Prof. Sibin Mohan

Spring 2022 | Lec 9: System
Calls and Page Faults

content originally created by: Prof. Ye

Recap | System Calls, print£f()?

int main() {
User Level [Ring 3] printf("CS444");

\
€ LS

KERNEL [Ring 0]

printf (“CS444")

library call in ring 3

sys _write(1l,”“CS444",5)

system call from ring 3

Interrupt! Switch from ring 3 20

do sys write(1l,“CS444",5)

kernel function in ring 0

4/28/22

we’re not done with printf() though!

printf (“CS444")

library call in ring 3

sys _write(1l,"“CS444",5)
system call from ring 3

Interrupt! Switch from ring 3 20

do sys write(1l,“CS444",5)

kernel function in ring 0

4/28/22

int main() {
User Level [Ring 3] : printf("CS444");

Return from library call. ring 3 [no switch]
Libraries

More about System Calls

* Privilege separation and call gate

TO d ay,S Page Faults

TO p | C e OS fault handling and resume execution?
e For what purpose?
e Automatic stack allocation
e Copy-on-write
e Swap

why have Privilege Separation?

* Secu rity! User Level [Ring 3]

* We do not know what application will do
* Dangerous operations
* Flash BIOS, format disk, deleting system files, etc.

e Let only OS access hardware
* Apply access control for hardware resources!

* E.g., only the administrator can format disk

* OS mediates hardware access System Calls!

4/28/22 5

Library vs System Calls

° Libra ry CaIIs User Level [Ring 3]
* APIs available in Ring 3 -
* Do not include operations in Ring O g S
e Cannot access hardware directly -

* Could be a wrapper for
* some computation or

* for system calls !

* E.g., printf () internallyuseswrite() KERNEL\mg 0]

NAME

read - read from a file descriptor —
|l ® P
#include <unistd.h> ° ‘..

ssize_t read(int fd, void *buf, size_t count);

Library Calls - System Calls

* System Calls App/Library 0s
* APIs available in Ring 0
e OS abstraction for hardware interface printf () » sys_write()

* Ring 3 application = Ring 0 operations

\ 4

scanf () sys_ read()

send ()

Illlliiiillll
4/28/22 : [unprivileged]

\ 4

sys_send()

Ring 0
[privileged]

Library Calls - System Calls

* App shouldn’t call arbitrary function! App/Library 05
* Else privilege separation meaningless
printf () » sys_write()
. . . scanf () » sys read()
» Apps/libraries can invoke system calls
* But no other kernel functions!
send () » Sys _send()

bad func() \“ os_func()

Ring 0
[privileged]

Illlliiﬁillll
4/28/22 . [unprivileged]

Library Calls - System Calls - GATE!

v
* App shouldn’t call arbitrary function! App/Library ok
* Else privilege separation meaningless . |
printf () : -| > sys_write()
. . . scanf () ? _____ % sys read()
» Apps/libraries can invoke system calls I
* But no other kernel functions! ---14--- .
send () = > sys_send()

bad func()

428/22 . [unprivileged] [privileged]

Secure System Call Design:
Call Gate via Interrupt Handling

 Call gate: a secure method to control access to Ring O!

App/Library sys cal gate (0}
[syscall) inJOS]
printf () —_ sys write()
| =y
45- (8]
S ?
9 0
= ~
= o,
I 1 B
send () ' P sys_send()
fwrite()

Ring 3 . Ring 0
Security Checks

Call Gates, syscall handling

e Call Gate

 System call invoked
* only with trap handler ‘. M
e int $0x30-inJOS

e int $0x80 —in Linux [32-bit]
e int $S0x2e —in Windows [32-bit]

int 0x30

User Level [Ring 3]

o

KERNEL [Ring 0]

system calls J

=1=)

4/28/22

Call Gates, syscall handling

e Call Gate

e System call invoked
* only with trap handler
e int $0x30-inJOS
e int $0x80 —in Linux [32-bit]
e int $S0x2e —in Windows [32-bit]

[e (e e e e e e e e e e e e e e ey

program executior = interrupt! = call trap gate 9 create/store trap frame 9 load trap handler in mem! = execute

Pop contexti - iret 9 resume execution |

Overheads!
10s of thousands of cycles!

