DIAT: Data Integrity Attestation for Resilient Collaboration of Autonomous Systems

Tigist Abera, Raad Bahmani, Ferdinand Brasser, Ahmad Ibrahim, Ahmad-Reza Sadeghi, and Matthias Schunter

Introduction

- Autonomous collaborative embedded systems are increasing every year
 - Ad-hoc networks including: vehicles, factory robots, drones, etc
 - Networks working together to perform a task
 - Networks are homogeneous devices
 - Devices form meshed network
- Hard to secure ad-hoc collaborative networks from attacks
 - Data received from compromised device in network may be malicious
 - No central authority to coordinate actions or security
- Security questions DIAT attempts to answer for autonomous collaboration:
 - How were the data generated?
 - How were the data processed?
- Collaboration requires data integrity
 - Sensor data, status information, commands exchanged between devices must be trusted

Concepts

- Remote attestation
 - Verifier, remote entity, verifies integrity of software running on untrusted device
 - Untrusted device called prover
- Conventional control flow attestation
 - Allows verifier to detect attacks that do not conform to program's control-flow graph
 - Like return-oriented programming (ROP)
 - Also unintended program execution meaning non-control data attacks
 - Needs huge database of execution paths to compare prover attestation against
 - Very expensive
 - Tracks each loop iteration

DIAT Claims/Contributions

- Secure collaborative data-flow integrity through run-time attestation
 - Operations on data and variables conform to program's data-flow graph
 - Data shared across devices attestable
- Efficiency gains
 - Software decomposed into small interacting modules
 - Control flow of the small modules attestable
 - Smaller size reduces control-flow graph size thus reducing search costs and total overhead
 - Control-flow attestation has linear overhead

Assumptions

- Adversary is stealthy
 - Denial-of-service, physical attacks, non-control data attacks are not considered
 - DIAT could potentially be adapted to prevent non-control data attacks
 - Adversary wants to affect collaborative task by manipulating data on a compromised device
- Trusted Computing Base
 - Hardware attacks are out of scope
 - \circ $\;$ All software, including OS, is considered potentially compromised
 - Sensors are trusted
 - Attacks like spoofed GPS signals are not considered
 - Attestor is part of TCB
 - Attestor is composed of DFMonitor and CFMonitors
- DIAT works in conjunction with data execution prevention (DEP)
 - DEP prevents code injections

Example Task

Figure 2: Example of collaborative drones.

Design

Figure 3: DIAT system architecture. Closed switches symbolize activation of control-flow monitoring.

Design

- Only protect what has be explicitly selected
 - Only critical modules and data
 - Critical modules determined at runtime and are task dependant
 - Determined by DFMoniter
 - Protection is expensive
- Software modules are isolated from all other software components
 - Reduces control-flow complexity
- Communication between modules only allowed through DFMoniter
- Multiset hash represents execution path
 - Under-approximation of path
 - More expensive than traditional hash but worth it
 - Small size for impressive network communication overhead

Interaction

Implementation

Implementation

---> Control flow ---> Data flow

Figure 6: CFMonitor Logic

Hybrid

Weaknesses

- Does not protect against interrupts or traps
 - These do not affect control flow
 - Disabled by setting, but hard to verify
 - Relevant to future work
- No demonstration of attack detection or prevention
- 'TCB' is used nine times before being defined twice on pg. 12
 - And again on pg. 13

Future Thoughts

- Military drone swarms
 - Air Force F-35 costs \$148,000,000 (plus inflation)
 - Only 760 produced to date
 - Hypothetical: future military component drone of swarm costs \$50,000
 - The cost of a single F-35 could buy 2,960 drones
 - Why is this important? Even inexpensive missiles normally cost \$100k+
- Civilian drone fleets
 - How many millions will operate world wide?
- IoT
 - Collaborative networks don't have to be vehicles
- Collaboration integrity is an absolute necessity