

HOW JOS WO rksf) QEMU: an emulator,

/ it has virtualized CPU/HDD/GPU/NIC, etc.

0s2 server (your account)

QEMU JOS TERMINAL

\:

* Follow the guidelines from lab1 tutorial
e Setup your lab environment on 0s2 server

* Register at: gitlab.unexploitable.systems

Starti ng | ab * Register an SSH key
. * Fork repository and Change visibility = private
Assignments PR ; ror
e Get familiar to tools such as
* GDB
 TMUX

https://sibin.github.io/teaching/cs444-osu-operating-systems/spring 2022/lab.html

April 1, 2022 3

https://sibin.github.io/teaching/cs444-osu-operating-systems/spring_2022/lab.html

Solving Lab
Assignments

Docs » Lab » Lab 1: Bootinga PC View page source

Lab 1: Booting a PC

« Handed out: Thursday, Sep 23, 2021.
e Due: 11:59 pm, Monday, Oct 11, 2021.

Introduction

This lab is split into three parts. The first part concentrates on getting familiarized with x86 assembly language, the QEMU
x86 emulator, and the PC's power-on bootstrap procedure. The second part examines the boot loader for our kernel, which
residesinthe boot/ directoryofthe jos/ tree.Finally, the third part delves into the initial template for our kernel itself,

named JOS, which resides inthe kernel/ directory.

Software Setup

The files you will need for this and subsequent lab assignments in this course are distributed using the Git version control
system. To learn more about Git, take a look at the Git user’s manual, or, if you are already familiar with other version control
systems, you may find this CS-oriented overview of Git useful.

You can access the repository via the course GitLab server, and you can start with forking this repository to your own
namespace.

Read lab guidelines thoroughly and follow the instructions

Exercise 3. Take a look at the lab tools guide, especially the section on GDB commands. Even if you're familiar with GDB,
this includes some esoteric GDB commands that are useful for OS work.

Set a breakpoint at address 0x7c00, which is where the boot sector will be loaded. Continue execution until that
breakpoint. Trace through the code in boot/boot .5 , using the source code and the disassembly file obi/boot/boot .asm to
keep track of where you are. Also use the x/i command in GDB to disassemble sequences of instructions in the boot
loader, and compare the original boot loader source code with both the disassembly in ob;/boot /boot asm and GDB.

Traceinto bootmain() in boot/main.c ,andtheninto readsect() .ldentify the exact assembly instructions that

correspond to each of the statementsin reagsect() . Trace through the rest of reassect() and back out into

bootmain() ,and identify the begin and end of the for loop that reads the remaining sectors of the kernel from the disk.
Find out what code will run when the loop is finished, set a breakpoint there, and continue to that breakpoint. Then step
through the remainder of the boot loader.

K> backtrace
Stack backtrace:
ebp f010ff78 eip fOl008ae args 00000001 fOlOff8c ©00OOEEEO f@110580 OOOEOOOO
kern/monitor.c:143: monitor+106
ebp f010ffd8 eip f0100193 args 00000000 000Olaac OOOOOE60 OEOEEOEL OOOEOEOE
kern/init.c:49: i386_init+59
ebp fOl10fff8 eip f010003d args 00000000 0000000 EEOffff 10cf9a00 0ROOffff
kern/entry.S:70: <unknown>+@

K>

Lab Assignments

Lab tutorial videos/slides are supplementary to the lab guideline text
e VIDEO: https://www.youtube.com/watch?v=rj3pVybg2CA
* Slides: https://sibin.github.io/teaching/cs444-osu-operating-systems/spring 2022/l/tutoriall labsetup.pdf

 CODE/DEBUG
* Write your code by following the guideline/tutorial videos
* Debug your code using gdb

* ENGAGE - questions and help others during office hours and on Discord!