4/28/22 12

Call Gates, syscall handling

e Call Gate

 System call invoked
* only with trap handler
e int $0x30—inJOS sysenter/sysexit (32-bit)
. int $0x80 —in Linux [32-bit] syscall/sysret (64-bit)
e int S0x2e —in Windows [32-bit] 10x faster than ints

program executior = interrupt! = call trap gate 9 create/store trap frame i load trap handler in mem; - execute

| Pop contexti - iret 9 resume execution |

Overheads!
10s of thousands of cycles!

4/28/22 13

Call Gates, syscall handling

 Call Gate
 System call invoked

* only with trap handler G M
e int $0x30-inJOS

e int $0x80 —in Linux [32-bit]

e int $S0x2e —in Windows [32-bit]

* sysenter/sysexit (32-bit) int 0x30

* syscall/sys ret (64'bit) Security Checks -1--="""" KERNEL|[Ring O]

User Level [Ring 3]

* OS performs checks

v ,
* if userspace app/lib is doing a right thing g I

e Before performing important ring 0 operations
! 14

Protecting Syscalls via Call Gate

* Consider the ‘read ()’ system call?
* read(int fd, void *buf, size t count)

...............

..............

* Usage

char buf[512];

read(@, buf, 512);

4/28/22 15

Protecting Syscalls via Call Gate

char kernel_address = KERNBASE + 0x100000;

read(@, buf, 512);

* This will overwrite kernel code with your keyboard inputs!!!
e Changing kernel code from Ring 3 is possible!

4/28/22 16

Use the Call Gate!

 Call gate: a secure method to control access to Ring O!

4/28/22

App/Library

read()

read (0, istack_buffer

sys call gate
[syscall() inJOS]

sys _write()

oS

sys write()

sys_send()

trap/syscall()

WEYVARE user space buffer. ALLOW!

sys _read()

sys_send()

Use the Call Gate!

 Call gate: a secure method to control access to Ring O!

4/28/22

App/Library

read()

I
I
I
I

¥

sys _write()

sys_ read()

sys_send()

trap/syscall()

read(O,Ekernel_address

oS

sys write()

sys _read()

sys_send()

y 512); WEUEHELLEIN 1K)

char buf[512];

int ret = read(0@, buf, 512); [blU69057@b1U69057-Vm-j05 $] ./a
asdfzxcv

Read to stack memory returns: 9

Read to kernel memory returns: -1
Reason for the error:: Bad address

printf("Read to stack memory returns: ", ret);

ret = read(@, (void *) Oxffffffff01000000, 512);

printf("Read to kernel memory returns: S rer):;
perror("Reason for the error:");

4/28/22

Check How System Calls are
Invoked In Linux Kernel

* Use strace in Linux
eeg., S strace /bin/ls

read(@, "asdfzxcv\n", 512) =)

fstat(l, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 2), ...}) =0
brk(NULL) = @x18¢c5000

brk(0x18e6000) 0x18e6000

write(l, "Read to stack memory returns: S 32) = 32

read(@, Oxffffffff01000000, 512) -1 EFAULT

write(l, "Read to kernel memory returns: -"..., 34) = 34

dup(2) 3

Fentl (5 W ELGETEL) = @Ox8001

close(3) =0

write(2, "Reason for the error:: Bad addre"..., 35Reason for the error:: Bad address

4/28/22 20

Prevent Ring 3 from accessing hardware directly

S ummarv: * Security reasons!
y' * OS mediates hardware access via system calls
Prevent application from running arbitrary ring O operation?
G ate * Call gate

Modern OSes use call gates to protect system calls
 trap handler = OS applies access control for system call

System calls = APIs of an OS

4/28/22 21

Handling Faults

| Page Fault

* Faulting instruction has not executed [e.g., page fault]

* Resume execution after handling the fault

23

Page Fault: A Case of Handling Faults

e Occurs when paging [address translation] fails
* ! (pde & PTE P) or! (pte & PTE P) -2 invalid translation
* Write access but ! (pte & PTE W) = access violation
* Access from user but ! (pte & PTE U) -2 protection violation

4/28/22
/28/ 24

Page Fault: an Example

e Accessing a Kernel address from User

int main() {
char *kernel_memory = (char*)0xf0100000;

kernel_memory[100] = '!'

