CS 444/544 OS ||
Lab Tutorial #1

Lab Setup, Tools, and Debugging
Prof. Sibin Mohan | Spring 2022

Adapted from content originally created by: Prof. Yeongjin Jang

How Do We Run Lab Sessions?

Tutorial Video
(30 ~ 45 minutes)

Follow the instructions (slides/video)

Exercise + Q&A Do your lab exercises and ask questions to TAs

Lab instruction website:
https://sibin.qgithub.io/teaching/cs444-osu-operating-systems/spring 2022/lab.html

https://os.unexploitable.systems/lab.html

Lab Instructions

Getting Started with x86 assembly <

If you are not already familiar with x86 assembly language, you will quickly become familiar with it during this course! The PC
Assembly Language Book is an excellent place to start. Hopefully, the book contains mixture of new and old material for you.

Warning: Unfortunately the examples in the book are written for the NASM assembler, whereas we will be using the GNU
assembler. NASM uses the so-called Intel syntax while GNU uses the AT&T syntax. While semantically equivalent, an assembly file
will differ quite a lot, at least superficially, depending on which syntax is used. Luckily the conversion between the two is pretty
simple, and is covered in Brennan’s Guide to Inline Assembly.

Exercise 1. Familiarize yourself with the assembly language materials available on the cs444 reference page. You don’t have to
read them now, but you'll almost certainly want to refer to some of this material when reading and writing x86 assembly.

We do recommend reading the section “The Syntax” in Brennan’s Guide to Inline Assembly. It gives a good (and quite brief)
description of the AT&T assembly syntax we'll be using with the GNU assembler in JOS.

Certainly the definitive reference for x86 assembly language programming is Intel’s instruction set architecture reference, which
you can find on the cs444/544 reference page in two flavors: an HTML edition of the old 80386 Programmer’s Reference Manual,
which is much shorter and easier to navigate than more recent manuals but describes all of the x86 processor features that we
will make use of in cs444/544; and the full, latest and greatest IA-32 Intel Architecture Software Developer’s Manuals from Intel,
covering all the features of the most recent processors that we won't need in class but you may be interested in learning about. An
equivalent (and often friendlier) set of manuals is available from AMD. Save the Intel/AMD architecture manuals for later or use

JOS Lab (lab1-lab4, 70%)

Lab 1: Booting (10%) Lab 2: Virtual Memory (15%)

Learn how an OS boots from BIOS to Learn how to manage physical/virtual
bootloader to the OS kernel memory space in an OS kernel

JOS Lab (lab1-lab4, 70%)

Lab 3: User Environemnt+System Lab 4: Preemptive Multitasking
Calls (20%) (25%)

Learn how user/kernel execution switch works Learn how user/kernel execution switch works
and providing an isolated virtual memory space and providing an isolated virtual memory space

to a user process to a user process

Extra Credit Labs

JOS Challenges (1% each from Lab 1,2,3, same due date as the lab)

O Note

Challenge (Extra credit 1%). Enhance the console to allow text to be printed in different colors. The traditional
way to do this is to make it interpret ANSI escape sequences embedded in the text strings printed to the
console, but you may use any mechanism you like. There is plenty of information on the cs444/544 reference
page and elsewhere on the web on programming the VGA display hardware. If you're feeling really
adventurous, you could try switching the VGA hardware into a graphics mode and making the console draw
text onto the graphical frame buffer.

To get 1% of credit, please create a command ‘show’ in the monitor and print a beautifule ASCII Art with 5 or
more colors when the command is typed on the console.

Once you finish this, please create afile .1abi-extra atthe root of your repository directory (under joss).
We will use that file as an indicator that you finished this extra-credit and then grade your work accordingly.

