
CS 444/544
Operating Systems II

Prof. Sibin Mohan
Spring 2022 | Lec2: BIOS, Booting and CPU

Adapted from content originally created by: Prof. Yeongjin Jang

How JOS Works?

2

os2 server (your account)

LINUX KERNEL

April 1, 2022

TERMINALQEMU

QEMU: an emulator,
it has virtualized CPU/HDD/GPU/NIC, etc.

JOS
KERNEL

JOS
Apps

Starting Lab
Assignments

• Follow the guidelines from lab1 tutorial
• Setup your lab environment on os2 server

• Register at: gitlab.unexploitable.systems
• Register an SSH key
• Fork repository and Change visibility à private

• Get familiar to tools such as
• GDB
• TMUX

April 1, 2022 3

https://sibin.github.io/teaching/cs444-osu-operating-systems/spring_2022/lab.html

https://sibin.github.io/teaching/cs444-osu-operating-systems/spring_2022/lab.html

Solving Lab
Assignments

Read lab guidelines thoroughly and follow the instructions

Ap
ril

 1
, 2

02
2

4

Lab Assignments

• Lab tutorial videos/slides are supplementary to the lab guideline text
• VIDEO: https://www.youtube.com/watch?v=rj3pVybg2CA
• Slides: https://sibin.github.io/teaching/cs444-osu-operating-systems/spring_2022/l/tutorial1_labsetup.pdf

• CODE/DEBUG
• Write your code by following the guideline/tutorial videos
• Debug your code using gdb

• ENGAGE à questions and help others during office hours and on Discord!

https://www.youtube.com/watch?v=rj3pVybg2CA
https://sibin.github.io/teaching/cs444-osu-operating-systems/spring_2022/l/tutorial1_labsetup.pdf

Office Hours

6April 1, 2022

Pay it Forward
• We only have 5 full GTAs for 200+ students
• There could be long latency to get your queries answered

• There are many ways you can get help quickly
• 1. Post your questions on the ‘labX’ channel [e.g., lab1 for lab1 questions]
• 2. DM TAs for their office hours [LOTS of office hours!]
• 3. Post your questions on CANVAS ‘discussion’

7

We need your help, so please help others if you know
how to handle the questions posted on Discord/CANVAS

April 1, 2022

Some issues
and Problem
Solving

April 1, 2022 8

Failed to bind
socket: Address
already in use

$ kill-qemu

April 1, 2022 9

kill-qemu

• kill all running qemu instances
• Only your instances! J

• Please ignore the error message
• Trying to kill others’ instances

April 1, 2022 10

Device or
Resource Busy…

• Your tmux/vim/other apps are working on files that
our make script is trying to delete
• Killing all tmux/vim sessions will resolve this
• Make sure that you saved all your work!

April 1, 2022 11

Killing tmux and vim instances

• To kill tmux, run:
$ kill-all-tmux

• Killing vim (editor) instances
$ ps aux | grep vim | grep your_username_here

• This command will show your vim instances

• You can kill it selectively by running:
$ kill -9 [pid of vim]

• Or
$ pkill -9 vim

• To kill all vim instances April 1, 2022 12

Add ~/bin to PATH in your .*shrc

• We use a special version of qemu-system-i386
• For students who typed ‘n’ during .bashrc installation,
• Please add ~/bin to your PATH environmental variable
• export PATH=$PATH:~/bin

• This will remove the errors such as

13April 1, 2022

Readings, Slides, and Videos are Available from the course Website
https://sibin.github.io/teaching/cs444-osu-operating-systems/spring_2022/index.html

April 1, 2022 14

lecture slides

last year’s video

https://sibin.github.io/teaching/cs444-osu-operating-systems/spring_2022/index.html

Booting

1
5

April 1, 2022

What happens when
you turn on your
computer/mobile
phone/device?

16

Five [Basic]
Steps of
Boot
Process

April 1, 2022 17

Power up

Power On Self Test [POST]

Finding a boot device

Load the operating system

Transfer control

April 1, 2022 18

POST
[Power On
Self Test]

April 1, 2022 19

• Hardware portion of the boot process
• Nothing to do with the OS (same across any OS)
• Ensure that basic computer hardware is working correctly

• Memory, disk, ROM, etc.

• If POST fails à computer not usable and shuts down!

• POST is part of the BIOS

BIOS

April 1, 2022 20

BASIC INPUT/OUTPUT
SYSTEM

HANDLES THE
ACTIVATION OF POST

INITIATES THE BOOT
SEQUENCE

April 1, 2022 21

Boot
Sequence

• Once BIOS POST completes successfully
• Initiate the boot sequence
• Essentially start the software components
• A first step to get the OS up and running

• Locate the “boot sector” on
any attached bootable devices

• First valid boot sector found è load into RAM
[Note: BIOS in ROM]
• Boot sector is first part of boot loader

April 1, 2022 22

INT 13H

Linux Bootloader [Grub2]

• Grand Unified BootLoader v2
• Makes computer just smart enough to find OS and load into memory
• Stages of Grub:
• Stage 1: load boot record
• Stage 1.5: load a few common drivers, mainly the filesystem [EXT, NTFS, etc]
• Stage 2: locate and load linux kernel into RAM

April 1, 2022 23

Grub2
Stage 1

April 1, 2022 24

Search for boot record (called
“master boot record”) & load
into memory

Start executing boot record

Boot record is very small à
must fit into fist 512 bytes of
memory!

boot.img

Grub2 Stage 1.5

Contains larger code
such as filesystem drivers

Code is more complex
than stage 1

Stage 2 can actually be
on the filesystem!