TRAP frame at 0xf01c0000

edi
esi
ebp
oesp
ebx
edx
ecx
eax
es

ds

eip
cs
flag
esp
Ss

0x00000000
0x00000000
Oxeebfdfdo
Oxefffffdc
0x00000000
0x00000000
0x00000000
Oxeec00000
0x----0023
0x----0023

0x00800039
0x----001b
0x00000096
Oxeebfdfbh8
0x----0023

Page Fault

[user, write, protection]

[00001000] free env 00001000

Page Fault: What Does CPU Do?

* CPU informs OS = why and where a page fault happened
* CR2: stores the address of the fault

31

* Error code: stores the reason of the fault rage autvinuatsesress OF0 100064
TRAP frame at 0xf01c0000
edi 0x00000000
esi 0x00000000 31 15 543210
ebp OxeebfdfdO Reserved |9 Reserved 2(5|2|5F|
oesp Oxefffffdc =

ebx 0x00000000
edx 0x00000000
ecx 0x00000000
eax Oxeec00000 W/R 0 The access causing the fault was a read.

es

P 0 The fault was caused by a non-present page.
1 The fault was caused by a page-level protection vio

Ox----0023 1 The access causing the fault was a write.

ds 0x----0023 u/s 0 A supervisor-mode access caused the fault.
trap 0x0000000e Page Fault 1 A user-mode access caused the fault.

S s o wascvod titbetan 1 brsors
elp Ux00cO0US5S paging-structure entry.
(o 0x----001b
flag 0x00000096
esp 0Oxeebfdfb8
ss 0x----0023 PK
[00001000] free env 00001000

I'D 0 The fault was not caused by an instruction fetch.
The fault was caused by an instruction fetch.

-

The fault was not caused by protection keys.
There was a protection-key violation.

- O

SGX

- O

The fault is not related to SGX.
The fault resulted from violation of SGX-specific access-control
requirements.

kernel_memory[100] = "!';

CPU/OS
Execution

Example

User program accesses 0xf0100064

CPU generates page fault (pte & PTE U == 0)
e Stores the faulting address in CR2
* Put out an error code
* Calls page fault handler in IDT

OS: calls page_fault_handler
 Read CR2 [address of the fault, 0x£0100064]
* Read error code [reason of the fault]
* Resolve error [if not possible, destroy the environment]
* Continue user execution

User: resume instruction in CR2 [or destroyed by the OS]

27

Fault Resume Example:
Stack Overflow

* inc/memlayout.h
* We (initially) allocate one [1] page [4 kb] for the user stack

- NOT MAPPED!

* |f you use a large local variable on the stack int func() {
char buf[8192];

* Stack overflow! Page Fault! buf[0] = '1';

4/28/22)8 }

Allocating New Stack
Automatically

* Detect such an access?
* Allocate a new page for the stack automatically?

* Yes!

* ‘Page Fault’

e QObservations

 Stack overflow is sequential = access pages adjacent to stack
* We should catch both read/write access = both should fault

29

Example: New Stack Allocation by
Fault (User) SRl

for(int 1=0; 1<32; ++1) {

mm) buf[i] = '1' + 1;

e Stack ends at Oxeebfd000) }
* Suppose the current value of esp [stack] is Oxeebfe000
* OxeebfdO010 esp
Oxeebfd000

* User program creates a new variable: char buf[32]

No mapping!
* buf = OxeebfcffO OxeebfcOo00 F————==========-

e Buffer range: Oxeebfcff0 ~ 0Oxeebfd010

buf

* Onaccessingbuf[0] = ‘1’;
* movb $0x31, (%eax)
* eax = Oxeebfcff0 No translation for Oxeebfc000
* Must allocate Oxeebfc000 ~ Oxeeb£fd000

4/28/22 30

Example: New Stack Allocation by
Fault (CPU)

* Lookup page table = no translation!
e Store Oxeebfcf£f0 in the CR2 register

* Set error code
* “The fault was caused by a page that wasn’t present!”

* Raise page fault exception [interrupt #14] - call page fault handler

- NOT MAPPED!

Example: New Stack Allocation by

Fault (OS)

Interrupt will force CPU to invoke the page fault handler()

Read CR2
] Oxeebfe000
* Oxeebfcff0, the page right next to current stack end
* The current stack end is: Oxeebfd000 Oxeebfd000

No mapping!

Read error code
* “The fault was caused by a page that wasn’t present!”

Let’s allocate a new page for the stack!

