
CS444/544
Operating Systems II

Prof. Sibin Mohan
Spring 2022 | Lec. 13: Locks 2

Adapted from content originally created by: Prof. Yeongjin Jang



2nd Candidate: xchg_lock Result

• Consistent!

https://gitlab.unexploitable.systems/root/lock-example
[You can run this by cloning the repo!]

2May 23, 2022

High overheads!

cache coherency!

https://gitlab.unexploitable.systems/root/lock-example


Detour | Cache Coherency

May 23, 2022 3

Memory

Data Value = 1

CPU 1

Data Value = 1



Detour | Cache Coherency

May 23, 2022 4

Memory

Data Value = 1

CPU 1

Data Value = 2
update



Detour | Cache Coherency

May 23, 2022 5

Memory

Data Value = 2

CPU 1

Data Value = 2



Detour | Cache Coherency

May 23, 2022 6

Memory

Data Value = 2

CPU 1

Data Value = 2

CPU 2

Data Value = 3



Detour | Cache Coherency

May 23, 2022 7

Memory

Data Value = 2

CPU 1

Data Value = 2

CPU 2

Data Value = 3

update



Detour | Cache Coherency

May 23, 2022 8

Memory

Data Value = 3

CPU 1

Data Value = 2

CPU 2

Data Value = 3



Detour | Cache Coherency

May 23, 2022 9

Memory

Data Value = 3

CPU 1

Data Value = 2

CPU 2

Data Value = 3

Inconsistent!



Detour | Cache Coherency

May 23, 2022 10

Memory

Data Value = 3

CPU 1

Data Value = 2

CPU 2

Data Value = 3

Invalidate!
Flush CPU1 L1 cache



Detour | Cache Coherency

May 23, 2022 11

Memory

Data Value = 3

CPU 1

Data Value = 2

CPU 2

Data Value = 3

load again



Detour | Cache Coherency

May 23, 2022 12

Memory

Data Value = 3

CPU 1

Data Value = 3

CPU 2

Data Value = 3

consistent



Back to xchg

• Atomic xchg instruction loads/stores data at the same time
• There is no gap for race condition

• But it could cause cache contention!
• Many threads update the same ‘lock’ variable
• Multiple CPUs cache ‘lock’ variable
• Update to lock invalidates cache!

13May 23, 2022



The Problem with xchg

May 23, 2022 14



Loaded into cache
(while loop)

xchg and Cache Coherence

• xchg always updates the value 
• Every xchg instruction swaps in “1” into the memory location, lock

May 23, 2022 15

start: lock was “0”
result after xchg:
lock à 1
eax à 0
lock à 1

start: lock was “1”
result after xchg:
lock à 1
eax à 1
lock à 1 Cache invalidations

for all other threads!



xchg & Cache Coherency Example

May 23, 2022 16

Memory

lock = 0

CPU 1

lock = 0



xchg & Cache Coherency Example

May 23, 2022 17

Memory

lock = 0

CPU 1

lock = 1
update



xchg & Cache Coherency Example

May 23, 2022 18

Memory

lock = 1

CPU 1

lock = 1



xchg & Cache Coherency Example

May 23, 2022 19

Memory

lock = 0

CPU 1

lock = 0 releases lock



xchg & Cache Coherency Example

May 23, 2022 20

Memory

lock = 0

CPU 1

lock = 0

CPU 2

lock = 1

releases lock

acquires lock



xchg & Cache Coherency Example

May 23, 2022 21

Memory

CPU 1

CPU 2

update

lock = 1

lock = 0

lock = 1



xchg & Cache Coherency Example

May 23, 2022 22

Memory

CPU 1

CPU 2

Inconsistent!
lock = 1

lock = 0

lock = 1



xchg & Cache Coherency Example

May 23, 2022 23

Memory

CPU 1

CPU 2

Invalidate!
Flush CPU1 L1 cache

lock = 1

lock = 0

lock = 1



xchg & Cache Coherency Example

May 23, 2022 24

Memory

CPU 1

CPU 2

load again

lock = 1

lock = 0

lock = 1



xchg & Cache Coherency Example

May 23, 2022 25

Memory

CPU 1

CPU 2

lock = 1

lock = 1

lock = 1



Hang on a minute…

May 23, 2022 26



What If…

May 23, 2022 27

Memory

CPU 1

CPU 2

lock = 1

lock = 1

lock = 1 holds the lock

waiting on spinlock
xchng(lock, 1)

What now?

Still suffers from
Cache invalidations!



What If…

May 23, 2022 28

Memory

CPU 1

CPU 2

Invalidate!
Flush CPU1 L1 cache

lock = 1

lock = 1

lock = 1

Yes, even if they both 
have the same value!



Multiple Threads à Multiple Cache Invalidations!

• Previous example was for two threads
• In our lock implementation, we have 30 threads!

• Only one thread can be in the critical section
• Remaining 29 threads à causing cache invalidations!!!
• xchg implementation can be really slow!

• How slow?