April 1, 2022 5

https://www.youtube.com/watch?v=rj3pVybg2CA
https://sibin.github.io/teaching/cs444-osu-operating-systems/spring_2022/l/tutorial1_labsetup.pdf

Office Hours

MON

Sultan-In Peraon Office Hours
09:30 - 11:30

Avery Stauber In-Person Office Hours

11:30 - 13:30

0S Il Instructor Office Hours [Sibin]
14:00 - 16:00

Jacob Eckroth Discord Office Hours
16:00 - 18:00

Sultan-Discord Office Hours
18:00 - 20:00

TUE

Avery Stauber Discord Office Hours
11:30 - 13:30

Christian Herinckx Discord Office
Hours
13:30 - 15:30

OS Il Class Lecture
16:00 - 17:30

WED

0S Il Lab Recitation Section [Jacob,]
10:00 - 11:50
Owen Hall 101

0S Il Lab Recitation Section [Sultan,
Avery]

12:00 - 13:50

Owen Hall 101

0S Il Lab Recitation Section
[Peiyuan,Sultan]

14:00 - 15:50

Owen Hall 101

Peiyuan Chen Discord Office Hour
20:00 - 22:00

THU FRI

0S Il Lab Recitation Section
[Jacob,Avery]

10:00 - 11:50

Batcheller Hall 150

0S Il Lab Recitation Section [Peiyuan,
Christian]

12:00 - 13:50

Bexell Hall 207

Christian Herinckx In-Person Office Jacob Eckroth In-Person Office
Hours Hours
14:00 - 16:00 14:00 - 16:00

OS Il Class Lecture
16:00 - 17:30

Peiyuan Chen Office Hour
16:00 - 18:00

Pay it Forward

* We only have 5 full GTAs for 200+ students

* There could be long latency to get your queries answered

* There are many ways you can get help quickly

e 1. Post your questions on the ‘labX’ channel [e.g., lab1l for lab1 questions]
e 2. DM TAs for their office hours [LOTS of office hours!]
e 3. Post your questions on CANVAS ‘discussion’

N o
p ﬁLSEZEfZL—};:K; :E:Z T
We need your help, so please help others if you know ’ /,' \Q
how to handle the questions posted on Discord/CANVAS // \ T L\\‘
) @ ¢ ¥ o9 ,‘ >

April 1, 2022 7

Some Issues
and Problem
Solving

April 1, 2022

Failed to bind
socket: Address S kill-gemu
already in use

%k %k %k

*** Use Ctrl-a x to exit qemu
%k >k %k

qemu-system-1i386 -nographic -drive file=obj/kern/kernel.img,index=0,media=disk, f

ormat=raw -serial mon:stdio -gdb tcp::29007 -D gemu.log
qemu-system-i386: -gdb tcp::29007: Failed to bind socket: Address already in use

make: *** [qemu-nox] Error 1
[coe jangye@os2 (labl) ~/jos$] |

: [coe_jangye@os2 (labl) ~/jos$] kill-gemu

I — e I I l u pkill: killing pid 8876 failed: Operation not permitted
pkill: killing pid 27893 failed: Operation not permitted
pkill: killing pid 55242 failed: Operation not permitted
pkill: killing pid 55441 failed: Operation not permitted
pkill: killing pid 84173 failed: Operation not permitted
pkill: killing pid 89136 failed: Operation not permitted
pkill: killing pid 104933 failed: Operation not permitted
pkill: killing pid 112678 failed: Operation not permitted
pkill: killing pid 132572 failed: Operation not permitted

¢ k|” a" running gemu Instances pkill: killing pid 211668 failed: Operation not permitted
. pkill: killing pid 227128 failed: Operation not permitted
* Only your instances! © pkill: killing pid 245304 failed: Operation not permitted

pkill: killing pid 272435 failed: Operation not permitted
pkill: killing pid 272493 failed: Operation not permitted
pkill: killing pid 273868 failed: Operation not permitted

* Please ignore the error message pkill: killing pid 292464 failed: Operation not permitted
pkill: killing pid 295167 failed: Operation not permitted

* Trying to kill others’ instances pkill: killing pid 308600 failed: Operation not permitted
pkill: killing pid 319294 failed: Operation not permitted
[coe_jangye@os2 (labl) ~/jos$] make gemu-nox
k ok k

*** Use Ctrl-a x to exit qemu

Kk k

gemu-system-i386 -nographic -drive file=obj/kern/kernel.img, index=0,media=disk, f
ormat=raw -serial mon:stdio -gdb tcp::29007 -D gemu.log

444544 decimal is XXX octal!

entering test_backtrace

entering test_backtrace

entering test backtrace

entering test_backtrace

10

, * Your tmux/vim/other apps are working on files that
Device or our make script is trying to delete

Resource Bu SY... * Killing all tmux/vim sessions will resolve this
* Make sure that you saved all your work!