4/28/22 32

Example: New Stack Allocation using Fault

Allocate a new page for the stack

struct PageInfo *pp = page alloc (ALLOC ZERO) ; Oxeebfe000
. T - STACK
* Get a new page, and wipe it to zero all its contents

Oxeebfd000
page insert (env pgdir, pp, Oxeebfc000, PTE U|PTE W) ;
* Map a new page to that address! Oxeebfc000
iret!

NEW STACK PAGE

4/28/22 33

New Stack Allocation Using Fault
(User-Return)

* Original access: buf [0] = ‘1';

* movb $0x31, (%eax)

] Oxeebfe000
e cax = Oxeebfcff0 [No translation for 0Oxeebfc000]
» Execute instruction after page fault handled: buf [0] = ‘1’ ; Oxeebfd000

STACK
* movb $0x31, (%eax)
Oxeebfc000
* cax = Oxeebfcff0 Translation is Valid!

e Continue to execute rest of the loop

int func() { Automatic allocation
char buf[32];

for(int 1=0; 1<32; ++i) { of user stack using
—abuf[i] = '1' + i; page faults and page
} fault handlers!

34

Other Useful Examples of Using
Page Fault (in Modern OSes)

* Copy-on-Write [CoW]
e Technique to reduce memory footprint

4/28/22

Copy On Write [CoW]

* Share pages read-only
* Create a private copy when the first write access happens

~ 80 MB

4/28/22 36

Copy On Write [CoW]

* Share pages read-only
* Create a private copy when the first write access happens

4/28/22 37

Copy On Write [CoW]

* Share pages read-only
* Create a private copy when the first write access happens

~ 80 MB

4/28/22 38

Copy On Write [CoW]

* Share pages read-only
* Create a private copy when the first write access happens

4/28/22 39

Copy On Write [CoW]

* Share pages read-only
* Create a private copy when the first write access happens

4/28/22

Copy On Write [CoW]

* Share pages read-only
* Create a private copy when the first write access happens

~ 80 MB
Tab1

4/28/22

Copy On Write [CoW]

* Share pages read-only

* Create a private copy when the first write access happens

4/28/22

Tab 2

~ 80 MB
Tab1

Fork!

Memory Swapping

» Use disk as extra space for physical memory

 Limited RAM Size: 16/32/64 GB?

* We have a bigger storage: 1T SSD Hard Disk, cloud storage, etc.
 Store some ‘currently unused but will be used later’ pages in the disk
 Store only the active part of data in memory

4/28/22 43

Copy-on-Write (CoW) to Reduce
Memory Footprint

* 0S2 server
 Will run many /bin/bash, /usr/bin/gdb, /usr/bin/tmux, etc.

e Each of you will run those programs!
* Do we need to have 826 copies of the same program in memory?

* Build an OS to efficiently manage programs and minimize memory usage?

* Share physical pages of the same program!

[jangye@os2 ~$] ps aux | grep bash | wc -1

826
[jangye@os2 ~$] ps aux | grep tmux | wc -1

128
[jangye@os2 ~$] ps aux | grep gdb | wc -1

90
Count number of processes running bash, tmux, and gdb

A Program’s Memory Layout [ELF]

.text * Code area. Read-only and executable bss [RW-]

.rodata Data area, Read-only and not executable .data [RW-]

Data area, Read/Writable (not executable)
Initialized by some values .rodata [R--]

uninitialized data text [RX]
Data area, Read/Writable (not executable) HEX

Initialized as 0

.data

.bss

4/28/22 45

Multiple Copies of Same Program
.bss [RW-] .bss [RW-] ‘, .bss [RW-]
.data [RW-] ' .data [RW-]
rodata [R--] srodat@R--] rodata [R--]

text [R-X] text [R-X]

Load into memory Second instance? Static Binary

text [R-X]

4/28/22 16

Create Page Directory
and copy entries!

Sharing by Read-only
* Set page table to map to same physical address to share contents

Process 1 Process 2

.bss (R--)

.data (R--)

.rodata (R--)

text (R-X)

4/28/22 47

OK for Read-only Sections

e How can Process 1 write into .bss?

Process 1
.bss [RW-]
T T bss(R-) —— write | Page fault!
.data [RW-]
T data (R--)
.rodata [R--]

D .rodata (R--)

T T text(RX)

4/28/22

Read CR2

An address that is in the page cache

Fault from a shared location!

