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Administrivia
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• Lab 3 due date: May 20, 2022 [Friday] at 11:59 PM!

• Quiz 3 on May 24, 2022 [Tuesday] at 8:30 AM!
• Available until May 25, 2022 [Wednesday], 11:59 PM

• Watch all Tutorials and go through the slides/textbook
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Quiz 3 Coverage

• JOS Lab 3 (User/Kernel, System Call and Interrupt Handling)

• JOS Lab 4 (Preemptive Multitasking & Copy-on-Write Fork)

• Lecture 11: Multithreading and Synchronization

• Lecture 12: Locks

• Lecture 13: Locks 2

• Lecture 14: Concurrency Bugs and Deadlocks

• Sample Quiz
• https://sibin.github.io/teaching/cs444-osu-operating-

systems/spring_2022/l/quiz_3.sample.pdf
• https://sibin.github.io/teaching/cs444-osu-operating-

systems/spring_2022/l/quiz_3.sample.answer.pdf
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https://sibin.github.io/teaching/cs444-osu-operating-systems/spring_2022/l/quiz_1.sample.pdf
https://sibin.github.io/teaching/cs444-osu-operating-systems/spring_2022/l/quiz_1.sample.answer.pdf


Recap: lock-example

• Repo: https://gitlab.unexploitable.systems/root/lock-example

• 5 Lock implementations
• Naïve lock [bad_lock, inconsistent]
• xchg lock [test-and-set, slow]
• cmpxchg lock [a fake test and test-and-set, still slow]
• Software test and hardware test-and-set [fast!]
• Hardware test-and-set with exponential backoff [faster!]

• Performance checks
• Total execution time
• L1-dcache-load-misses
• Compare with pthread_mutex
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Lock Cache Misses [approx.] Time [ms]

xchg 17 million 944

cmpxchng 19 million 1124

tts 14 million 500

backoff 230 thousand 197

pthread_mutex 1.6 million 458May 23, 2022

https://gitlab.unexploitable.systems/root/lock-example


pthread_mutex | implementation 
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Spins * 2 + 10
Default count is 100

test [is lock variable not ‘0’?]

exponential backoff setup

test-and-set [use xchg for locking]

exponential backoff [wait until we reach max count]

Can acquire lock if lock variable ‘0’ 
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Locks are Slow!

Run while() loops
internally

Can block other 
threads

Need to carefully
determine when
and where to use 

locks
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When Do We Need to Use a Lock?

• Write must finish before the next load
• Many reads/writes
• Especially many writers!

• One writer and many readers
• Not always if there is only one writer
• If write-read order is not important
• Having no lock is fine
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Thread 1 Thread 2

eax = counter

eax = edx + eax

counter = eax

eax = counter

Thread 1 Thread 2

eax = counter

eax = edx + eax

counter = eax

eax = counter
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Code

Where Do We Need to Put a Lock?
• What if a critical section is too big?

Thread 1 Thread 2

Update A

Update B

Update C

Update D

CS 1

Update A

Update B
Update C
Update D

CS 2

Update A

Update B
Update C
Update D

Four independent variables
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No real data race!
Wasted Time!
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Code

Small Critical Sections
Thread 1 Thread 2

Update A

Update B

Update C

Update D

CS A2
Update A

CS A1
Update A

CS B1
Update B

CS B2
Update B

CS C2
Update C

CS D2
Update D

CS C1
Update C

CS D1
Update D
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Four separate locks

Fast! Developer should be careful about splitting critical sections
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General Practice

• Use lock only if required
• Determine cases when you do not need a lock

• Atomic read
• Only one writer

• Use small critical sections
• Critical section prohibits concurrent execution
• Determine where do we share a variable
• Wrap only the code that updates the shared variable

• Looks simple but often gets really complex!
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Concurrency Bugs

• Atomicity
• Ordering
• Deadlocks
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Concurrency Bugs 1
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reader

writer
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Concurrency Bugs 1
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time of check

time of use
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Concurrency Bugs 1
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time of check

time of use

write!

“time of check to time of use” [TOCTTOU] bug!
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Concurrency Bugs 1
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thd->proc_info is not NULL

thd->proc_info is NULL!

set thd->proc_info to  NULL!
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TOCTTOU Solution? Lock!

Thread 1::

if (thd->proc_info) {

...

fputs (thd->proc_info, ...);

...

}

Thread 2::

thd->proc_info = NULL;
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TOCTTOU Solution? Lock!

pthread_mutex_t proc_info_lock = PTHREAD_MUTEX_INITIALIZER;

Thread 1::
if (thd->proc_info) {

...
fputs (thd->proc_info, ...);
...

}

Thread 2::
thd->proc_info = NULL;
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TOCTTOU Solution? Lock!

pthread_mutex_t jeff = PTHREAD_MUTEX_INITIALIZER;

Thread 1::
if (thd->proc_info) {

...
fputs (thd->proc_info, ...);
...

