
Adapted from content originally created by: Prof. Yeongjin Jang

Prof. Sibin Mohan
Spring 2022 | Lec. 14: Concurrency Bugs, Deadlocks

CS444/544
Operating Systems II

Administrivia

2

• Lab 3 due date: May 20, 2022 [Friday] at 11:59 PM!

• Quiz 3 on May 24, 2022 [Tuesday] at 8:30 AM!
• Available until May 25, 2022 [Wednesday], 11:59 PM

• Watch all Tutorials and go through the slides/textbook

May 23, 2022

Quiz 3 Coverage

• JOS Lab 3 (User/Kernel, System Call and Interrupt Handling)

• JOS Lab 4 (Preemptive Multitasking & Copy-on-Write Fork)

• Lecture 11: Multithreading and Synchronization

• Lecture 12: Locks

• Lecture 13: Locks 2

• Lecture 14: Concurrency Bugs and Deadlocks

• Sample Quiz
• https://sibin.github.io/teaching/cs444-osu-operating-

systems/spring_2022/l/quiz_3.sample.pdf
• https://sibin.github.io/teaching/cs444-osu-operating-

systems/spring_2022/l/quiz_3.sample.answer.pdf

3May 23, 2022

https://sibin.github.io/teaching/cs444-osu-operating-systems/spring_2022/l/quiz_1.sample.pdf
https://sibin.github.io/teaching/cs444-osu-operating-systems/spring_2022/l/quiz_1.sample.answer.pdf

Recap: lock-example

• Repo: https://gitlab.unexploitable.systems/root/lock-example

• 5 Lock implementations
• Naïve lock [bad_lock, inconsistent]
• xchg lock [test-and-set, slow]
• cmpxchg lock [a fake test and test-and-set, still slow]
• Software test and hardware test-and-set [fast!]
• Hardware test-and-set with exponential backoff [faster!]

• Performance checks
• Total execution time
• L1-dcache-load-misses
• Compare with pthread_mutex

4

Lock Cache Misses [approx.] Time [ms]

xchg 17 million 944

cmpxchng 19 million 1124

tts 14 million 500

backoff 230 thousand 197

pthread_mutex 1.6 million 458May 23, 2022

https://gitlab.unexploitable.systems/root/lock-example

pthread_mutex | implementation

5

Spins * 2 + 10
Default count is 100

test [is lock variable not ‘0’?]

exponential backoff setup

test-and-set [use xchg for locking]

exponential backoff [wait until we reach max count]

Can acquire lock if lock variable ‘0’

May 23, 2022

Locks are Slow!

Run while() loops
internally

Can block other
threads

Need to carefully
determine when
and where to use

locks

6May 23, 2022

When Do We Need to Use a Lock?

• Write must finish before the next load
• Many reads/writes
• Especially many writers!

• One writer and many readers
• Not always if there is only one writer
• If write-read order is not important
• Having no lock is fine

7

Thread 1 Thread 2

eax = counter

eax = edx + eax

counter = eax

eax = counter

Thread 1 Thread 2

eax = counter

eax = edx + eax

counter = eax

eax = counter
May 23, 2022

Code

Where Do We Need to Put a Lock?
• What if a critical section is too big?

Thread 1 Thread 2

Update A

Update B

Update C

Update D

CS 1

Update A

Update B
Update C
Update D

CS 2

Update A

Update B
Update C
Update D

Four independent variables

8

No real data race!
Wasted Time!

May 23, 2022

Code

Small Critical Sections
Thread 1 Thread 2

Update A

Update B

Update C

Update D

CS A2
Update A

CS A1
Update A

CS B1
Update B

CS B2
Update B

CS C2
Update C

CS D2
Update D

CS C1
Update C

CS D1
Update D

9

Four separate locks

Fast! Developer should be careful about splitting critical sections
May 23, 2022

General Practice

• Use lock only if required
• Determine cases when you do not need a lock

• Atomic read
• Only one writer

• Use small critical sections
• Critical section prohibits concurrent execution
• Determine where do we share a variable
• Wrap only the code that updates the shared variable

• Looks simple but often gets really complex!

May 23, 2022

Concurrency Bugs

• Atomicity
• Ordering
• Deadlocks

11May 23, 2022

Concurrency Bugs 1

12

reader

writer

May 23, 2022

Concurrency Bugs 1

13

time of check

time of use

May 23, 2022

Concurrency Bugs 1

14

time of check

time of use

write!