Read Error code
* Write on read-only memory

P age Fa u | t * Process requires a private copy!
H a N d | e r [we mark if CoW is required in PTE]

ToDo: create a writable, private copy for that process!

* Map a new physical page [page alloc, page insert]
* Copy contents

* Mark as read/write

* Resume

4/28/22 49

Copy on Write

e How can Process 1 write into .bss?

.bss [RW-]

.data [RW-]

.rodata [R--]

‘_

4/28/22

Write

Process 1
R —— .bss (R--)
T data (R--)
T ———— 1 rodata (R--)

50

text (R-X)

Page fault!

Copy on Write

e How can Process 1 write into .bss?

.bss [RW-]

.data [RW-]

.rodata [R--]

‘-

4/28/22

-
T data (R--)
T | odata (R--)

51

text (R-X)

.bss copy

’bz
&
Process 1

—

Write

Page fault!

Copy on Write

e How can Process 1 write into .bss?
R
&
Process 1 /

.bss copy (RW-) «~— write

.bss [RW-]
T T———— bss(RW-)
.data [RW-]
T data (R--)
.rodata [R--]

T ———— 1 rodata (R--)

T text (RX)

4/28/22 52

Copy on Write

e How can Process 1 write into .bss?

.bss [RW-]

.data [RW-]

4/28/22

.bss copy (RW-)

Q
>
'
Process 1

Process 2

.bss (RW-]

—_——
—_——
—_——
—_——
—_——
—_——
—_——
—_—
—_——
—_—

™ ——

—_—
—_——
—_——
—_——

—_——

——

—_— —_——
——

.bss (RW-)

e ——
—_——
—_——

.data (R--)

———
—_——)

.rodata (R--)

text (R-X)

e reduce time for copying
contents already in
physical memory (page
cache)

Benefits?

e reduce physical
memory use

sharing code/read-only
data among multiple
processes

e 1,000,000 processes,
requiring only 1 copy of
.text/.rodata

using page faults!

Additional benefits

e Can support sharing of
writable pages [unless
modified]

e Can create private
pages seamlessly on
write

Memory Swapping

* Memory Hierarchy

Reg
[KB]

Cache
[MB]

Main Memory
(GB)

DISK

(TB? PB?)

4/28/22 55

Increasing Speed

Cost [SS]

SIZE

e Suppose you have 8GB of main memory

e Canyou run a program that is 16GB in size?
* Yes, you can manually load it one part at a time
* we do not use all of data at the same time

* OS do this seamlessly [transparently] for application?

4/28/22 56

Memory Swapping

Virtual Memory

0xf0200000

0xf0100000

e
—
-
—
-
—
-

4/28/22

pgdir

57

PT

Physical Memory

Memory Swapping

Virtual Memory

PT

Physical Memory

Page Fault!

AcCCESS mumpp 0xf0200000

pgdir

e
—
-
—
-
—
o

0xf0100000 \

DISK 0xf0200000

4/28/22

Swapping | OS

Page fault handler
 Read CR2
e getaddress [0x£0200000]
* Read error code

If error code > page not present fault and

faulting page is stored in the disk

Lookup disk if it swapped out 0xf0200000 of this environment [process]
* This must be per process because virtual address is per-process resource

Load that page into physical memory

Map it and then continue!

4/28/22 59

Memory Swapping

Virtual Memory

PT

Physical Memory

Page Fault!

AcCCESS mumpp 0xf0200000
Continue!

pgdir

_______ \ Allocate new page
0xf0100000 r-~"~ \

DISK READ from DISK

4/28/22

Generated for memory errors [during paging]

A recoverable exception

User program may resume the execution

Page Fault
| Summary

Is useful for implementing
e Automatic stack allocation
* Copy-on-write (will do in Lab4)
* Swapping

Backup Slides

4/28/22

Check How Library Calls are Invoked

e Use 1trace in Linux
eeg., $ ltrace /bin/ls

read(@, "asdfzxcv\n", 512)
printf("Read to stack memory returns: %d"..., 9)

read(® <no return ...>
error: maximum array length seems negative

, mnmin , 512)

printf("Read to kernel memory returns: %"..., -1)

perror("Reason for the error:"Reason for the error:: Bad address
) = <void>

+++ exited (status @) +++

4/28/22 63

