Adapted from content originally created by: Prof. Yeongjin Jang [

So far, we’ve seen...

- e Kernel
e Boot

sequence ° Memory
Management

e Bootloader IS 4

4/21/22 2

Whatsds an
Operating System [OS]?

What 1s an OS?

* Body of software

* Allows users (and programs) to use the low-level hardware
* Share memory, enable interactions with devices, etc.

* Manages sharing of resources across multiple programs
* Provides additional features like security, isolation, etc.

* In charge of ensuring system operates correctly and efficiently

Multiple programs sharing hardware resources, efficiently and isolated from each other

What’s next?

4/21/22

/
e Boot
sequence

e Bootloader

—

e Memory
Management

o Chrome
e \V/im
e Slack...

J

.

where can these programs run?

e Kernel?

Pros ___________________[Cons

4/21/22 6

User Space

4/21/22

-
e Boot
sequence

(. 0| oader

—

e Memory
Management

o Chrome
e \V/im
e Slack...

J

User Space [Ring 3]

User Level [Ring 3]

: \
C PHE s

KERNEL [Ring O]

DR

4/21/22 8

Issues that need to be resolved

How do we manage multiple programs?
How can user programs access hardware?
Can aring 3 program use kernel services?
Switching between kernel/user spaces?
How does the kernel regain control?

A S

How does a User Space Program Work?

4/21/22

User Level [Ring 3]

RlJERES

int main() {
printf(''CS444");

}

How does a User Space Program Work?

4/21/22

User Level [Ring 3]

RJERES

int main() {
printf('CS444");

}

Kernel [Ring 0]

User Level [Ring 3] * Executes with highest privilege level (Ring 0)

* Configures system (devices, memory, etc.)

\
@
c M ‘S‘ * Manages hardware resources

* Disk, memory, network, video, keyboard, etc.

* Processes and threads

* Serves as trusted computing base (TCB)

KERNEL [Ring 0] o
» Sets privilege

e Restrict other jobs from doing something bad

al=}

4/21/22 11

User [Ring 3]

User Level [Ring 3] * Runs with a restricted privilege [Ring 3]
* The privilege level for running an application

: \
G M ‘S‘ * Most regular applications run at this level
e Cannot access kernel memory
* Can only access pages set with PTE_U

KERNEL [Ring 0]

e Cannot talk directly to hardware devices

 Kernel must mediate the access

DR

4/21/22 12

So, what happens with that print£()?

int main() {
User Level [Ring 3] printf("CS444");

\
€ LS

KERNEL [Ring 0]

printf (“CS444")

library call in ring 3

sys write(1l,”“CS444",5)

system call from ring 3

Interrupt! Switch from ring 3 20

do sys write(1l,“CS444",5)

kernel function in ring 0

4/21/22

13

Library Call

* A function call within the application’s memory space

* All regular C/C++ API calls are library calls
e fwrite(), printf(), time(), srand(), etc.
e Calls that you did not implement but prepared by others [in ring 3]

User Level [Ring 3]

printf (“CS444")
library call in ring 3
Libraries
4/21/22 14

* Ring 3 2 Ring 3

-

System Call

* A function call from applications requesting an OS service

* System APIs

* |/O access [read(), write(), send(), recv(), etc]
* Process creation, destruction [exec (), fork(), kill(), etc.]

 Other hardware access
User Level [Ring 3]

* Ring 3 =2 Ring 0 M

sys _write(1l,"“CS444",5)

system call from ring 3
15

A

. KERNEL [Ring O]

we’re not done with printf() though!

printf (“CS444")

library call in ring 3

sys _write(1l,"“CS444",5)
system call from ring 3

Interrupt! Switch from ring 3 20

do sys write(1l,“CS444",5)

kernel function in ring 0

4/21/22

int main() {
User Level [Ring 3] : printf("CS444");

Return from library call. ring 3 [no switch]
Libraries

16

How does the kernel
execute an application?