Solving a challenge adds +1% towards the entire course credit

1. Lab environment setup
2. Commit your information on

TOd ay,S TUtO rl al your own ‘jos’ repository

3. Run JOS with TMUX

ACTION: Setup lab environment on OS servers

1. Connect to any one of the following servers:
o 0s2.engr.oregonstate.edu

o oldos2.engr.oregonstate.edu

o oldos1.engr.oregonstate.edu

o 0s1.engr.oregonstate.edu

2. RUN the following command (please copy-and-paste):

$ /nfs/farm/classes/eecs/spring2019/cs444-001/csd444-setup.py

This will setup BASH, VIM, GDB, QEMU and TMUX

Running the Script

[jangye@flipl ~$] /nfs/farm/classes/eecs/spring2019/cs444-001/cs444-setup.py

T ‘N’ if ish Cloning into '/nfs/stak/users/jangye/.cs444'...
ype n It 'you wis to remote: Enumerating objects: 62, done.

: remote: Counting objects: 100% (62/62), done.
keep your doffiles. remote: Compressing objects: 100% (44/44), done.

remote: Total 409 (delta 32), reused 46 (delta 16), pack-reused 347
Receiving objects: 100% (409/409), 9.29 MiB | 16.17 MiB/s, done.

NOTE: Only select ‘n’ Resolving deltas: 100% (249/249), done.
IF you know what
you're doing. The safe
bet is to pick ‘y’ for all
options.

Do you want to install peda to ~/.gdbinit (y/n) ?

Do you want to install cs444 custom tmux configuration (y/n) ?

Do you want to install .vimrc and vim plugins (y/n) ?

Error detected while processing /nfs/stak/users/jangye/.vimrc:
line 20:

E185: Cannot find color scheme 'angr'

Press ENTER or type command to continue

ACTION: Register your account!

e \We will use a private gitlab to host your projects
FERPA Act prevents us from storing your course progress outside OSU

e Visit the website and register an account:
https://gitlab.unexploitable.systems
Use @oregonstate.edu e-mail address (you can’t register otherwise)

e Wait for confirmation e-mail
After confirming the message, please log on to the gitlab website

10

https://gitlab.unexploitable.systems

ACTION: Register Your Public Key to Gitlab (Step 1)

e You can reuse the public key if you already have ssh keys on our server

e Otherwise, please create one by typing the following command:
$ ssh-keygen -t ecdsa

e Print your public key, and then copy the key to the clipboard
$ cat ~/.ssh/id ecdsa.pub

ecdsa-sha2-nistp256 (THIS IS A SAMPLE PUBLIC KEY)
AAAAE2VjZHNhLXNoYTI tbmlzdHAYNTYAAAATbm1lzdHAYNTYAAABBBFRx1q/fIouV7Kf1GVEWL04/yIprKdtf9KYO

Hk8gAbtIxocFFsAgBuEzRg4EtjQEYnitroSm2F14mHy2cz27+ho= jangye(@os2.engr.oregonstate.edu

11

Register Your Public Key to Gitlab (Step 2)

Go to settings page

1 i g

Yeongjin Jang
@blue9057

Set status

Profile

v

Settings Next, click this

Sign out

Click this first

12

Register Your Public Key to Gitlab (Step 3

@ UserSet(ings User Settings > SSH Keys

® Pprofile SSH Keys Add an SSH key
To add an SSH key you need to generate one or use an existing key.

SSH keys allow you to establish a secure
€ Account connection between your computer and GitLab.

Key

1 Applications Paste your public SSH key, which is usually contained in the file '~/.ssh/id_rsa.pub’ and begins with
'c* oot D “'nc Lo o m—lb ;

B Chat

H ecdsa-sha2-nistp256
O O ey e I n g S =) AAAAE2VJZHNhLXNoYTItbmlzdHAYyNTYAAAAIbmIzdHAYNTYAAABBBFRxIq/flouV7KfIGVEWL04/

Al Tok
ceess fokens ylprkdtfoKYOHk8gAbtIxocFFsAgBUEZRg4EtjQEYnitroSm2F14mHy2cz27+ho=

Paste here jangye@flip1.engr.oregonstate.edu

8 Emails

Paste your key 6 Fossor .