}

Thread 2::
thd->proc_info = NULL;
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TOCTTOU Solution? Lock!

pthread_mutex_t jeff = PTHREAD_MUTEX_INITIALIZER;

Thread 1::
pthread_mutex_lock (&jeff) ;
if (thd->proc_info) {

...
fputs (thd->proc_info, ...);
...

}
pthread_mutex_unlock (&jeff);

Thread 2::
thd->proc_info = NULL;
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TOCTTOU still exists!

write!
no lock on the write!
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TOCTTOU Solution? Lock!
pthread_mutex_t jeff = PTHREAD_MUTEX_INITIALIZER;

Thread 1::
pthread_mutex_lock (&jeff) ;
if (thd->proc_info) {

...
fputs (thd->proc_info, ...);
...

}
pthread_mutex_unlock (&jeff);

Thread 2::
pthread_mutex_lock (&jeff) ;
thd->proc_info = NULL;
pthread_mutex_unlock (&jeff);

20
TOCTTOU resolved!

Mutual Exclusion

May 23, 2022



Concurrency Bugs

• No bugs in single thread execution

• Bugs show up in multithreaded execution
• Multiple cores, etc.

• Three types of concurrency bugs
1. Atomicity
2. Ordering
3. Deadlock
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ordering
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Ordering Example | Mozilla Code
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order of execution:

Thread 1 
Thread 2

Thread 2 
Thread 1

not initialized
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Solution? Locks and Conditional Variables 

• Thread scheduling order shouldn’t matter
• Conditional variables
• waits on actions from other threads
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run first

wait until init() completes
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Conditional Wait

• pthread_cond_signal(&lock_variable);
• signal all waiting threads that the condition has been met

• pthread_cond_wait(&lock_variable);
• wait until signal is received

25May 23, 2022



Conditional Wait | Usage

Thread 1::
void init() {

...
mThread = PR_CreateThread(mMain, ...);
...

}

Thread 2::
void mMain(...){

...
mState = mThread->state;
...

}
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Conditional Wait | Usage

Thread 1::

void init() {

...

mThread = PR_CreateThread(mMain, ...);

//signal that thread has been created
pthread_cond_signal(&mtCond);

...

}

Thread 2::

void mMain(...){

...

pthread_cond_wait(&mtCond);
mState = mThread->state;

...

}
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incorrect!
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Conditional Wait | Correct Usage
Thread 1::

void init() {

...

mThread = PR_CreateThread(mMain, ...);

//signal that thread has been created

pthread_mutex_lock(&mtLock);

mtInit = 1 ;

pthread_cond_signal(&mtCond);

pthread_mutex_unlock(&mtLock);

...

}
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Thread 2::

void mMain(...){

...

pthread_mutex_lock(&mtLock);

while (mtInit ==0)

pthread_cond_wait(&mtCond,

&mtLock);

pthread_mutex_unlock(&mtLock);

mState = mThread->state;

...

}

May 23, 2022



Deadlocks
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STOP

A

B

who goes?
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who goes?
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Deadlock!
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Deadlock
• Two or more threads 
• waiting for other to take action
• neither make any progress

Lock L1

Lock L2

Thread 1

Thread 2

holds

holds

wanted
by

wanted
by

39

circular 
dependency!
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How Can We Resolve
Circular Dependency
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Breaking Circular Dependency
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Lock L1

Lock L2

Thread 1

Thread 2

holds

holds

wanted
by

wanted
by

circular 
dependency!
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Breaking Circular Dependency
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Lock L1

Lock L2

Thread 1

Thread 2

holds

wanted
by

NO circular 
dependency!

holds

wanted
byMay 23, 2022



Thread-safe Datastructure
set_t *set_intersection (set_t *s1, set_t *s2) {

set_t *rv = new set_t();
Mutex_lock(&s1->lock);
Mutex_lock(&s2->lock);
for(int i=0; i<s1->len; i++) {

if(set_contains(s2, s1->items[i])
set_add(rv, s1->items[i]);

Mutex_unlock(&s2->lock);
Mutex_unlock(&s1->lock);

} 43May 23, 2022



Thread-safe Datastructure

Thread 1:

rv = set_intersection(setA, setB);

Thread 2:

rv = set_intersection(setA, setB);

set_t *set_intersection (set_t *s1, set_t *s2) {
...

mutex_lock(&s1->lock);
mutex_lock(&s2->lock);
...

}
44May 23, 2022



Thread-safe Datastructure

Thread 1:

rv = set_intersection(setA, setB);

Thread 2:

rv = set_intersection(setA, setB);

mutex_lock(&setA->lock);
mutex_lock(&setB->lock);

…
mutex_unlock(&setB->lock);
mutex_unlock(&setA->lock);

mutex_lock(&setA->lock);
mutex_lock(&setB->lock);

…
mutex_unlock(&setB->lock);
mutex_unlock(&setA->lock);
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Is This a Thread-safe Datastructure?
set_t *set_intersection (set_t *s1, set_t *s2) {

set_t *rv = new set_t();
Mutex_lock(&s1->lock);
Mutex_lock(&s2->lock);
for(int i=0; i<s1->len; i++) {

if(set_contains(s2, s1->items[i])
set_add(rv, s1->items[i]);

Mutex_unlock(&s2->lock);
Mutex_unlock(&s1->lock);

} 46May 23, 2022



Find a Problem..