2222222

User Level [Ring 3]

¢ /.

o

KERNEL [Ring 0]

DR

4/21/22 18

Starting Up

User Level [Ring 3]

[lab3] setup user environment

a KERNEL [Ring 0]

[lab2] memory management

[labl] boot process

IIGF

4/21/22 19

Process Setup

User Level [Ring 3]

1. Create a process
[environment for running
an application]

Assign a separate virtual
memory space:

* new page directory

* new page table

[lab3] setup user environment

a KERNEL [Ring 0]

IIGF

4/21/22 20

[lab2] memory management

[labl] boot process

Process Setup

User Level [Ring 3]

1. Create a process
[environment for running
an application]

2. Load application code

[lab3] setup user environment

a KERNEL [Ring 0]

[lab2] memory management

[labl] boot process

IIGF

4/21/22 21

Process Setup

User Level [Ring 3]

1. Create a process
[environment for running
an application]

2. Load application code

3. Execute!

[lab3] setup user environment

a KERNEL [Ring 0]

[lab2] memory management

[labl] boot process

IIGF

4/21/22 22

Process Setup

User Level [Ring 3]

1. Create a process
[environment for running
an application]

2. Load application code

Transfer control to user application!

3. Execute!

[lab3] setup user environment

KERNEL [Ring 0]

IIGF

4/21/22 23

[lab2] memory management

[labl] boot process

But, how does the kernel
get back control?

2222222

Current State | Application/Process Executing

User Level [Ring 3]

y P

KERNEL [Ring 0]

DR

4/21/22 25

Let’s revisit printf()

int main() {
User Level [Ring 3] printf("“CS444");

v Ky

KERNEL [Ring 0]

printf (“CS444")

library call in ring 3

sys _write(1l,“CS444",5)

system call from ring 3

Interrupt! Switch from ring 3 20

do sys write(1l,“CS444",5)

kernel function in ring 0

4/21/22

s System Call the <No!

ONLY Wway to
: * |f that was the case, we would have lots of problems
return execution s e SO oTP
e E.g., kernel waits until an application executes a system call

tO th C Ke e | ? What if an application never invokes a system call??7??

* OS can never get back control

4/21/22 27

Switch from
User to
Kernel
Space

System call
[ring 3 = ring 0]

Interrupt

[usually runs in ring O,
sometimes runs in ring 3]

Fault/Exception

[runs in ring O]

4/21/22 28

Ccurrent State

, * Only one application
User Level [Ring 3]

* Wasted resources

M aﬁ What if you want multiple applications?

 How will you do it? What mechanism?

KERNEL [Ring O]

DR

4/21/22 29

Multiple Applications

User Level [Ring 3]

y P

e
v

A

KERNEL [Ring O]

DR

4/21/22

Ways to switch between the two?

Remember: CPU runs one at a time!
* Vim, Slack or Kernel

Wait for Vim to invoke a system call

But what if it never invokes one?

30

* Yield execution when a process completes

S i m p | e St User Level [Ring 3]

Method | Maﬁ E

Cooperative

L~

Multitasking

KERNEL [Ring O]

4/21/22 31

* Yield execution when a process completes

S i m p | e St User Level [Ring 3]

Method | M E

Cooperative

L~

Multitasking

Oo KERNEL [Ring O]

4/21/22 32

* Yield execution when a process completes

S i m p | e St User Level [Ring 3]

Method |
Cooperative

o

schedule ()

Multitasking

4/21/22 33

* Yield execution when a process completes

S i m p | e St User Level [Ring 3]

Method | M aﬁ E

Cooperative

Multitasking

KERNEL [Ring O]

4/21/22 34

To Infinity
and beyond...

* What if a user process executes,

1T main() {
while(1);

4/21/22

»

No such yield()

int main() {
while(1);

¥

Preemptive Multitasking
/\

User Level [Ring 3] User Level [Ring 3]

2 7 A5
1

& =

A

KERNEL [Ring 0] KERNEL [Ring 0]

EREE BRI

4/21/22

Preemptive Multitasking | Timers

User Level [Ring 3]

v P

o

KERNEL [Ring O]

clock timer

ele=)]

e A (hardware) clock timer

* CPU uses it to generate periodic interrupts

Preemptive Multitasking | Timers

, A (hardware) clock timer
User Level [Ring 3]