O Notifications

Tile

£ SSHKe!
Ve jangye@flip1.engr.oregonstate.edu
P GPG Keys ur individual key via a title
= Preferences Add key
@ Active Sessions
Your SSH keys (1)

Authentication log
ds eb:2d:49:11:5d:2f:d8:ce:5a:92:70:57:77-...
last used: 1 month ago

Q

created 2 months ago
® Pipeline quota 9 o

Forking the JOS repository

Fork project

existing repository Forking a repository allows you to
You will work on your JOS repository
the original project.

® Goto

make changes without affecting &
wd

Select a namespace to fork the project

https://qgitlab.unexploitable.systems/root/jos
and fork the repository!

Yeongjin Jang

Click this

J Jos U Qv v Star
Project ID: 1

f® No license. All rights reserved -0- 9 Commits ¥ 6 Branches ¢ 0Tags [3 1.3 MB Files

JOS

0 Y Fork

Click here

|

https://gitlab.unexploitable.systems/root/jos

Setting your repository ‘Private’

Now you have your own ‘jos’ repository

gy los @ o aser 0 YFok 0
Project ID: 2
8P Add license -0-4 Commits ¥ 6 Branches ¢ 3Tags [3 1.1 MB Files
JOS

Forked from Administrator / jos

But right now, your repository is visible to everyone
So, let’'s make it ‘private’ to you

15

ACTION: Setting your repo private (step 1)

Go to Settings > General | & J jos a

Project ID: 2

B

% Commits ¥ 6Branches ¢ 3Tags [1.1 MB Files
1) Settings

General
n trator / jos
y Members
Integrations
G
Repository
0
Cl/CD
, ing authored 2 months ago
% Operations

e Audit Events S
— e ® Add CHANGELOG ® Add CONTRIBUTING | ‘

16

ACTION: Setting your repo private (step 2)

Expand Visibility settings

Visibility, project features, permissions Expand

Choose visibility level, enable/disable project features (issues, repository, wiki, snippets) and set permissions.

Click this

17

ACTION: Setting your repo private (step 3)

Set your project ‘private’ and click ‘Save Changes’

Project visibility @

‘ Private s

The project is accessible only by members of the project. Access must be granted explicitly to each user.

Save changes '

Now only you, the TAs and | can see your repository.

18

ACTION: Cloning jos repository (step 1)

Now you need to get the code to the flip/OS server where you can edit it

Qv & Star 0 Y Fork O Clone v
Click the blue ‘Clone’ button and then t = (2o

Clone with SSH

Copy the string at the ‘Clone with SSH’

git@gitlab.unexploitable.sys ©

ACTION: Cloning jos repository (step 2)

e Clone the repository by running the following command on flip:

$ git clone git@gitlab.unexploitable.systems:your-username-must-be-here/jos.git

e CAUTION: you need to copy and paste your repository link
e.g., not root but your CS444/544 gitlab ID must shown on the command line

20

ACTION: Cloning jos repository (step 3)

e Make the jos directory private to you by running the following command:
$ chmod 700 jos

e This will make jos private
$ 1s -1 | grep jos
drwx------ . 1 jangye upg3275 932 Apr 2 02:40 jos

NOT READABLE BY OTHERS!

