
CS444/544
Operating Systems II

Prof. Sibin Mohan

Spring 2022 | Lec7: User and Kernel Spaces

Adapted from content originally created by: Prof. Yeongjin Jang

So far, we’ve seen…

2

• Boot
sequence

Bootloader

• Memory
Management

Kernel

4/21/22

What is an
Operating System [OS]?

34/21/22

What is an OS?

4

• Body of software
• Allows users (and programs) to use the low-level hardware
• Share memory, enable interactions with devices, etc.

• Manages sharing of resources across multiple programs
• Provides additional features like security, isolation, etc.

• In charge of ensuring system operates correctly and efficiently

Multiple programs sharing hardware resources, efficiently and isolated from each other
4/21/22

What’s next?

5

• Boot
sequence

Bootloader

• Memory
Management

Kernel • Chrome
• Vim
• Slack…

?

4/21/22

Where can these programs run?

• Kernel?

6

Pros Cons

4/21/22

User Space

7

• Boot
sequence

Bootloader

• Memory
Management

Kernel • Chrome
• Vim
• Slack…

User Space

4/21/22

User Space [Ring 3]

Issues that need to be resolved
1. How do we manage multiple programs?
2. How can user programs access hardware?
3. Can a ring 3 program use kernel services?
4. Switching between kernel/user spaces?
5. How does the kernel regain control?

8

User Level [Ring 3]

KERNEL [Ring 0]

Libraries

4/21/22

How does a User Space Program Work?

9

User Level [Ring 3]

KERNEL [Ring 0]

Libraries

4/21/22

User Level [Ring 3]

How does a User Space Program Work?

10

KERNEL [Ring 0]

Libraries

4/21/22

User Level [Ring 3]

Kernel [Ring 0]
• Executes with highest privilege level (Ring 0)
• Configures system (devices, memory, etc.)
• Manages hardware resources
• Disk, memory, network, video, keyboard, etc.

• Manages other jobs
• Processes and threads

• Serves as trusted computing base (TCB)
• Sets privilege
• Restrict other jobs from doing something bad

11

KERNEL [Ring 0]

Libraries

4/21/22

KERNEL [Ring 0]

User Level [Ring 3]

User [Ring 3]
• Runs with a restricted privilege [Ring 3]
• The privilege level for running an application

• Most regular applications run at this level

• Cannot access kernel memory
• Can only access pages set with PTE_U

• Cannot talk directly to hardware devices
• Kernel must mediate the access

12

Libraries

4/21/22

User Level [Ring 3]

So, what happens with that printf()?

13

KERNEL [Ring 0]

Libraries

4/21/22

printf(“CS444”)

library call in ring 3

sys_write(1,“CS444”,5)

system call from ring 3
Interrupt! Switch from ring 3 à0

do_sys_write(1,“CS444”,5)

kernel function in ring 0
CS444

Library Call
• A function call within the application’s memory space

• All regular C/C++ API calls are library calls
• fwrite(), printf(), time(), srand(), etc.
• Calls that you did not implement but prepared by others [in ring 3]

• Ring 3 à Ring 3

4/21/22 14

User Level [Ring 3]

Libraries

printf(“CS444”)

library call in ring 3

System Call
• A function call from applications requesting an OS service
• System APIs
• I/O access [read(), write(), send(), recv(), etc.]
• Process creation, destruction [exec(), fork(), kill(), etc.]
• Other hardware access

• Ring 3 à Ring 0

4/21/22 15

User Level [Ring 3]

KERNEL [Ring 0]

Libraries
sys_write(1,“CS444”,5)

system call from ring 3

User Level [Ring 3]

We’re not done with printf() though!

16

KERNEL [Ring 0]

Libraries

4/21/22

printf(“CS444”)

library call in ring 3

sys_write(1,“CS444”,5)

system call from ring 3
Interrupt! Switch from ring 3 à0

do_sys_write(1,“CS444”,5)

kernel function in ring 0
CS444

iret

Interrupt return. ring 0 à3

ret

Return from library call. ring 3 [no switch]

How does the kernel
execute an application?

4/21/22 17

4/21/22 1818

User Level [Ring 3]

KERNEL [Ring 0]

Libraries

4/21/22 1919

KERNEL [Ring 0]

boot process

memory management

setup user environment

User Level [Ring 3]

Starting Up

[lab1]

[lab2]

[lab3]

4/21/22 2020

KERNEL [Ring 0]

boot process

memory management

setup user environment

User Level [Ring 3]

Process Setup

[lab1]

[lab2]

[lab3]

1. Create a process
[environment for running

an application]

Assign a separate virtual
memory space:
• new page directory
• new page table

4/21/22 2121

KERNEL [Ring 0]

boot process

memory management

setup user environment

User Level [Ring 3]

Process Setup

[lab1]

[lab2]

[lab3]

1. Create a process
[environment for running

an application]

2. Load application code

4/21/22 2222

KERNEL [Ring 0]

boot process

memory management

setup user environment

User Level [Ring 3]

Process Setup

[lab1]

[lab2]

[lab3]

1. Create a process
[environment for running

an application]

2. Load application code

3. Execute!

4/21/22 2323

KERNEL [Ring 0]

boot process

memory management

setup user environment

User Level [Ring 3]

Process Setup

[lab1]

[lab2]

[lab3]

1. Create a process
[environment for running

an application]

2. Load application code

3. Execute!

iret

Transfer control to user application!