“time of check to time of use” [TOCTTOU] bug!
May 23, 2022

Concurrency Bugs 1

15

thd->proc_info is not NULL

thd->proc_info is NULL!

set thd->proc_info to NULL!

May 23, 2022

TOCTTOU Solution? Lock!

Thread 1::

if (thd->proc_info) {

...

fputs (thd->proc_info, ...);

...

}

Thread 2::

thd->proc_info = NULL;

16May 23, 2022

TOCTTOU Solution? Lock!

pthread_mutex_t proc_info_lock = PTHREAD_MUTEX_INITIALIZER;

Thread 1::
if (thd->proc_info) {

...
fputs (thd->proc_info, ...);
...

}

Thread 2::
thd->proc_info = NULL;

17May 23, 2022

TOCTTOU Solution? Lock!

pthread_mutex_t jeff = PTHREAD_MUTEX_INITIALIZER;

Thread 1::
if (thd->proc_info) {

...
fputs (thd->proc_info, ...);
...

}

Thread 2::
thd->proc_info = NULL;

18May 23, 2022

TOCTTOU Solution? Lock!

pthread_mutex_t jeff = PTHREAD_MUTEX_INITIALIZER;

Thread 1::
pthread_mutex_lock (&jeff) ;
if (thd->proc_info) {

...
fputs (thd->proc_info, ...);
...

}
pthread_mutex_unlock (&jeff);

Thread 2::
thd->proc_info = NULL;

19

TOCTTOU still exists!

write!
no lock on the write!

May 23, 2022

TOCTTOU Solution? Lock!
pthread_mutex_t jeff = PTHREAD_MUTEX_INITIALIZER;

Thread 1::
pthread_mutex_lock (&jeff) ;
if (thd->proc_info) {

...
fputs (thd->proc_info, ...);
...

}
pthread_mutex_unlock (&jeff);

Thread 2::
pthread_mutex_lock (&jeff) ;
thd->proc_info = NULL;
pthread_mutex_unlock (&jeff);

20
TOCTTOU resolved!

Mutual Exclusion

May 23, 2022

Concurrency Bugs

• No bugs in single thread execution

• Bugs show up in multithreaded execution
• Multiple cores, etc.

• Three types of concurrency bugs
1. Atomicity
2. Ordering
3. Deadlock

21May 23, 2022

ordering

22May 23, 2022

Ordering Example | Mozilla Code

23

order of execution:

Thread 1
Thread 2

Thread 2
Thread 1

not initialized

May 23, 2022

Solution? Locks and Conditional Variables

• Thread scheduling order shouldn’t matter
• Conditional variables
• waits on actions from other threads

24

run first

wait until init() completes

May 23, 2022

Conditional Wait

• pthread_cond_signal(&lock_variable);
• signal all waiting threads that the condition has been met

• pthread_cond_wait(&lock_variable);
• wait until signal is received

25May 23, 2022

Conditional Wait | Usage

Thread 1::
void init() {

...
mThread = PR_CreateThread(mMain, ...);
...

}

Thread 2::
void mMain(...){

...
mState = mThread->state;
...

}

26May 23, 2022

Conditional Wait | Usage

Thread 1::

void init() {

...

mThread = PR_CreateThread(mMain, ...);

//signal that thread has been created
pthread_cond_signal(&mtCond);

...

}

Thread 2::

void mMain(...){

...

pthread_cond_wait(&mtCond);
mState = mThread->state;

...

}

27

incorrect!

May 23, 2022

Conditional Wait | Correct Usage
Thread 1::

void init() {

...

mThread = PR_CreateThread(mMain, ...);

//signal that thread has been created

pthread_mutex_lock(&mtLock);

mtInit = 1 ;

pthread_cond_signal(&mtCond);

pthread_mutex_unlock(&mtLock);

...

}

28

Thread 2::

void mMain(...){

...

pthread_mutex_lock(&mtLock);

while (mtInit ==0)

pthread_cond_wait(&mtCond,

&mtLock);

pthread_mutex_unlock(&mtLock);

mState = mThread->state;

...