21

ACTION: Test your jos

e Run the following commands:
$ cd jos
$ make gemu-nox

e You must see something like following:

e You may quit gemu by pressing: Ctri+A, X

[jangye@flipl (labl) $] make gemu-nox
: Warning: File “obj/.deps' has modification time 111 s in the f
kern/entry.S
kern/entrypgdir.c
kern/init.c

kern/monitor.c
kern/printf.c
kern/kdebug.c
lib/printfmt.c
lib/readline.c
cc lib/string.c
1d obj/kern/kernel
1d: warning: section ".bss' type changed to PROGBITS
+ as boot/boot.S
+ cc -0s boot/main.c
+ 1d boot/boot
boot block is 380 bytes (max 510)
+ mk obj/kern/kernel.img
sed "s/localhost:1234/1ocalhost:28275/" < .gdbinit.tmpl > .gdbinit

% %k %k

*** Use Ctrl-a x to exit gemu

5 ke ok

gemu-system-i386 -nographic -drive file=obj/kern/kernel.img,index=0

444544 decimal is XXX octal!

entering test_backtrace 5

entering test_backtrace 4

entering test_backtrace 3

entering test_backtrace 2

entering test_backtrace 1

entering test_backtrace @
test_backtrace @
test_backtrace 1
test_backtrace 2
test_backtrace 3
test_backtrace 4
test_backtrace 5
to the JOS kernel monitor!

Type 'help' for a list of commands.

k> 1

ACTION: Edit student.info and commit your change

e Edit student.info using an editor such as: vim, emacs, nano, etc.,

e.g.,
$ vim student.info (press i to edit and ESC + :wg to write and quit)
$ nano student.info (stores and quit via pressing Ctrl-X)
$ emacs student.info

e Type your information

OSU ID (xxx-yyy-zzz) : 933456789
FLIP ID (e.g., jangye) : jangye
Name : Yeongjin Jang

CS 444/544 ? : 444
Lab Class # : Lab 1

ACTION: Commit your change

e Run the following commands:
$ git add student.info

$ git commit
type commit message, e.g., edit student.info

$ git push

24

Commit result example

edit student.info

labl
Changes to be committed:

modified student.info

Cjangye@eflipl (labl) test/jos$] git commit
[Labl ©9da383] edit student.info
1 file changed, 1 insertion(+), 1 deletion(-)

[jangye@flipl (labl) test/: $] git push

Enter passphrase for key '/nfs/stak/users/jangye/.ssh/id_rsa’':

Counting objects: 5, done.

Delta compression using up to 24 threads.

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 302 bytes | 0 bytes/s, done.
Total 3 (delta 2), reused @ (delta @)

To git@gitlab.unexploitable.systems:red9057/jos.git

af7ec7b. .99da383 1labl -> labl

25

How to Start Labs?

e Setup lab environment first (we will do this today!)

e Read Lab description online
https://sibin.github.io/teaching/cs444-osu-operating-systems/spring 2022/lab/lab1.html

e Finish all exercises and run
$ make grade

26

Running GDB with JOS

e Go to the ‘jos’ directory
e Use the dual split-screen mode in tmux

e Run make gemu-nox-gdb on the left side (must run a single instance of gemu)
Note: Port bind error could occur if you have another instance of gemu running

e Run gdb on the right side (must be under jos directory)
Otherwise, your gdb will never attach to jos gemu

27

ACTION — TMUX (Step 1)

e We will use ‘tmux’ to see
o the result of the program ‘pointers’ and
o the source code pointers.c

e Run the following command:
$ tmux

e Then press * (backtick, the key with ~ and on the left side of 1) and % (shift-5)
In short, " + %

28

ACTION — TMUX (Step 2)

e Now you see a split screen

e You can move the cursor back and forth by typing
"+ €& (left arrow)
"+ > (right arrow)

29

Attaching remote gdb to gemu to debug JOS kernel..

Left:
[jangye@flipl (labl) ~/jos$] make gemu-nox-gdb

% %k

*** Now run 'make gdb’'.

% %%k

gemu-system-1386 -nographic -drive file=obj/kern/kernel.img,index=0,media=disk,fo
rmat=raw -serial mon:stdio -gdb tcp::28275 -D gemu.log -S

Right:

[jangye@flipl (labl) ~/jos$] gdbf}

30

[jangye@flipl (labl)

Re Su It of GDB. Attempting to continue with the default 18086 settings.