CPU uses it to generate periodic interrupts

m S * Forces kernel execution at regular intervals
* E.g., every 1000 Hz [1 ms]

e
\

A

Q KERNEL [Ring 0]

clock timer 39

Preemptive Multitasking | Timers

User Level [Ring 3] * A (hardware) clock timer

* CPU uses it to generate periodic interrupts

* Forces kernel execution at regular intervals
* E.g., every 1000 Hz [1 ms]

schedule () * Kernel then makes scheduling decisions
 and mediates other resources

KERNEL [Ring 0]

clock timer 40

Preemptive Multitasking | Timers

User Level [Ring 3]

A &

‘ \
<

KERNEL [Ring O]

clock timer

CERRE

A (hardware) clock timer

CPU uses it to generate periodic interrupts
Forces kernel execution at regular intervals
E.g., every 1000 Hz [1 ms]

Kernel then makes scheduling decisions
 and mediates other resources

Preemptive Multitasking | Timers

A (hardware) clock timer
User Level [Ring 3]

CPU uses it to generate periodic interrupts

A\ - : .
M ‘aa S * Forces kernel execution at|regular intervals

-’ * E.g., every 1000 Hz [1 ms]

Kernel then makes scheduling decisions
 and mediates other resources

KERNEL [Ring O]

@—@ . Q - time quantum

clock timer

Preemptive Multitasking | Timers

User Level [Ring 3]

A &

‘ \
<

KERNEL [Ring O]

clock timer

cERRE

A (hardware) clock timer

CPU uses it to generate periodic interrupts

Forces kernel execution at|regular intervals

E.g., every 1000 Hz [1 ms]

Kernel then makes scheduling decisions
 and mediates other resources

v

time quantum

Timer guarantees execution in kernel

How are Popular
OSes doing?

4/21/22

Operating System

L

Amiga OS

FreeBSD

Linux kernel before 2.6.0

Linux kernel 2.6.0—2.6.23

Linux kernel after 2.6.23

classic Mac OS pre-9

Mac OS 9

macOS

NetBSD

Solaris

Windows 3.1x

Windows 95, 98, Me

Windows NT (including 2000, XP, Vista, 7,

and Server)

Preemption

Some

Half

o
v

T * Any event that forces CPU to stop
ra p S and execute kernel code

* trap handler

Types of Traps
N

e Hardware e An error that OS e An error that OS
interrupt [clock can recover cannot recover
timer, network from and from
packet, etc.] continue e must stop the

e Software execution [e.g., current
interrupt page fault] execution [e.g.,
[System calls] divide by zero]

Many others, please refer to the Intel Manual

4/21/22 Chapter 6 (https://os.unexploitable.systems/r/ia32/1A32-3A.pdf) a7

https://os.unexploitable.systems/r/ia32/IA32-3A.pdf

Traps

Hardware Exceptions
Interrupts [synchronous]
[asynchronous]
Faults
Software [synchronous,
Interrupts recoverable]

[synchronous]

4/21/22 48

Hardware Interrupt

e Method for hardware to interact with CPU

* Example: a network device
* NIC: “Hey, CPU, I received a new packet, so wake up the OS to handle it”

e CPU: calls the interrupt handler for network device in ring 0 [set by the OS/driver]

e Asynchronous [can happen any time during execution]
* It’s a request from a hardware, so can happen any time

 Read
* https://en.wikipedia.org/wiki/Intel 8259
* https://en.wikipedia.org/wiki/Advanced Programmable Interrupt Controller

4/21/22 49

https://en.wikipedia.org/wiki/Intel_8259
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller

Software Interrupt

* A piece of software mean to run code inring 0 [e.g., int $0x30]
e Tells CPU, "run the interrupt handler at 0x30”

e Synchronous [caused by running an instruction, e.g., int $0x30]

* E.g.
e System calls [int SOx30 = system call in JOS]
 Signals in UNIX/Linux [SIGSEGV, SIGKILL, etc.]