But, how does the kernel
get back control?

4/21/22 24

4/21/22 2525

KERNEL [Ring 0]

User Level [Ring 3]

Current State | Application/Process Executing

User Level [Ring 3]

Let’s revisit printf()

26

KERNEL [Ring 0]

Libraries

4/21/22

printf(“CS444”)

library call in ring 3

sys_write(1,“CS444”,5)

system call from ring 3
Interrupt! Switch from ring 3 à0

do_sys_write(1,“CS444”,5)

kernel function in ring 0
CS444

Is System Call the
ONLY Way to
return execution
to the Kernel?

• No!

• If that was the case, we would have lots of problems
• E.g., kernel waits until an application executes a system call
• What if an application never invokes a system call????

• OS can never get back control

4/21/22 27

4/21/22 28

System call
[ring 3 à ring 0]

Interrupt
[usually runs in ring 0,
sometimes runs in ring 3]

Fault/Exception
[runs in ring 0]

Switch from
User to
Kernel
Space

Current State

4/21/22 29

KERNEL [Ring 0]

User Level [Ring 3]
• Only one application
• Wasted resources
• What if you want multiple applications?

• How will you do it? What mechanism?

Multiple Applications

4/21/22 30

KERNEL [Ring 0]

User Level [Ring 3]
• Ways to switch between the two?
• Remember: CPU runs one at a time!

• Vim, Slack or Kernel

• Wait for Vim to invoke a system call
• But what if it never invokes one?

Simplest
Method |

Cooperative
Multitasking

• Yield execution when a process completes

4/21/22 31

KERNEL [Ring 0]

User Level [Ring 3]

yield()

Simplest
Method |

Cooperative
Multitasking

• Yield execution when a process completes

4/21/22 32

KERNEL [Ring 0]

User Level [Ring 3]

yield()

Simplest
Method |

Cooperative
Multitasking

• Yield execution when a process completes

4/21/22 33

KERNEL [Ring 0]

User Level [Ring 3]

iret

schedule()

Simplest
Method |

Cooperative
Multitasking

• Yield execution when a process completes

4/21/22 34

KERNEL [Ring 0]

User Level [Ring 3]

To infinity
and beyond…

• What if a user process executes,

4/21/22 35

4/21/22 36

Preemptive Multitasking

4/21/22 37

KERNEL [Ring 0]

User Level [Ring 3]

KERNEL [Ring 0]

User Level [Ring 3]

Preemptive Multitasking | Timers

38

KERNEL [Ring 0]

User Level [Ring 3]
• A (hardware) clock timer
• CPU uses it to generate periodic interrupts

clock timer

Preemptive Multitasking | Timers

39

KERNEL [Ring 0]

User Level [Ring 3]
• A (hardware) clock timer
• CPU uses it to generate periodic interrupts
• Forces kernel execution at regular intervals
• E.g., every 1000 Hz [1 ms]

clock timer

Preemptive Multitasking | Timers

40

• A (hardware) clock timer
• CPU uses it to generate periodic interrupts
• Forces kernel execution at regular intervals
• E.g., every 1000 Hz [1 ms]

• Kernel then makes scheduling decisions
• and mediates other resources

clock timer

KERNEL [Ring 0]

User Level [Ring 3]

iret

schedule()

Preemptive Multitasking | Timers

41

• A (hardware) clock timer
• CPU uses it to generate periodic interrupts
• Forces kernel execution at regular intervals
• E.g., every 1000 Hz [1 ms]

• Kernel then makes scheduling decisions
• and mediates other resources

clock timer

KERNEL [Ring 0]

User Level [Ring 3]

Preemptive Multitasking | Timers

42

• A (hardware) clock timer
• CPU uses it to generate periodic interrupts
• Forces kernel execution at regular intervals
• E.g., every 1000 Hz [1 ms]

• Kernel then makes scheduling decisions
• and mediates other resources

clock timer

KERNEL [Ring 0]

User Level [Ring 3]

time quantum

Preemptive Multitasking | Timers

43

• A (hardware) clock timer
• CPU uses it to generate periodic interrupts
• Forces kernel execution at regular intervals
• E.g., every 1000 Hz [1 ms]

• Kernel then makes scheduling decisions
• and mediates other resources

• Timer guarantees execution in kernel
clock timer

KERNEL [Ring 0]

User Level [Ring 3]

time quantum

How are Popular
OSes doing?

4/21/22 44From Wikipedia

4/21/22 45

Traps • Any event that forces CPU to stop
and execute kernel code
• trap handler

4/21/22

46

Types of Traps

Interrupts

• Hardware
interrupt [clock
timer, network
packet, etc.]

