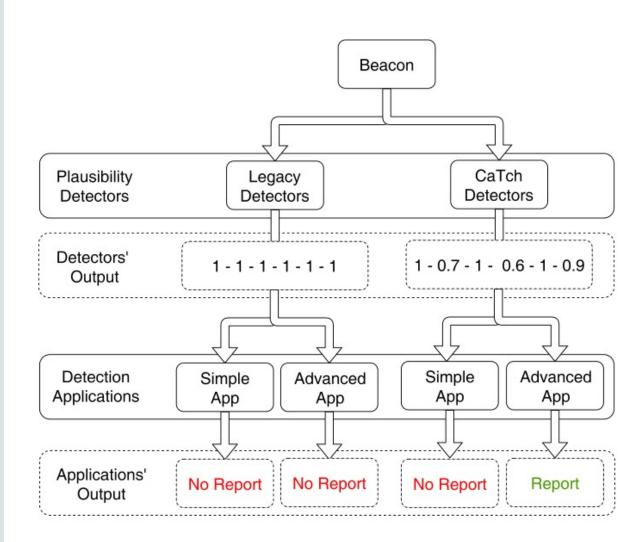
$$f = (a_r + a_s)/(A_r + A_s)$$

Proposed Solution

- Example: Position Plausibility check
- A vehicle cannot report a position out of $T_{max.}$
- Position Confidence Range intersection areas with comm. range area are plausible positions.
- · Green is plausible, Red is not plausible.

Evaluation-Experiment Setup

- Simulator: VEINS.
 - ✓ 21 Vehicles.
 - ✓ Attack Density = 0.1.
 - ✓ Two attacks: ConstPosOffset, Sybil.
- Detection Applications:
 - ✓ Determines whether to report a message or not.
 - ✓ Simple (Threshold) Vs. Advanced (ML Detector) for both Legacy and CaTch.
 - ✓ CaTch Threshold: Report if f < 0.5
 - ✓ CaTch Advanced: MLP, Trained on history of a couple of previous messages.
- Sensors Inaccuracies:
 - ✓ GPS position inaccuracies.
 - ✓ Radom inaccuracies N(0,1).



Evaluation-Performance Metrics

- For MBD, FN has higher gravity than FP.
- Recall/Precision trade-off. (FP/FN trade-off)
- Bookmaker Informedness: Random guessing.
- MCC: Accuracy when one class is significantly larger than the other.

	Reported	FP	TP	
	Not Reported	TN	FN	
Recall	=	\overline{T}	$\frac{TP}{P+FN}$	
Precision	=	\overline{T}	$\frac{TP}{P + FP}$	
Accuracy	=		$\frac{CP + TN}{CP + TN + FN}$	
F_1Score	=	$2 \times \frac{Rec}{Rec}$	$\frac{all \times Precision}{all + Precision}$	
BM	=	$\frac{TP}{TP + FN}$	$+\frac{TN}{TN+FP}-1$	1
MCC	$=$ ${\sqrt{(TP+)}}$		$\frac{(TP + FP)}{(FN)(TN + FP)}$	$\overline{(TN+FN)}$

Genuine

Misbehaving

Evaluation-Results

- Performance depends on attack type.
- ConstPosOffset:
 - ✓ Attack is easy detected by Simple App (No improvement for CaTch over Legacy).
 - ✓ ML app with CaTch improve Genuine detection with a higher precision and Lower recall. (Not beneficial at all).
- · Sybil:
 - ✓ Attack is sending plausible data from virtual cars.
 - ✓ ML app with CaTch improve Attack detection with a higher recall.

Scenario App Detectors		Evaluation Metrics			
App	Detectors	Recall	Precision	Accuracy	
	Legacy	0.7621	0.9233	0.9691	
P	CaTch	0.7625	0.9207	0.9689	
Threshold		$\Delta 0.1\%$	Δ -0.3%	$\Delta 0.0\%$	
res		F ₁ Score	BM	MCC	
T	Legacy CaTch	0.8350	0.7548	0.8227	
		0.8342	0.7550	0.8216	
		Δ -0.1%	$\Delta 0.0\%$	Δ -0.1%	
0.0		Recall	Precision	Accuracy	
ij	Legacy CaTch	0.7642	0.9375	0.9706	
arı		0.7498	0.9721	0.9721	
Machine Learning		Δ -1.9%	$\Delta 3.7\%$	$\Delta 0.2\%$	
Je		F ₁ Score	BM	MCC	
E Legacy	0.8420	0.7584	0.8312		
lac	CaTch	0.8466	0.7473	0.8400	
\geq		$\Delta 0.5\%$	Δ -1.5%	$\Delta 1.1\%$	

(a) Constant Offset Scenario

Scenario App Detectors		Evaluation Metrics			
		Recall	Precision	Accuracy	
Threshold	Legacy	0.3976	0.9504	0.7468	
	CaTch	0.4203	0.9457	0.7546	
		$\Delta 5.7\%$	Δ -0.5%	$\Delta 1.1\%$	
J.		F ₁ Score	BM	MCC	
Th	Legacy	0.5607	0.3834	0.5013	
	CaTch	0.5819	0.4038	0.5155	
		$\Delta 3.8\%$	$\Delta 5.3\%$	$\Delta 2.8\%$	
Machine Learning		Recall	Precision	Accuracy	
	Legacy	0.3928	0.9498	0.7446	
	CaTch	0.7961	0.9102	0.8852	
		$\Delta 102.7\%$	Δ -4.2%	$\Delta 19.8\%$	
		F ₁ Score	BM	MCC	
	Legacy	0.5556	0.3783	0.4967	
	CaTch	0.8494	0.7424	0.7618	
\mathbf{Z}		$\Delta 52.9\%$	$\Delta 96.2\%$	$\Delta 53.4\%$	
	(b)	Sybil Attack	Scenario		

Conclusion

- Integrating the mobility parameters' Confidence Range with ML App increases the MBD ability to detect Sybil attack.
- · CaTch detector outputs a real value in the range of [0,1] for each check.
 - ✓ Legacy outputs either 0 or 1 for each check.
 - ✓ CaTch can be trained to generate a Fingerprint for each attack.

Discussion

- Implementation Questions:
- > How is the Sybil attack implemented in the simulator? Are the inaccuracies added within the simulation time?
- > Do the virtual cars include a random Confidence Range in the data they send?
- > Would that decrease the obtained improvement in recall?
- > would including the confidence range increase FP/FN in case of sensor breakage, inaccurate/high tolerance sensors,...?
- Only GPS inaccuracies are included. Is it ok as GPS is the main positioning system in this context?
- > Evaluation on other attacks
- ML detector
- Simplicity, short training history
- Generate a fingerprint for each attack
- ➤ Is this useful?
- Performance metrics: Undiscussed improvements in BM and MCC.

Thank you