4/21/22 50

Exceptions/Faults

* Exceptions
* Error caused by the current execution [may or may not be recoverable]
* Examples of non-recoverable exception [cannot continue the execution]
* Triple fault
e Divide by zero
* Breakpoint

* Fault

* An error caused by current execution that may be recoverable so execution can continue
* Examples

* Page fault
e Double fault

* Synchronous [an execution of an instruction can generate this]

 E.g., divide by O
51

Handling Interrupt/Exceptions

* Interrupt Descriptor Table [IDT]

Interrupt Number

O (Divide error)

1 (Debug)

2 (NMI, Non-maskable Interrupt)
3 (Breakpoint)

4 (Overflow)

8 (Double Fault)

14 (Page Fault)

0x30 (syscall in JOS)

Code address IDTR Register
47 16 15 0
0xf0130304 IDT Base Address [IDT Limit
0xf0153333
0xf0183273 l Interrupt
Descriptor Table (IDT)
0xf0223933 = e
Interrupt #n (n-1)+8
.I:
Oxf0333333 ¢ &
Intermapt #3
0xf0222293 e "
Interrupt #2 8
Gate for
> Interrupt #1 0
0xf0133390 > °
Figure 6-1. Relationship of the IDTR and IDT
0xf0222222

Opening a file

open(filename)

Interrupt ox30 [syscall in JOS]

4/21/22

User Level [Ring 3]

1€

o

T

Interrupt Number

0 (Divide error)

1 (Debug)

2 (NMI, Non-maskable Interrupt)
3 (Breakpoint)

4 (Overflow)

8 (Double Fault)

KERNEL [Ring O]

o

«Tul

14 (Page Fault)

1 kerilel

=== 0x30 (syscall in JOS)

BRI

Consult IDT

Code address
0xf0130304
0xf0153333
0xf0183273
0xf0223933
0xf0333333

0xf0222293

0xf0133390

0xf0222222

What the
kernel does

[for open()]

Access arguments
from Ring 3

Access disk to open
a file

Return a file
descriptor

Need to
check its
security

Check
permissions

iret

4/21/22 54

A user program can invoke a system call
* to ‘request’ OS to run code at a higher privileged level [ring O]
» System calls [synchronous interrupt]

A hardware informs the CPU that data is ready for the OS
* Hardware interrupt [asynchronous interrupt]

* A program generates an unrecoverable error [e.g. a triple fault]
* A non-recoverable exception, synchronous

* A program generates a page fault
* Fault [recoverable, synchronous error]
* (we will learn more about this in coming lectures)

4/21/22 55

Additional Reading

e Types of traps:
* Intel manual Chapter 6
e https://os.unexploitable.systems/r/ia32/1A32-3A.pdf

* Hardware Interrupts
e https://en.wikipedia.org/wiki/Intel 8259
e https://en.wikipedia.org/wiki/Advanced Programmable Interrupt Controller

4/21/22 56

https://os.unexploitable.systems/r/ia32/IA32-3A.pdf
https://en.wikipedia.org/wiki/Intel_8259
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller

Backup Slides

4/21/22

User/Kernel Switch

» User/Kernel Space Switch

* How the OS kernel run a program in Ring 3
(user level)?

* How the OS kernel takes back the execution
to Ring O (kernel)?

e System call

 How a user level program can let OS do a
service for them?

4/21/22 58

User Level (Ring 3)

D

Libraries

OS Kernel (Ring 0)

st

Process Context Switch

User Le/vguﬁhga-)\
* Process Context Switch

e How our CPU can run multiple applications at () B
the same time?

* 3 design candidates ioraries

* Not switching
e Co-operative Multitasking
* Preemptive Multitasking

OS Kernel (Ring 0)

4/21/22 59

User/Kernel Switch

* Interrupt
e System calls

 Fault / Exceptions

4/21/22 60

A High-level Overview of
User/Kernel Execution

User Level (Ring 3)

int main() {

send(4, "I have a question...",

}

send() A library call in ring 3

Libraries

A system call,
sys_send() From ring 3toring 0

: Interrupt!
OS Kernel (Ring 0)

do_sys_send()

4/21/22

A High-level Overview of
User/Kernel Execution

User Level (Ring 3)

D

int main() {

send(4, "I have a question...",

}

ret (ring 3) send() A library call in ring 3

Libraries

. . . A system call,
iret (ring O to ring 3) sys_send() From ring 3 to ring 0

OS Kernel (Ring 0)

do_sys_send()

4/21/22