}

May 23, 2022

Deadlocks

29May 23, 2022

ST
O
P

STOP

STO
P

STOP

A

30May 23, 2022 CS 444/544 | Spring 2022

ST
O
P

STOP

STO
P

STOP

A

B

31May 23, 2022 CS 444/544 | Spring 2022

ST
O
P

STOP

STO
P

STOP

A

B

who goes?

32May 23, 2022 CS 444/544 | Spring 2022

ST
O
P

STOP

STO
P

STOP

A

B

33May 23, 2022 CS 444/544 | Spring 2022

ST
O
P

STOP

STO
P

STOP

A

B

34May 23, 2022 CS 444/544 | Spring 2022

ST
O
P

STOP

STO
P

STOP

35May 23, 2022 CS 444/544 | Spring 2022

ST
O
P

STOP

STO
P

STOP

A

B

C

D

36May 23, 2022 CS 444/544 | Spring 2022

ST
O
P

STOP

STO
P

STOP

AB

CD

who goes?

37May 23, 2022 CS 444/544 | Spring 2022

ST
O
P

STOP

STO
P

STOP

AB

CD

38

Deadlock!

May 23, 2022 CS 444/544 | Spring 2022

Deadlock
• Two or more threads
• waiting for other to take action
• neither make any progress

Lock L1

Lock L2

Thread 1

Thread 2

holds

holds

wanted
by

wanted
by

39

circular
dependency!

May 23, 2022

How Can We Resolve
Circular Dependency

40May 23, 2022

Breaking Circular Dependency

41

Lock L1

Lock L2

Thread 1

Thread 2

holds

holds

wanted
by

wanted
by

circular
dependency!

May 23, 2022

Breaking Circular Dependency

42

Lock L1

Lock L2

Thread 1

Thread 2

holds

wanted
by

NO circular
dependency!

holds

wanted
byMay 23, 2022

Thread-safe Datastructure
set_t *set_intersection (set_t *s1, set_t *s2) {

set_t *rv = new set_t();
Mutex_lock(&s1->lock);
Mutex_lock(&s2->lock);
for(int i=0; i<s1->len; i++) {

if(set_contains(s2, s1->items[i])
set_add(rv, s1->items[i]);

Mutex_unlock(&s2->lock);
Mutex_unlock(&s1->lock);

} 43May 23, 2022

Thread-safe Datastructure

Thread 1:

rv = set_intersection(setA, setB);

Thread 2:

rv = set_intersection(setA, setB);

set_t *set_intersection (set_t *s1, set_t *s2) {
...

mutex_lock(&s1->lock);
mutex_lock(&s2->lock);
...

}
44May 23, 2022

Thread-safe Datastructure

Thread 1:

rv = set_intersection(setA, setB);

Thread 2:

rv = set_intersection(setA, setB);

mutex_lock(&setA->lock);
mutex_lock(&setB->lock);

…
mutex_unlock(&setB->lock);
mutex_unlock(&setA->lock);

mutex_lock(&setA->lock);
mutex_lock(&setB->lock);

…
mutex_unlock(&setB->lock);
mutex_unlock(&setA->lock);

45May 23, 2022

Is This a Thread-safe Datastructure?
set_t *set_intersection (set_t *s1, set_t *s2) {

set_t *rv = new set_t();
Mutex_lock(&s1->lock);
Mutex_lock(&s2->lock);
for(int i=0; i<s1->len; i++) {

if(set_contains(s2, s1->items[i])
set_add(rv, s1->items[i]);

Mutex_unlock(&s2->lock);
Mutex_unlock(&s1->lock);

} 46May 23, 2022

Find a Problem..

Thread 1:

rv = set_intersection(setA, setB);

Thread 2:

rv = set_intersection(setB, setA);

set_t *set_intersection (set_t *s1, set_t *s2) {
…
Mutex_lock(&s1->lock);
Mutex_lock(&s2->lock);
…

}
47May 23, 2022

Find the Problem

Thread 1:

rv = set_intersection(setA, setB);

Thread 2:

rv = set_intersection(setB, setA);

Mutex_lock(&setA->lock);
Mutex_lock(&setB->lock);

Mutex_lock(&setB->lock);
Mutex_lock(&setA->lock);

48

Deadlock!