[coe jangye@os2 (labl) ~/jos$] make grade

make clean

make[1l]: Entering directory " /nfs/stak/users/coe_jangye/jos'
rm -rf obj .gdbinit jos.in qemu.log

rm: cannot remove ‘obj/boot/.nfs00000000b4434e8600000025': Device or resource busy
make[l]: *** [clean] Error 1

make[1l]: Leaving directory " /nfs/stak/users/coe_jangye/jos'

'make clean' failed. HINT: Do you have another running instance of J0S?

make: *** [grade] Error 1

Killing tmux and vim instances

* To kill tmux, run:
$ kill-all-tmux
A\ | Am Devloper
* Killing vim (editor) instances
S ps aux | grep vim | grep your u

Always enjoy seeing someone
trying to exit Vim for the first time.

This command will show your vim instances Lady Gaga @

AAAAAAAAAAAAAHHHHHRHRGRGRGRRRGUR
BHJB
EORWPSOJWPJORGWOIRGWSGODEWPGOHE

You can kill it selectively by running:
$ kill -9 [pid of wvim]

0924QU8T63095JRGHWPEO9UJOPWHRGW

Or
$ pkill -9 vim

To kill all vim instances

Add ~/bin to PATH in your *shrc

* We use a special version of gemu-system-i386
* For students who typed ‘n’ during .bashrc installation,

* Please add ~/bin to your PATH environmental variable
* export PATH=SPATH:~/bin

* This will remove the errors such as

*kx

*** Error: Couldn't find a working QEMU executable.
**% Is the directory containing the qemu binary in your PATH

**% or have you tried setting the QEMU variable in conf/env.mk?
L2 2 3

April 1, 2022 13

Readings, Slides, and Videos are Available from the course Website

https://sibin.github.io/teaching/cs444-osu-operating-systems/spring 2022/index.html

lecture slides

April 1, 2022

Mar 28

Tuesday Wednesday
Mar 29 last year’s video Mar 30
LEC 1: Course Intro SLIDES Watch 1:
Watch 1: Lecture #1|OLD VIDEO Tutorial 1
Study, Lab 1: Bootinga PC VIDEO
Read: Textbook SLIDES
Read: at&t asm GDB tutorial1 tutorial2 cheat-
sheet

Read: tmux cheatsheet (ctrl-b -> backtick) tmux-
cheat-sheet

Read: Missing Semester of CS

First day of class

14

https://sibin.github.io/teaching/cs444-osu-operating-systems/spring_2022/index.html

Bootin

April 1, 2022

What happens when
you turn on your
computer/mobile
phone/device?

16

Five [Basic]
Steps of

Boot
Process

April 1, 2022

i}

Power up

Power On Self Test [POST]

Finding a boot device

Load the operating system

Transfer control

17

April 1, 2022

AMIBIOS(C)2018 American Megatrends, Inc.
ASUS ROG MAXIMUS XI HERO (WI-FI) ACPI BIOS Revision 0602
CPU: Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz

Speed: 3600MHZ

Total Memory: 32768MB (DDR4-2133)

USB Devices total: O Drive, 1 Keyboard, 1 Mouse, 1 Hub

Detected Devices...
SATAGG_S: Samsung SSD 860 EVO 1TB
SATABG_6: TOSHIBA HDHE1S50

M.2_1: Samsung SSD 970 EVO S00GB

Please enter setup to recover BIOS setting.
After setting up Intel(R) Optane Memory or the RAID configuration was built,

SATA Mode Selection must be changed to RAID mode to avoid unknown issues.
Press F1 to Run SETUP

18

Hardware portion of the boot process

Nothing to do with the OS (same across any OS)

POST

|[Power On
Self Test]

Ensure that basic computer hardware is working correctly
* Memory, disk, ROM, etc.