Let's set a breakpoint at the 0x0000f£F9 in 72 O

$] gdb
+ target remote localhost:28275
warning: A handler for the 0S ABI "GNU/Linux" is not built into this configurati

The target architecture is assumed to be 18086
[fooo:fffa] Oxffffo: 1jmp

$0xf000, $0xed5b

Registers
0x00000000 2x00000000 0x00000663 0x00000000
address 0x7c00 oieoooooee eioooeoooo eiooooooee eiooooeooe
Ox0000F FF0 [] Ox0000f000 0x00000000
>>> b *0x7c00 0x00000000 0x00000000 0x00000000 0x00000000
—— Assembly

0x0000fff0 ? add %al,(%bx,%si)
add %al,(%bx,%si)

Then, continue execution via add %al,(%bx.%si)
add %al, (%bx,%s1)
>>>C add %al,(%bx,%si)

add %al ,(%¥bx,%si)
add %al ,(%bx,%si)
Source
—— Stack

[0] from 0x0000fff0

—— Memory

—— Expressions

+ symbol-file obj/kern/kernel
>>> b *@x7c00
Breakpoint 1 at 0x7c00

>>> CI

You can start Exercise 3 of Lab 1!

Use ‘si’ to follow the function call

Output/messages
[©0:7c00] => 0x7c00: cli

Breakpoint 1, Ox00007c0@ in ??
Registers
0x0000aa55 0x00000000
0x00006120 0x00000000
LIF]
0x00000000

%ax , %ax
%ax ,%ds
%ax,%es
%ax,x%ss
$0x64 ,%al

—— Source

—— Stack

[@] from @x00007c00

Memory
Expressions

>>> ||

If you are curious about x86 assembly

e X86 Assembly Guide: http://flint.cs.yale.edu/cs421/papers/x86-asm/asm.htmi

e Search for instructions on Google
Ox00007ccb ? repnz insl (%dx),

Rpeat String Operation Prefix

[Opcode Mnemonic Description

[F3 6C REP INS m8, DX Input (E)CX bytes from port DX into ES:[(E)DI].

[F3 6D REP INS ml6, DX Input (E)CX words from port DX into ES:[(E)DI].

[F3 6D REP INS m32, DX Input (E)CX doublewords from port DX into ES:[(E)DI].
e —"
repnz x86 !/ Q
All Videos News Shopping Images More Settings Tools

About 16,400 results (0.39 seconds)

REP/REPE/REPZ/REPNE/REPNZ: Repeat String Operation Prefix ...
https://c9x.me/x86/html/file_module_x86_id_279.html| v

x86 assembly tutorials, x86 opcode reference, programming, pastebin with syntax ... and STOS
instructions, and the REPE, REPNE, REPZ, and REPNZ prefixes ...

http://flint.cs.yale.edu/cs421/papers/x86-asm/asm.html

Grading Example

$ make grade

running JOS: make[1]: Warning: File “obj/.deps' has modification time 110 s in the future
make[1]: Warning: File “obj/.deps' has modification time 111 s in the future
make[1]: warning: Clock skew detected. Your build may be incomplete.
(0.9s)

printf:

backtrace count:

backtrace arguments:

backtrace symbols:

backtrace lines:
Score: 50/50
make: warning: Clock skew detected. Your build may be incomplete.