May 23, 2022

Deadlock Theory

• Deadlocks can only happen if threads are having
• Mutual exclusion
• Hold-and-wait
• No preemption
• Circular wait

• We can eliminate deadlock by removing such conditions

49May 23, 2022

Mutual Exclusion

• Definition
• Threads claims an exclusive control of a resource
• E.g., Threads grabs a lock

50May 23, 2022

How to Remove Mutual Exclusion

• Do not use lock
• What???

• Replace locks with atomic primitives
• compare_and_swap(uint64_t *addr, uint64_t prev, uint64_t value);
• if *addr == prev, then update *addr = value;
• lock cmpxchg in x86

void add (int *val, int amt) {
Mutex_lock(&m);
*val += amt;
Mutex_unlock(&m);

}

void add (int *val, int amt) {
do {

int old = *val;
} while(!comp_and_swap(val, old, old+amt));

}
51May 23, 2022

Hold-and-Wait

• Definition
• Threads hold resources allocated to them

• (e.g., locks they have already acquired)
• while waiting for additional resources (e.g., locks they wish to acquire).

mutex_lock(&setA->lock);
mutex_lock(&setB->lock);

52May 23, 2022

How to Remove Hold-and-Wait
Strategy: Acquire all locks atomically once
• Can release locks over time,
• but cannot acquire again until all have been released

How? Use a meta lock, like this:
lock(&meta);
lock(&L1);
lock(&L2);
unlock(&meta);

// Critical section code
unlock(&L1);
unlock(&L2);

53May 23, 2022

Remove Hold-and-Wait
set_t *set_intersection (set_t *s1, set_t *s2) {

Mutex_lock(&meta_lock)
Mutex_lock(&s1->lock);
Mutex_lock(&s2->lock);
…
Mutex_unlock(&s2->lock);
Mutex_unlock(&s1->lock);
Mutex_unlock(&meta_lock);

}
54May 23, 2022

Remove Hold-and-Wait

Thread 1:

rv = set_intersection(setA, setB);

Thread 2:

rv = set_intersection(setB, setA);

Mutex_lock(&meta_lock);
Mutex_lock(&setA->lock);
Mutex_lock(&setB->lock);
…
Mutex_unlock(&setB->lock);
Mutex_unlock(&setA->lock);
Mutex_unlock(&meta_lock);

Mutex_lock(&meta_lock);
Mutex_lock(&setB->lock);
Mutex_lock(&setA->lock);

Will wait until
Thread 1 finishes
(release meta_lock)!

55May 23, 2022

No Preemption

• Definition
• Resources (e.g., locks) cannot be forcibly removed from threads that are

holding them.

lock(A);
lock(B);
…

In case if B is acquired by other thread

All other threads must wait for acquiring A

56May 23, 2022

How to Remove No Preemption

Release the lock if obtaining a resource fails…
top:

lock(A);
if (trylock(B) == -1) {

unlock(A);
goto top;

}
…

Can’t acquire B, then
Release A!

57May 23, 2022

Circular Wait
There exists a circular
chain of threads such that
each thread holds a
resource (e.g., lock) being
requested by next thread
in the chain.

58

Lock L1

Lock L2

Thread 1

Thread 2

holds

holds

wanted
by

wanted
by

circular
dependency!

May 23, 2022

How to Remove Circular Wait

59May 23, 2022

How to Remove Circular Wait
Lock variable is mostly a pointer, then
provide a correct order of having a lock

e.g.,
if(l1 > l2) {

mutex_lock(l1);
mutex_lock(l2);

}
else {

mutex_lock(l2);
mutex_lock(l1);

}

60May 23, 2022

References

• Some of slides borrowed from here:
• http://pages.cs.wisc.edu/~remzi/OSTEP/Educators-Slides/Andrea/
• http://pages.cs.wisc.edu/~remzi/OSTEP/Educators-

Slides/Tyler/oct22/bugs.pdf

• Some of code snippets borrowed from here:
• http://pages.cs.wisc.edu/~remzi/OSTEP/threads-bugs.pdf

61May 23, 2022

http://pages.cs.wisc.edu/~remzi/OSTEP/Educators-Slides/Andrea/
http://pages.cs.wisc.edu/~remzi/OSTEP/Educators-Slides/Tyler/oct22/bugs.pdf
http://pages.cs.wisc.edu/~remzi/OSTEP/threads-bugs.pdf