• Software
interrupt
[System calls]

Faults

• An error that OS
can recover
from and
continue
execution [e.g.,
page fault]

Exceptions

• An error that OS
cannot recover
from

• must stop the
current
execution [e.g.,
divide by zero]

Many others, please refer to the Intel Manual
Chapter 6 (https://os.unexploitable.systems/r/ia32/IA32-3A.pdf)

https://os.unexploitable.systems/r/ia32/IA32-3A.pdf

4/21/22 48

Traps

Hardware
Interrupts

[asynchronous]

Software
Interrupts

[synchronous]

Exceptions
[synchronous]

Faults
[synchronous,
recoverable]

Hardware Interrupt

• Method for hardware to interact with CPU
• Example: a network device

• NIC: “Hey, CPU, I received a new packet, so wake up the OS to handle it”
• CPU: calls the interrupt handler for network device in ring 0 [set by the OS/driver]

• Asynchronous [can happen any time during execution]
• It’s a request from a hardware, so can happen any time

• Read
• https://en.wikipedia.org/wiki/Intel_8259
• https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller

https://en.wikipedia.org/wiki/Intel_8259
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller

Software Interrupt

• A piece of software mean to run code in ring 0 [e.g., int $0x30]
• Tells CPU, "run the interrupt handler at 0x30”

• Synchronous [caused by running an instruction, e.g., int $0x30]

• E.g.
• System calls [int $0x30 à system call in JOS]
• Signals in UNIX/Linux [SIGSEGV, SIGKILL, etc.]

Exceptions/Faults

• Exceptions
• Error caused by the current execution [may or may not be recoverable]
• Examples of non-recoverable exception [cannot continue the execution]

• Triple fault
• Divide by zero
• Breakpoint

• Fault
• An error caused by current execution that may be recoverable so execution can continue
• Examples

• Page fault
• Double fault

• Synchronous [an execution of an instruction can generate this]
• E.g., divide by 0

Handling Interrupt/Exceptions

• Interrupt Descriptor Table [IDT]
Interrupt Number Code address

0 (Divide error) 0xf0130304

1 (Debug) 0xf0153333

2 (NMI, Non-maskable Interrupt) 0xf0183273

3 (Breakpoint) 0xf0223933

4 (Overflow) 0xf0333333

…

8 (Double Fault) 0xf0222293

…

14 (Page Fault) 0xf0133390

... …

0x30 (syscall in JOS) 0xf0222222

User Level [Ring 3]

Opening a file

KERNEL [Ring 0]

Libraries

4/21/22

open(filename)

Interrupt ox30 [syscall in JOS]

Interrupt Number Code address

0 (Divide error) 0xf0130304

1 (Debug) 0xf0153333

2 (NMI, Non-maskable Interrupt) 0xf0183273

3 (Breakpoint) 0xf0223933

4 (Overflow) 0xf0333333

…

8 (Double Fault) 0xf0222293

…

14 (Page Fault) 0xf0133390

... …

0x30 (syscall in JOS) 0xf0222222

Consult IDT

run kernel

What the
kernel does
[for open()]

4/21/22 54

Access arguments
from Ring 3

Need to
check its
security

Access disk to open
a file

Check
permissions

Return a file
descriptor iret

Summary
• A user program can invoke a system call

• to ‘request’ OS to run code at a higher privileged level [ring 0]
• System calls [synchronous interrupt]

• A hardware informs the CPU that data is ready for the OS
• Hardware interrupt [asynchronous interrupt]

• A program generates an unrecoverable error [e.g. a triple fault]
• A non-recoverable exception, synchronous

• A program generates a page fault
• Fault [recoverable, synchronous error]
• (we will learn more about this in coming lectures)

55

Additional Reading

• Types of traps:
• Intel manual Chapter 6
• https://os.unexploitable.systems/r/ia32/IA32-3A.pdf

• Hardware Interrupts
• https://en.wikipedia.org/wiki/Intel_8259
• https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller

4/21/22 56

https://os.unexploitable.systems/r/ia32/IA32-3A.pdf
https://en.wikipedia.org/wiki/Intel_8259
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller

Backup Slides

4/21/22 57

User/Kernel Switch

• User/Kernel Space Switch
• How the OS kernel run a program in Ring 3

(user level)?
• How the OS kernel takes back the execution

to Ring 0 (kernel)?

• System call
• How a user level program can let OS do a

service for them?

58

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

58
4/21/22

Process Context Switch

• Process Context Switch
• How our CPU can run multiple applications at

the same time?

• 3 design candidates
• Not switching
• Co-operative Multitasking
• Preemptive Multitasking

59

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

59
4/21/22

User/Kernel Switch

• Interrupt

• System calls

• Fault / Exceptions

604/21/22

A High-level Overview of
User/Kernel Execution

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

send() A library call in ring 3

sys_send()
A system call,
From ring 3 to ring 0

do_sys_send()

61

Interrupt!

4/21/22

A High-level Overview of
User/Kernel Execution

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

send() A library call in ring 3

sys_send()
A system call,
From ring 3 to ring 0

do_sys_send()

iret (ring 0 to ring 3)

ret (ring 3)

624/21/22

