
CS444/544 Operating Systems II Instructor: Dr. Yeongjin Jang

Name: OSU ID:

CS 444/544 Operating Systems II
Sample Quiz #1

You have 30 minutes to answer the questions in this quiz. In order to receive credit you
must answer the question as precisely as possible.

If you find any ambiguity in the questions, be sure to write down any assumptions you
make. You do not have to list all of the assumptions.

In case if we cannot read your answer nor interpret your answer, we can’t give you
credit.

Write your name and OSU ID on this cover sheet, and make sure you have all pages
with the quiz sheet package: Sample Quiz #1 should have total 3 pages.

NO Internet access, NO communication with other students, and NO consulting to
textbook, slides, laptop, etc.

Section I II Total

Score

Max Score 25 75 100

1

I. Multiple choices (25 pts, 5 pts each)

I-1. Which register you need to control (i.e., set a value to the register) to enable the
protected mode and paging on Intel x86 processor?

a) eax b) CR0 c) CR1 d) CR2 e) CR3

I-2. Which register is the one that the Intel x86 CPU reserves to point the page directory
of the currently running application?

a) eax b) CR0 c) CR1 d) CR2 e) CR3

I-3. From the followings, choose two traps that must be available for Ring 3

a) NMI b) Breakpoint c) Divide Error d) Page Fault e) System Call
FYI, NMI stands for Non-maskable Interrupt.

I-4. To access the physical address 0x212233 in JOS kernel, you may refer to the virtual
address at:

a) 0x212233 b) 0x2122330 c) 0xe0212233 d) 0xf0212233 e) 0xf2122330

I-5. To let CPU know about the address of the current page directory via the register that
you will put the answer for I-2, you need to put the [“choose one from below”] of the
page directory to that register.

a) virtual address b) physical address c) physical address +
KERNBASE

d) virtual address +
KERNBASE

2

II. Segmentation, Paging, and Virtual Memory (75 pts)

II-1. (5pts) In the x86 real mode, accessing an address 0xb800:0001 ([segment:offset])
will access the physical address at

Your answer here: 0xb800 * 16 + 0x0001 = 0xb8001

II-2. (30 pts, 10 pts each) Suppose we have the following Global Descriptor Table
(GDT), and our CPU is in the 80386 Protected Mode (the mode that we use in JOS).
Note that all values are in hexadecimal.

GDT OFFSET BASE LIMIT FLAGS

0x8 0x41410101 0x1000 Assume the flags set as accessible to current execution

0x10 0x42424343 0x2000 Assume the flags set as accessible to current execution

a) Which address will be accessed if you let the CPU read 0x8:0102 ?
Answer: 0x41410101 + 0x0102 = 0x41410203

b) Which address will be accessed if you let the CPU read 0x10:1111 ?
Answer: 0x42424343 + 0x1111 = 0x42425454

c) What will happen if you let the CPU read 0x10:8888 or 0x8:4444 ?
Answer: Offsets are over the limits (0x2000 and 0x1000, respectively) of GDT

entries, so CPU will generate segmentation fault...

3

II-3. (20pts) In JOS, we manage each of physical page by having an array,
struct PageInfo * pages.

Each of element in that array, e.g., pages[i], refers to the i-th physical page and
maintains the number of virtual references to the page. In using this structure, we
sometimes need to get the physical address of the elements of the array, pages. For this
purpose, JOS prepares a function, page2pa(), which you can get the corresponding
physical address of an element of pages.

Now, here is the question for you. The following is a skeleton of the page2pa() function.
Can you fill the blank to implement page2pa()?

Struct PageInfo *pages; // a global variable

physaddr_t page2pa(struct PageInfo *pp) {

return (pp – pages) << PGSHIFT;

}
Hint: (pp – pages) returns the index of pp in the array pages.

4

II-4. (20 pts, 5 pts each) Suppose you have the following page directory and table.

Page Directory
at 0x300000

Top 20 bits Lower 12 bits

...

0x18 0x33220 PTE_P | PTE_U | PTE_W

0x19 0x44221 PTE_P | PTE_U

...

Page Table at
0x33220000

Top 20 bits Lower 12 bits

...

0x20 0x12345 PTE_P | PTE_U | PTE_W

0x21 0x23456 PTE_P | PTE_W

...

Page Table at
0x44221000

Top 20 bits Lower 12 bits

...

0x20 0x34567 PTE_P | PTE_U

0x21 0x45678 PTE_P | PTE_U | PTE_W

...

Please answer the following questions for the address translations in x86 paging.
FYI, (0x18 << 10) == 0x60, (0x19 << 10) == 0x64.
In reverse, (0x6020 >> 10) == 0x18, (0x6420 >> 10) == 0x19.

a) Accessing the virtual address 0x6020333 will access the physical address at: 0x12345333

b) From a user mode, you can perform write on 0x6021345: False, No PTE_U in PT entry (0x21)
True False

c) Accessing the virtual address 0x6421333 will access the physical address at: 0x45678333

d) From a user mode, you can perform write on 0x6421333: False, No PTE_W in PD entry (0x19)
True False

5