Please ignore ‘Clock skew detected’ messages

Example of the correct output of Lab 1

gemu-system-i386 -nographic -drive file=obj/kern/kernel.img,index=0,media=disk,format=raw -serial mon:stdio -gdb tcp::26078 -D gemu.log
444544 decimal is 1544200 octal!
entering test_backtrace
entering test_backtrace
entering test_backtrace
entering test_backtrace
entering test_backtrace
entering test_backtrace
Stack backtrace:
ebp f010ffl8 eip 0100087 args 00000000 00000000 00000000 00000000 f01009db
kern/init.c:19: test_backtrace+71
ebp f010ff38 eip f0100069 args 00000000 00000001 f010ff78 00000000 f01009db
kern/init.c:16: test_backtrace+4l
ebp f010ff58 eip f0100069 args 00000001 00000002 fO010ff98 00000000 f01009db
kern/init.c:16: test_backtrace+4l
ebp f010ff78 eip f0100069 args 00000002 00000003 f010ffb8 00000000 f01009db
kern/init.c:16: test_backtrace+4l
ebp f010ff98 eip f0100069 args 00000003 00000004 00000000 00000000 00000000
kern/init.c:16: test_backtrace+4l
ebp f010ffb8 eip f0100069 args 00000004 00000005 00000000 00010094 00010094
kern/init.c:16: test_backtrace+4l
ebp f010ffd8 eip f01l000ea args 00000005 0006c880 00000640 00000000 00000000
kern/init.c:43: 1i386_init+77
ebp f010fff8 eip f010003e args 00111021 00000000 00000000 00000000 00000000
kern/entry.S:83: <unknown>+0
leaving test_backtrace
leaving test_backtrace
leaving test_backtrace
leaving test_backtrace
leaving test_backtrace
leaving test_backtrace
Welcome to the JOS kernel monitor! 35
Type 'help' for a list of commands.
(SN |

O NWAWM

A WNKHO

How to Submit Labs?

e All lab submissions turned in via lab repository on CS444/544 gitlab
$ git add .. (add files to git repo)
$ git commit (commit your changes)

e After finishing the lab:
$ git tag labl-final
$ git push
$ git push origin --tags

This will push lab1-final to the repository...

This completes the lab. Inthe jos directory,commit your changeswith git commit , git tag labil-final ,
git push ,and git push origin --tags tosubmityour code.Please do not forget to create and include the file

.labl-extra incase if you finished extra-credit challenge. 36

How to get help from TAs?

e Get on the course Discord server or go to the office hours
e Post your question on the specific lab channels (Lab1 ~ 4)
e Check TA availability, and then send a DM to a TA

Please do not bug our TAs much when it is not their office hours. They could
help you, but that’s their voluntary service.

Please send many thanks to our TAs!

e How to code together with a TA?
o Use the command TA-HELP

37

ta-help

e Sharing a tmux session with your TA (virtual finger-to-finger meeting with TA)

[coe jangye@os2 ~$] ta-help

oA IR AT IS o K [R IRVl / tmp /0Ss2-UvuIUPP @ os2

Press enter to continue...J}

e Copy the tmp string, and send that to your TA via Discord Direct Message
e Press ENTER (you will see a regular tmux session).

e TA can share your tmux session and the two of you can code together!

38

JOS Lab Setup Summary

e Tools:
o QEMU (Intel 32-bit x86 emulator)
o GIT (Source Code Version Control System)
o GDB (Debugger)
o BASH, TMUX, VIM, etc.

e We will use GIT to checkout all code and submit your lab progress!

e Register yourself at: https://gitlab.unexploitable.systems

39

https://gitlab.unexploitable.systems

More Resources

e GIT cheat sheet: https://www.qgit-tower.com/blog/qgit-cheat-sheet
e VIM cheat sheets: https://devhints.io/vim and https://vim.rtorr.com/

e GDB cheat sheets:
https://cs.brown.edu/courses/cs033/docs/quides/gdb.pdf
https://darkdust.net/files/ GDB%20Cheat%20Sheet.pdf

e TMUX cheat sheet:
e https://gist.github.com/MohamedAlaa/2961058
NOTE: the prefix is " in CS444/544 settings

40

https://www.git-tower.com/blog/git-cheat-sheet
https://devhints.io/vim
https://vim.rtorr.com/
https://cs.brown.edu/courses/cs033/docs/guides/gdb.pdf
https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf
https://gist.github.com/MohamedAlaa/2961058

