
CS444/544
Operating Systems II

Prof. Sibin Mohan

Spring 2022 | Lec 9: System 
Calls and Page Faults

Adapted from content originally created by: Prof. Yeongjin Jang



User Level [Ring 3]

Recap | System Calls, printf()?

2

KERNEL [Ring 0]

Libraries

4/28/22

printf(“CS444”)

library call in ring 3

sys_write(1,“CS444”,5)

system call from ring 3
Interrupt! Switch from ring 3 à0

do_sys_write(1,“CS444”,5)

kernel function in ring 0
CS444



User Level [Ring 3]

We’re not done with printf() though!

3

KERNEL [Ring 0]

Libraries

4/28/22

printf(“CS444”)

library call in ring 3

sys_write(1,“CS444”,5)

system call from ring 3
Interrupt! Switch from ring 3 à0

do_sys_write(1,“CS444”,5)

kernel function in ring 0
CS444

iret

Interrupt return. ring 0 à3

ret

Return from library call. ring 3 [no switch]



Today’s 
Topic

4

• Privilege separation and call gate

More about System Calls

• OS fault handling and resume execution?
• For what purpose?

• Automatic stack allocation
• Copy-on-write
• Swap

Page Faults

4/28/22



Why have Privilege Separation?
• Security!
• We do not know what application will do
• Dangerous operations

• Flash BIOS, format disk, deleting system files, etc.
• Let only OS access hardware

• Apply access control for hardware resources!
• E.g., only the administrator can format disk

• OS mediates hardware access

5

User Level [Ring 3]

KERNEL [Ring 0]

Libraries

System Calls!

4/28/22



Library vs System Calls
• Library Calls
• APIs available in Ring 3
• Do not include operations in Ring 0
• Cannot access hardware directly

• Could be a wrapper for
• some computation or
• for system calls
• E.g., printf() internally uses write()

6

User Level [Ring 3]

KERNEL [Ring 0]

Libraries

system calls

4/28/22



Library Calls à System Calls

• System Calls
• APIs available in Ring 0
• OS abstraction for hardware interface
• Ring 3 application à Ring 0 operations

7

App/Library OS

printf()

scanf()

send()

sys_write()

sys_read()

sys_send()

Ring 3
[unprivileged]

Ring 0
[privileged]

4/28/22



Library Calls à System Calls

• App shouldn’t call arbitrary function!
• Else privilege separation meaningless

• Apps/libraries can invoke system calls
• But no other kernel functions!

8

App/Library OS

printf()

scanf()

send()

sys_write()

sys_read()

sys_send()

Ring 3
[unprivileged]

Ring 0
[privileged]

bad_func() os_func()

4/28/22



Library Calls à System Calls

• App shouldn’t call arbitrary function!
• Else privilege separation meaningless

• Apps/libraries can invoke system calls
• But no other kernel functions!

9

App/Library OS

printf()

scanf()

send()

sys_write()

sys_read()

sys_send()

Ring 3
[unprivileged]

Ring 0
[privileged]

bad_func() os_func()

GATE!

4/28/22



Secure System Call Design:
Call Gate via Interrupt Handling
• Call gate: a secure method to control access to Ring 0!

10

App/Library

printf()

scanf()

send()

Ring 3
[unprivileged]

OS

sys_write()

sys_read()

sys_send()

Ring 0
[privileged]

sys call gate
[syscall() in JOS]

t
r
a
p
/
s
y
s
c
a
l
l
(
)

sys_write()

sys_read()

sys_send()

fwrite()

in
te

rr
up

t

Security Checks
4/28/22



Call Gates, syscall handling
• Call Gate
• System call invoked 
• only with trap handler
• int $0x30 – in JOS
• int $0x80 – in Linux [32-bit]
• int $0x2e – in Windows [32-bit]

11

User Level [Ring 3]

KERNEL [Ring 0]

Libraries

system calls

int 0x30

4/28/22



Call Gates, syscall handling
• Call Gate
• System call invoked 
• only with trap handler
• int $0x30 – in JOS
• int $0x80 – in Linux [32-bit]
• int $0x2e – in Windows [32-bit]

12

program executionà interrupt à call trap gate à create/store trap frame à load trap handler in mem à execute

Pop context à iret à resume execution
Overheads! 
10s of thousands of cycles!