If POST fails > computer not usable and shuts down!

POST is part of the BIOS

April 1, 2022 19

BIOS

-

BASIC INPUT/OUTPUT HANDLES THE INITIATES THE BOOT
SYSTEM ACTIVATION OF POST SEQUENCE

April 1, 2022 20

Phoenix - Award WorkstationBIOS CMOS Setup Utility
Advanced BIOS Features

Anti-Virus Protection [Disabled] Item Help Main BIOS Failure with
CPU L1 & L2 Cache [Enabled] Dual BIOS Single BIOS
CPU Hyper-Threading |Enabled]

L]
Menu Level b= ® Backup BIOS Recovery No Backup BIOS

CPU L2 Cache ECC Checking [Enabled] : Rl
Quick Power ON Self Test [Enabled] Allows you to choose ARG e

First Boot Device [Floppy] the VIRUS warning ‘ ,
Second Boot Device [HDD-0] feature for IDE Hard o 5 : l?,?'
Third Boot Device [CDROM] Disk boot sector ' :
Boot Other Device [Enabled] protection. If this N Rs;zzl:'fgs‘::nwm;:;z'
Swap Floppy Drive [Disabled] function is enabled
Boot up NumLock Status [On] and someone attempt to
Gate A20 Option [Fast] write date into this

iﬁ

April 1, 2022

* Once BIOS POST completes successfully

* Initiate the boot sequence
» Essentially start the software components
* Afirst step to get the OS up and running

Boot

S C q uence * Locate the “boot sector” on

any attached bootable devices -

* First valid boot sector found = load into RAM '
[Note: BIOS in ROM]

* Boot sector is first part of boot loader /

o

April 1, 2022 L 22

Linux Bootloader [Grub2]

e Grand Unified BootLoader v2
* Makes computer just smart enough to find OS and load into memory
 Stages of Grub:

e Stage 1: load boot record
e Stage 1.5: load a few common drivers, mainly the filesystem [EXT, NTFS, etc]
» Stage 2: locate and load linux kernel into RAM

April 1, 2022 23

Search for boot record (called
“master boot record”) & load
into memory

Start executing boot record

boot.img

Boot record is very small 2
must fit into fist 512 bytes of
memory!

April 1, 2022 24

Grub2 Stage 1.5

= v

Contains larger code Code is more complex
such as filesystem drivers than stage 1

core.img

April 1, 2022 25

Stage 2 can actually be
on the filesystem!

Grub2 Stage 2

LOCATED IN THE DOES NOT HAVE ITS KERNEL AND FILES ARE CAN BOOT FROM
/BOOT/GRUB2 OWN IMAGE FILE IN /BOOT DIRECTORY MULTIPLE KERNEL
DIRECTORY AND (LIKE BOOT.IMG OR [VMLINUZ] VERSIONS

April 1, 2022

Five [Basic]
Steps of

Boot
Process

Power up

Power On Self Test [POST]

Finding a boot device

April 1, 2022

i}

Load the operating system

Transfer control

27

28 April 1, 2022

Let’s Dive in!

Boot Sequence Detalls

* Intel Architecture + JOS as examples
* First step =» POST

 After testing/initializing peripheral devices
* copy initialization code to DRAM [copy from ROM to RAM]

v

), o e
SOy AR -
R, it A e Sl o - #F
i Gl T | 4 27 .
i ///II/IIIIIIIIIIII(I'I-i.II'I/i' .”
&

”

Oy
WL

[coe jangye@os2 (labl) ~/jos$] gdb

OXffffO [fOOO.fffO] + target remote localhost:29007
warning: A handler for the 0S ABI "GNU/Linux" is not built into this configuration
of GDB. Attempting to continue with the default i8086 settings.

