
DIAT: Data Integrity Attestation
for Resilient Collaboration of

Autonomous Systems
Tigist Abera, Raad Bahmani, Ferdinand Brasser, Ahmad Ibrahim,

Ahmad-Reza Sadeghi, and Matthias Schunter

Introduction

● Autonomous collaborative embedded systems are increasing every year
○ Ad-hoc networks including: vehicles, factory robots, drones, etc
○ Networks working together to perform a task
○ Networks are homogeneous devices
○ Devices form meshed network

● Hard to secure ad-hoc collaborative networks from attacks
○ Data received from compromised device in network may be malicious
○ No central authority to coordinate actions or security

● Security questions DIAT attempts to answer for autonomous collaboration:
○ How were the data generated?
○ How were the data processed?

● Collaboration requires data integrity
○ Sensor data, status information, commands exchanged between devices must be trusted

Concepts

● Remote attestation
○ Verifier, remote entity, verifies integrity of software running on untrusted device
○ Untrusted device called prover

● Conventional control flow attestation
○ Allows verifier to detect attacks that do not conform to program’s control-flow graph

■ Like return-oriented programming (ROP)
■ Also unintended program execution meaning non-control data attacks

○ Needs huge database of execution paths to compare prover attestation against
■ Very expensive

○ Tracks each loop iteration

DIAT Claims/Contributions

● Secure collaborative data-flow integrity through run-time attestation
○ Operations on data and variables conform to program’s data-flow graph
○ Data shared across devices attestable

● Efficiency gains
○ Software decomposed into small interacting modules
○ Control flow of the small modules attestable
○ Smaller size reduces control-flow graph size thus reducing search costs and total overhead
○ Control-flow attestation has linear overhead

Assumptions

● Adversary is stealthy
○ Denial-of-service, physical attacks, non-control data attacks are not considered

■ DIAT could potentially be adapted to prevent non-control data attacks
○ Adversary wants to affect collaborative task by manipulating data on a compromised device

● Trusted Computing Base
○ Hardware attacks are out of scope
○ All software, including OS, is considered potentially compromised
○ Sensors are trusted

■ Attacks like spoofed GPS signals are not considered
○ Attestor is part of TCB

■ Attestor is composed of DFMonitor and CFMonitors
● DIAT works in conjunction with data execution prevention (DEP)

○ DEP prevents code injections

Example Task

Design

Design

● Only protect what has be explicitly selected
○ Only critical modules and data

■ Critical modules determined at runtime and are task dependant
■ Determined by DFMoniter

○ Protection is expensive
● Software modules are isolated from all other software components

○ Reduces control-flow complexity
● Communication between modules only allowed through DFMoniter
● Multiset hash represents execution path

○ Under-approximation of path
○ More expensive than traditional hash but worth it

■ Small size for impressive network communication overhead

Interaction

Implementation

Implementation

Simulation

Simulation

Simulation

Simulation

Weaknesses

● Does not protect against interrupts or traps
○ These do not affect control flow
○ Disabled by setting, but hard to verify

■ Relevant to future work
● No demonstration of attack detection or prevention
● ‘TCB’ is used nine times before being defined twice on pg. 12

○ And again on pg. 13

Future Thoughts

● Military drone swarms
○ Air Force F-35 costs $148,000,000 (plus inflation)

■ Only 760 produced to date
○ Hypothetical: future military component drone of swarm costs $50,000

■ The cost of a single F-35 could buy 2,960 drones
● Why is this important? Even inexpensive missiles normally cost $100k+

● Civilian drone fleets
○ How many millions will operate world wide?

● IoT
○ Collaborative networks don’t have to be vehicles

● Collaboration integrity is an absolute necessity