4/28/22



Call Gates, syscall handling
• Call Gate
• System call invoked 
• only with trap handler
• int $0x30 – in JOS
• int $0x80 – in Linux [32-bit]
• int $0x2e – in Windows [32-bit]

13

program executionà interrupt à call trap gate à create/store trap frame à load trap handler in mem à execute

Pop context à iret à resume execution
Overheads! 
10s of thousands of cycles!

sysenter/sysexit (32-bit)
syscall/sysret (64-bit)
10x faster than ints

4/28/22



Call Gates, syscall handling
• Call Gate
• System call invoked 
• only with trap handler
• int $0x30 – in JOS
• int $0x80 – in Linux [32-bit]
• int $0x2e – in Windows [32-bit]
• sysenter/sysexit (32-bit)
• syscall/sysret (64-bit)

• OS performs checks
• if userspace app/lib is doing a right thing
• Before performing important ring 0 operations

14

User Level [Ring 3]

KERNEL [Ring 0]

Libraries

int 0x30

Security Checks

4/28/22



Protecting Syscalls via Call Gate

• Consider the ‘read()’ system call?
• read(int fd, void *buf, size_t count)
• Read count bytes from a file pointed by fd and store those in buf

• Usage

154/28/22



Protecting Syscalls via Call Gate

• This will overwrite kernel code with your keyboard inputs!!!
• Changing kernel code from Ring 3 is possible!

164/28/22



Use the Call Gate!
• Call gate: a secure method to control access to Ring 0!

17

App/Library

read()

OS

sys_write()

sys_read()

sys_send()

sys call gate
[syscall() in JOS]

t
r
a
p
/
s
y
s
c
a
l
l
(
)

sys_write()

sys_read()

sys_send()

read(0, stack_buffer, 512);

check args!

user space buffer. ALLOW!
4/28/22



Use the Call Gate!
• Call gate: a secure method to control access to Ring 0!

18

App/Library

read()

OS

sys_write()

sys_read()

sys_send()

sys call gate
[syscall() in JOS]

t
r
a
p
/
s
y
s
c
a
l
l
(
)

sys_write()

sys_read()

sys_send()

read(0, kernel_address, 512);

check args!

kernel address. DISALLOW!

Error!

4/28/22



Test

19
4/28/22



Check How System Calls are 
Invoked in Linux Kernel
• Use strace in Linux
• e.g., $ strace /bin/ls

204/28/22



Summary: 
System 
Call / Call 
Gate

• Prevent Ring 3 from accessing hardware directly
• Security reasons!
• OS mediates hardware access via system calls

• System calls à APIs of an OS

• Prevent application from running arbitrary ring 0 operation?
• Call gate

• Modern OSes use call gates to protect system calls
• trap handler à OS applies access control for system call 

214/28/22



Page Faults

224/28/22



Handling Faults 
| Page Fault

• Faulting instruction has not executed [e.g., page fault]

• Resume execution after handling the fault

23
4/28/22



Page Fault: A Case of Handling Faults

• Occurs when paging [address translation] fails
• !(pde & PTE_P) or !(pte & PTE_P)à invalid translation
• Write access but !(pte & PTE_W)à access violation
• Access from user but !(pte & PTE_U)à protection violation

24
4/28/22



Page Fault: an Example

• Accessing a Kernel address from User

254/28/22



Page Fault: What Does CPU Do?

• CPU informs OS à why and where a page fault happened
• CR2: stores the address of the fault
• Error code: stores the reason of the fault 0xf0100064

111

264/28/22



CPU/OS 
Execution 
Example

• User program accesses 0xf0100064

• CPU generates page fault (pte & PTE_U == 0)
• Stores the faulting address in CR2
• Put out an error code
• Calls page fault handler in IDT

• OS: calls page_fault_handler
• Read CR2 [address of the fault, 0xf0100064]
• Read error code [reason of the fault]
• Resolve error [if not possible, destroy the environment]
• Continue user execution

• User: resume instruction in CR2 [or destroyed by the OS]

27
4/28/22



Fault Resume Example:
Stack Overflow
• inc/memlayout.h
• We (initially) allocate one [1] page [4 kb] for the user stack

• If you use a large local variable on the stack
• Stack overflow!

NOT MAPPED!

28

Page Fault!
4/28/22



Allocating New Stack 
Automatically
• Detect such an access? 

• Allocate a new page for the stack automatically?

• Yes!

• ‘Page Fault’

• Observations
• Stack overflow is sequential à access pages adjacent to stack
• We should catch both read/write access à both should fault

294/28/22



Example: New Stack Allocation by 
Fault (User)
• Stack ends at 0xeebfd000
• Suppose the current value of esp [stack] is

• 0xeebfd010

• User program creates a new variable: char buf[32]
• buf = 0xeebfcff0
• Buffer range: 0xeebfcff0 ~ 0xeebfd010

• On accessing buf[0] = ‘1’;
• movb $0x31, (%eax)
• eax = 0xeebfcff0 No translation for 0xeebfc000
• Must allocate 0xeebfc000 ~ 0xeebfd000

30

STACK
0xeebfd000

0xeebfe000
esp

buf No mapping!
0xeebfc000

4/28/22



Example: New Stack Allocation by 
Fault (CPU)
• Lookup page table à no translation!
• Store 0xeebfcff0 in the CR2 register
• Set error code
• “The fault was caused by a page that wasn’t present!”