April 1, 2022 25

core.img

Grub2 Stage 2

April 1, 2022 26

LOCATED IN THE
/BOOT/GRUB2

DIRECTORY AND
SUBDIRECTORIES

DOES NOT HAVE ITS
OWN IMAGE FILE

(LIKE BOOT.IMG OR
CORE.IMG)

KERNEL AND FILES ARE
IN /BOOT DIRECTORY

[VMLINUZ]

CAN BOOT FROM
MULTIPLE KERNEL

VERSIONS

Loads kernel into memory and turns control over to it!

Five [Basic]
Steps of
Boot
Process

April 1, 2022 27

Power up

Power On Self Test [POST]

Finding a boot device

Load the operating system

Transfer control

Let’s Dive in!

28

Boot Sequence Details
• Intel Architecture + JOS as examples
• First step è POST
• After testing/initializing peripheral devices
• copy initialization code to DRAM [copy from ROM to RAM]

• RUN code from the RAM
29

0xffff0 [f000:fff0]

What Does Initialization
Code Do?

April 1, 2022 30

• BIOS load and run boot sector from disk
• Read the 1st sector from the boot disk (512 bytes)
• Put the sector at 0x7c00
• Run it! (set the instruction pointer = 0x7c00)

What is i8086?

• Intel 8086 (1978, ~45 years old, runs @ 5MHz)
• 16-bit processor; all registers are 16-bits

• BIOS assumes our processor is i8086
• We are living in 2022 and Intel Xeon on the os2 server

• Why?
• Backward Compatibility
• Use the same code for all CPUs!

31April 1, 2022

What is [f000:fff0]?

• Intel 8086 (1978, ~45 years old, runs @ 5MHz)
• 16-bit processor; all registers are 16-bits

• Intel 8086 can access 1MB of memory
• 1MB == 1048576 Bytes == 220 Bytes
• Requires 20-bits to address the 1MB memory space

32April 1, 2022

Do we see a problem here?

16 bits can address only
216-1 locations è 64k!

Memory Segmentation
to the rescue!

Memory Segmentation

• Allows 16-bit processor to access 20-bit address space

• Written as: [Segment Register Value]:[Regular Register Value]

• e.g., $cs:$ip, $cs = 0xf000, $ip = 0xfff0
then it will be 0xf000:0xfff0

33April 1, 2022

Segment Register Regular Register

64k

64k

64k

64k

Allows memory to be
“segmented” into

sections of 64k each

Address
Calculation

[SEGMENT:OFFSET]
SEGMENT * 16 + OFFSET!

34

Memory Segmentation [contd.]

35April 1, 2022

• f000:fff0
• 0xf000 * 16 + 0xfff0
• Multiplying 16 for a hexadecimal number is just shifting one digit left
• 0xf0000 + 0xfff0 è 0xffff0 [becomes equivalent of 5-digit address!]

• Each digit in hexadecimal number represents 4-bits
• 4 * 5 == 20 bits!
• 8086 processor can access from 0x00000 ~ 0xfffff (1,048,576 bytes, 1MB)!

Segmentation in Real Mode

• Real mode [https://en.wikipedia.org/wiki/Real_mode]
• Mode that uses physical memory directly
• No memory protection
• MS-DOS (1981 ~ 2000) runs in this mode

• Backward Compatibility: all x86 processors boots in Real Mode
• We need to switch it to a Protected Mode and enabling paging, etc.
• We will do all these initializations in JOS labs, 1 and 2

April 1, 2022 36

https://en.wikipedia.org/wiki/Real_mode

Quick
Quiz

What is the effective address of the following
[seg:offset] values?

• [1000:3333]
• [b000:b7ff]
• [0001:0101]
• [f800:8001]

April 1, 2022 37

Quick Quiz
Asnwers

What is the effective address of the following [seg:offset] values?

• [1000:3333]
• 0x1000 * 16 + 0x3333 = 0x10000 + 0x3333 = 0x13333

• [b000:b7ff]
• 0xb000 * 16 + 0xb7ff = 0xb0000 + 0xb7ff = 0xbb7ff

• [0001:0101]
• 0x0001 * 16 + 0x0101 = 0x0010 + 0x0101 = 0x0111

• [f800:8001]
• 0xf800 * 16 + 0x8001 = 0xf8000 + 0x8001 = 0x100001

April 1, 2022 38

Additional Reading

• Five steps of the boot sequence:
https://www.techwalla.com/articles/five-steps-computer-bootup-process

• Linux boot process and GRUB
https://www.learnitguide.net/2015/11/linux-boot-process-step-by-step.html

April 1, 2022 39

https://www.techwalla.com/articles/five-steps-computer-bootup-process
https://www.learnitguide.net/2015/11/linux-boot-process-step-by-step.html