The target architecture is assumed to be i8086
[foo0:fffO] oxffffo: 1jmp $0xf000,$0xe05b
0x0000fff0 in ?? ()

* RUN code from the RAM

What Does Initialization
Code DO0?

e BIOS load and run boot sector from disk
* Read the 15t sector from the boot disk (512 bytes)
e Put the sector at 0x7c00
* Run it! (set the instruction pointer = 0x7c00)

30

: : The target architecture i1s assumed to be 18086
What I1s 180867 [FO00: FFFO] OxFFFFO: 1imp $0xFO00, $Oxed5b

* Intel 8086 (1978, ~45 years old, runs @ 5MHz)

* 16-bit processor; all registers are 16-bits

* BIOS assumes our processor is i8086
* We are living in 2022 and Intel Xeon on the 0s2 server

model name : Intel(R) Xeon(R) Gold 6252 CPU @ 2.10GHz

* Why?
* Backward Compatibility
e Use the same code for all CPUs!

April 1, 2022 31

What 1s [TO00:1TT0]7 [eateaiineiimgibedos

* Intel 8086 (1978, ~45 years old, runs @ 5MHz)

* 16-bit processor; all registers are|16-bits

16 bits can address only

* Intel 8086 can access 1MB of memory 2%%-1 locations =» 64k!

 1MB == 1048576 Bytes ==|22° Bytes
* Requires 20-bits to address the 1IMB memory space

Memory Segmentation
to the rescue!

Do we see a problem here?

Memory Segmentation

* Allows 16-bit processor to access 20-bit address space

Segment Register

Regular Register

e Written as: [Segment Register Value]:[Regular Register Value]

* e.g., Scs:Sip, Scs = 0xf000, Sip = Oxfffo

then it will be Oxf000:0xfffO

April 1, 2022

Allows memory to be
“segmented” into
sections of 64k each

64k

64k

64k

64k

QO

Address [SEGMENT:OFFSET]
Calculation SEGMENT * 16 + OFFSET!

April 1, 2022

Memory Segmentation [contd.]

* f000:fff0
« Oxf000 * 16 + OxfffO
* Multiplying 16 for a hexadecimal number is just shifting one digit left
* 0xfO0O00 + OxfffO =» OxffffO [becomes equivalent of 5-digit address!]

* Each digit in hexadecimal number represents 4-bits
e 4 *5 ==20 bits!
» 8086 processor can access from 0x00000 ~ Oxfffff (1,048,576 bytes, 1MB)!

April 1, 2022 35

Segmentation in Real Mode

* Real mode [https://en.wikipedia.org/wiki/Real mode]
* Mode that uses physical memory directly
* No memory protection
 MS-DOS (1981 ~ 2000) runs in this mode

* Backward Compatibility: all x86 processors boots in Real Mode
* We need to switch it to a Protected Mode and enabling paging, etc.
 We will do all these initializations in JOS labs, 1 and 2

April 1, 2022 36

https://en.wikipedia.org/wiki/Real_mode

What is the effective address of the following
[seg:offset] values?

* [1000:3333]
* [b000:b7ff]

* [0001:0101]
* [f800:8001]

April 1, 2022 37

Quick Quiz

ASnwers

What is the effective address of the following [seg:offset] values?

* [1000:3333]
* 0x1000 * 16 + 0x3333 = 0x10000 + 0x3333 = 0x13333

* [b000:b7ff]
* 0xb000 * 16 + Oxb7ff = 0xb000O + Oxb7ff = Oxbb7ff

* [0001:0101]
* 0x0001 * 16 + 0x0101 = 0x0010 + 0x0101 = 0x0111

 [f800:8001]
* 0xf800 * 16 + 0x8001 = 0xf8000 + 0x8001 4 0x100001

April 1, 2022

38

Additional Reading

* Five steps of the boot sequence:
https://www.techwalla.com/articles/five-steps-computer-bootup-process

* Linux boot process and GRUB
https://www.learnitguide.net/2015/11/linux-boot-process-step-by-step.html

April 1, 2022 39

https://www.techwalla.com/articles/five-steps-computer-bootup-process
https://www.learnitguide.net/2015/11/linux-boot-process-step-by-step.html