• Raise page fault exception [interrupt #14] à call page fault handler

31

NOT MAPPED!

4/28/22



Example: New Stack Allocation by 
Fault (OS)

• Interrupt will force CPU to invoke the page_fault_handler()
• Read CR2

• 0xeebfcff0, the page right next to current stack end
• The current stack end is: 0xeebfd000

• Read error code
• “The fault was caused by a page that wasn’t present!”

• Let’s allocate a new page for the stack!

32

STACK
0xeebfd000

0xeebfe000

No mapping!

4/28/22



Example: New Stack Allocation using Fault

• Allocate a new page for the stack
• struct PageInfo *pp = page_alloc(ALLOC_ZERO);

• Get a new page, and wipe it to zero all its contents
• page_insert(env_pgdir, pp, 0xeebfc000, PTE_U|PTE_W);

• Map a new page to that address!

• iret!

33

STACK
0xeebfd000

0xeebfe000

0xeebfc000

NEW STACK PAGE

4/28/22



New Stack Allocation Using Fault 
(User-Return)

• Original access: buf[0] = ‘1’;
• movb $0x31, (%eax)
• eax = 0xeebfcff0 [No translation for 0xeebfc000]

• Execute instruction after page fault handled: buf[0] = ‘1’;
• movb $0x31, (%eax)
• eax = 0xeebfcff0

• Continue to execute rest of the loop

34

0xeebfd000

0xeebfe000

0xeebfc000
STACK

STACK

Translation is Valid!

Automatic allocation 
of user stack using 
page faults and page 
fault handlers!

4/28/22



Other Useful Examples of Using
Page Fault (in Modern OSes)
• Copy-on-Write [CoW]
• Technique to reduce memory footprint

354/28/22

R R

W W

W W

~ 80 MB

R R

W W

W W

~ 80 MB

R R

W W

W W

~ 80 MB

R R

W W

W W

~ 80 MB

R R

W W

W W

~ 80 MB

R R

W W

W W

~ 80 MB

R R

W W

W W

~ 80 MB

R R

W W

W W

~ 80 MB

R R

W W

W W

~ 80 MB

R R

W W

W W

~ 80 MB

R R

W W

W W



Copy On Write [CoW]
• Share pages read-only
• Create a private copy when the first write access happens

364/28/22

R R

W W

W W

~ 80 MB



Copy On Write [CoW]
• Share pages read-only
• Create a private copy when the first write access happens

374/28/22

R R

R R

R R

~ 80 MB



Copy On Write [CoW]
• Share pages read-only
• Create a private copy when the first write access happens

384/28/22

R R

R R

R R

~ 80 MB

modify



Copy On Write [CoW]
• Share pages read-only
• Create a private copy when the first write access happens

394/28/22

R R

W R

R R

~ 80 MB

modify

W



Copy On Write [CoW]
• Share pages read-only
• Create a private copy when the first write access happens

4/28/22

R R

W R

R R

~ 80 MB

modify

W



Copy On Write [CoW]
• Share pages read-only
• Create a private copy when the first write access happens

4/28/22

R R

W R

R R

~ 80 MB

W

Tab 1



Copy On Write [CoW]
• Share pages read-only
• Create a private copy when the first write access happens

4/28/22

R R

W R

R R

~ 80 MB

W

Tab 1

Tab 2

Fork!



Memory Swapping

• Use disk as extra space for physical memory
• Limited RAM Size: 16/32/64 GB?
• We have a bigger storage: 1T SSD Hard Disk, cloud storage, etc.
• Store some ‘currently unused but will be used later’ pages in the disk
• Store only the active part of data in memory 

434/28/22



Copy-on-Write (CoW) to Reduce 
Memory Footprint
• os2 server
• Will run many /bin/bash, /usr/bin/gdb, /usr/bin/tmux, etc.

• Each of you will run those programs!
• Do we need to have 826 copies of the same program in memory?

• Build an OS to efficiently manage programs and minimize memory usage?
• Share physical pages of the same program!