Thread 1:

rv = set_intersection(setA, setB);

Thread 2:

rv = set_intersection(setB, setA);

set_t *set_intersection (set_t *s1, set_t *s2) {
…
Mutex_lock(&s1->lock);
Mutex_lock(&s2->lock);
…

}
47May 23, 2022



Find the Problem

Thread 1:

rv = set_intersection(setA, setB);

Thread 2:

rv = set_intersection(setB, setA);

Mutex_lock(&setA->lock);
Mutex_lock(&setB->lock);

Mutex_lock(&setB->lock);
Mutex_lock(&setA->lock);

48

Deadlock!
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Deadlock Theory

• Deadlocks can only happen if threads are having
• Mutual exclusion
• Hold-and-wait
• No preemption
• Circular wait

• We can eliminate deadlock by removing such conditions
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Mutual Exclusion

• Definition
• Threads claims an exclusive control of a resource
• E.g., Threads grabs a lock
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How to Remove Mutual Exclusion

• Do not use lock
• What???

• Replace locks with atomic primitives
• compare_and_swap(uint64_t *addr, uint64_t prev, uint64_t value);
• if *addr == prev, then update *addr = value;
• lock cmpxchg in x86

void add (int *val, int amt) {
Mutex_lock(&m);
*val += amt;
Mutex_unlock(&m);

}

void add (int *val, int amt) {
do {

int old = *val;
} while(!comp_and_swap(val, old, old+amt));

}
51May 23, 2022



Hold-and-Wait

• Definition
• Threads hold resources allocated to them 

• (e.g., locks they have already acquired) 
• while waiting for additional resources (e.g., locks they wish to acquire).

mutex_lock(&setA->lock);
mutex_lock(&setB->lock);
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How to Remove Hold-and-Wait
Strategy: Acquire all locks atomically once 
• Can release locks over time, 
• but cannot acquire again until all have been released

How?  Use a meta lock, like this:
lock(&meta);
lock(&L1);
lock(&L2);
unlock(&meta);

// Critical section code
unlock(&L1);
unlock(&L2);
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Remove Hold-and-Wait
set_t *set_intersection (set_t *s1, set_t *s2) {

Mutex_lock(&meta_lock)
Mutex_lock(&s1->lock);
Mutex_lock(&s2->lock);
…
Mutex_unlock(&s2->lock);
Mutex_unlock(&s1->lock);
Mutex_unlock(&meta_lock);

}
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Remove Hold-and-Wait

Thread 1:

rv = set_intersection(setA, setB);

Thread 2:

rv = set_intersection(setB, setA);

Mutex_lock(&meta_lock);
Mutex_lock(&setA->lock);
Mutex_lock(&setB->lock);
…
Mutex_unlock(&setB->lock);
Mutex_unlock(&setA->lock);
Mutex_unlock(&meta_lock);

Mutex_lock(&meta_lock);
Mutex_lock(&setB->lock);
Mutex_lock(&setA->lock);

Will wait until 
Thread 1 finishes
(release meta_lock)!
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No Preemption

• Definition
• Resources (e.g., locks) cannot be forcibly removed from threads that are 

holding them.

lock(A);
lock(B);
…

In case if B is acquired by other thread

All other threads must wait for acquiring A
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How to Remove No Preemption

Release the lock if obtaining a resource fails…
top:

lock(A);
if (trylock(B) == -1) {

unlock(A);
goto top;

}
…

Can’t acquire B, then
Release A!
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Circular Wait
There exists a circular 
chain of threads such that 
each thread holds a 
resource (e.g., lock) being 
requested by next thread 
in the chain.
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Lock L1

Lock L2

Thread 1

Thread 2

holds

holds

wanted
by

wanted
by

circular 
dependency!
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How to Remove Circular Wait
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How to Remove Circular Wait
Lock variable is mostly a pointer, then
provide a correct order of having a lock

e.g.,
if(l1 > l2)  {

mutex_lock(l1);
mutex_lock(l2);

}
else {

mutex_lock(l2);
mutex_lock(l1);

}
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References

• Some of slides borrowed from here:
• http://pages.cs.wisc.edu/~remzi/OSTEP/Educators-Slides/Andrea/
• http://pages.cs.wisc.edu/~remzi/OSTEP/Educators-

Slides/Tyler/oct22/bugs.pdf

• Some of code snippets borrowed from here:
• http://pages.cs.wisc.edu/~remzi/OSTEP/threads-bugs.pdf
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