Count number of processes running bash, tmux, and gdb
4/28/22



A Program’s Memory Layout [ELF]

.text

.rodata

.data

.bss .text [R-X]

.rodata [R--]

.data [RW-]

.bss [RW-]

454/28/22

• Code area. Read-only and executable

• Data area, Read-only and not executable

• Data area, Read/Writable (not executable)
• Initialized by some values

• uninitialized data
• Data area, Read/Writable (not executable)
• Initialized as 0



Multiple Copies of Same Program

4/28/22 46

.text [R-X]

.rodata [R--]

.data [RW-]

.bss [RW-]

Static Binary

.text [R-X]

.rodata [R--]

.data [RW-]

.bss [RW-]

Load into memory

.text [R-X]

.rodata [R--]

.data [RW-]

.bss [RW-]

Second instance?



Sharing by Read-only
• Set page table to map to same physical address to share contents

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 1

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 2

474/28/22

.text [R-X]

.rodata [R--]

.data [RW-]

.bss [RW-]

Create Page Directory 
and copy entries!



OK for Read-only Sections
• How can Process 1 write into .bss?

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 1

Write Page fault!

4/28/22

.text [R-X]

.rodata [R--]

.data [RW-]

.bss [RW-]



Page Fault 
Handler

• Read CR2

• An address that is in the page cache

• Fault from a shared location!
• Read Error code

• Write on read-only memory
• Process requires a private copy! 

[we mark if CoW is required in PTE]

• ToDo: create a writable, private copy for that process!
• Map a new physical page [page_alloc, page_insert]
• Copy contents
• Mark as read/write
• Resume

4/28/22 49



Copy on Write
• How can Process 1 write into .bss?

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 1

504/28/22

.text [R-X]

.rodata [R--]

.data [RW-]

.bss [RW-]
Write Page fault!



Copy on Write
• How can Process 1 write into .bss?

.text (R-X)

.rodata (R--)

.data (R--)

.bss (RW-)

Process 1

514/28/22

.text [R-X]

.rodata [R--]

.data [RW-]

.bss [RW-]
Write Page fault!

.bss copy (RW-)

m
ap



Copy on Write
• How can Process 1 write into .bss?

.text (R-X)

.rodata (R--)

.data (R--)

.bss (RW-)

Process 1

524/28/22

.text [R-X]

.rodata [R--]

.data [RW-]

.bss [RW-]

Write.bss copy (RW-)

m
ap



Copy on Write
• How can Process 1 write into .bss?

.text (R-X)

.rodata (R--)

.data (R--)

.bss (RW-)

Process 1

534/28/22

.text [R-X]

.rodata [R--]

.data [RW-]

.bss [RW-]

.bss copy (RW-)

m
ap

.text (R-X)

.rodata (R--)

.data (R--)

.bss (RW-)

Process 2



Benefits?

4/28/22 54

Better performance! 

• reduce time for copying 
contents already in 
physical memory (page 
cache)

More efficient!

• reduce physical 
memory use

• sharing code/read-only 
data among multiple 
processes

• 1,000,000 processes, 
requiring only 1 copy of 
.text/.rodata

Additional benefits

• Can support sharing of 
writable pages [unless 
modified]

• Can create private 
pages seamlessly on 
write

using page faults!



Memory Swapping

• Memory Hierarchy

DISK
(TB? PB?)

Main Memory
(GB)

Cache
[MB]

Reg 
[KB]

In
cr

ea
sin

g 
Sp

ee
d

Co
st

 [$
$]

SI
ZE

554/28/22



Challenge
• Suppose you have 8GB of main memory

• Can you run a program that is 16GB in size?
• Yes, you can manually load it one part at a time
• we do not use all of data at the same time

• OS do this seamlessly [transparently] for application?

56



Memory Swapping
Virtual Memory Physical Memory

0xf0200000

0xf0100000

pgdir

PT

PT

574/28/22



Memory Swapping
Virtual Memory Physical Memory

0xf0200000

0xf0100000

pgdir

PT

PT

4/28/22

DISK 0xf0200000

Access
Page Fault!



Swapping | OS

• Page fault handler
• Read CR2 
• get address [0xf0200000]
• Read error code

• If error code à page not present fault and
• faulting page is stored in the disk
• Lookup disk if it swapped out 0xf0200000 of this environment [process]

• This must be per process because virtual address is per-process resource

• Load that page into physical memory
• Map it and then continue!

4/28/22 59



Memory Swapping
Virtual Memory Physical Memory

0xf0200000

0xf0100000
Allocate new page

pgdir

PT

PT

4/28/22

DISK 0xf0200000

Access
Page Fault!

READ from DISK

create new map
Continue!



Page Fault 
| Summary

4/
28

/2
2

61

• Generated for memory errors [during paging]
• A recoverable exception
• User program may resume the execution

• Is useful for implementing
• Automatic stack allocation
• Copy-on-write (will do in Lab4)
• Swapping



Backup Slides

624/28/22



Check How Library Calls are Invoked

• Use ltrace in Linux
• e.g., $ ltrace /bin/ls

634/28/22