May 23, 2022 29



Let’s Measure the Cache Misses
• perfà built in Linux command to monitor hardware events
• e.g., cache misses

May 23, 2022 30

Single CPU
no cache coherence invalidations
84,130 L1 cache misses

30 CPUs
many cache coherence invalidations
16,825,378 L1 cache misses

200x worse!



Test-and-Set (xchg)

Pros
•Synchronizes 

threads well!

Cons
•SLOW
•Lots of cache miss

31May 23, 2022

How do we solve this? Can we solve it?



Solution | test and test-and-set

• Why update the lock if its value is already ‘1’?

• `test and test-and-set’
• check value first!

if (lock == 0) 

May 23, 2022

start: lock was “0”
do test-and-set

start: lock was “1”
do nothing! No Invalidations!

same as xchg



Test and Test-and-set in x86
• lock cmpxchg [update-value], [memory]

• Compare the value in[memory] with %eax
• If matched, exchange value in [memory] with [update-value]

• Otherwise, do not perform exchange
• Must use with ‘lock-prefix’ for thread synchronization

• xchg(lock, 1)
• Lock = 1
• Returns old value of the lock

• cmpxchg(lock, 0, 1)
• Arguments: Lock, test value, update value
• Returns old value of lock

test
test-and-set



CAVEAT

• xchg is an atomic operation in x86

• cmpxchg is not an atomic operation in x86
• Must be used with lock prefix to guarantee atomicity

• lock cmpxchg

May 23, 2022 34



3rd Candidate: cmpxchg_lock

• cmpxchg_lock
• Use cmpxchg to set lock = 1
• Do not update if lock == 1
• Only write 1 to lock if lock == 0

• xchg_unlock
• Use xchg_unlock to set lock = 0
• Because we have 1 writer and
• This always succeeds

35May 23, 2022

critical
section



3rd Candidate: cmpxchg_lock Cache Results

• Consistent!

But still showing lots of cache misses à more than xchg! 
Why???? 



Intel CPU is TOO COMPLEX

cmpxchgà designed to be test and test-and-set instruction
Intel CPU complexity à so always update value regardless the result of comparison

37May 23, 2022

Lame! 🙄
Let’s implement test and test-and-set in software instead



4th Candidate: Test and Test & Set [Software?]

• tts_xchg_lock
• Wait until lock becomes 0
• After lock == 0
• xchg (lock, 1)
• This only updates lock = 1 if lock was 0

• Why xchg, why not *lock = 1 directly?
• while and xchg are not atomic
• Load/Store must happen at same time!

38May 23, 2022

critical
section



4th Candidate TTS Result
• Consistent!

• Fewer cache misses (by a bit) 
• Faster (~500ms vs. 900 ~ 1200 ms)

39May 23, 2022



Still Slow and Many Cache Misses..
• Why do we still have so many misses?
• A thread acquires the lock [update 0 à 1]

• Invalidate caches in 29 other cores

40May 23, 2022

CPU 2

lock = 0

CPU 1

lock = 1

CPU 3

lock = 0

CPU 30

lock = 0

Invalidate!



Still Slow and Many Cache Misses..
• Why do we still have so many misses?
• A thread acquires the lock [update 0 à 1]

• Invalidate caches in 29 other cores

• A thread releases the lock [update 1 à 0]
• Invalidate caches in 29 other cores

41May 23, 2022

CPU 2

lock = 0

CPU 1

lock = 0

CPU 3

lock = 0

CPU 30

lock = 0

Invalidate!



Still Slow and Many Cache Misses..

• 29 other cores are all reading the variable lock
• Immediately after invalidate, they load data to cache
• Then invalidated again by either lock/release
• This happens every 3~4 cycles

May 23, 2022 42

CPU 2

lock = 0

CPU 1

lock = 0

CPU 3

lock = 0

CPU 30

lock = 0

Invalidate!



5th Candidate: Backoff Lock

• Too much contention on reading locks while only 1 thread runs critical sec
• All other 29 cores running à while (*lock == 1);
• This is the slow down factor

• Idea: can we slow down that check?
• Let’s set a wait time once CPU checks whether the value of the lock is ‘1’
• Say, exponential backoff

43May 23, 2022

lock == 1
cycles [time]

lock == 1

lock == 1 lock == 1 lock == 1



5th Candidate: Backoff Lock
• backoff_cmpxchg_lock(lock)
• Try cmpxchg
• If success, acquire the lock
• If fail

• Wait 1 cycle (pause) for 1st trial
• Wait 2 cycles for 2nd trial
• Wait 4 cycles for 3rd trial
• …
• Wait 65536 cycles for 17th trial
• Wait 65536 cycles for 18th trial

• https://en.wikipedia.org/wiki/Exponential_backoff

44May 23, 2022

https://en.wikipedia.org/wiki/Exponential_backoff


5th Candidate: Backoff Result

• Consistent!

• Much fewer cache misses
• Faster! [less than 200ms!]

45May 23, 2022

Lock Cache Misses [approx.] Time [ms]

xchg 17 million 944

cmpxchng 19 million 1124

tts 14 million 500

faster than pthread_mutex()!



Summary

46

• Mutex is implemented with Spinlock
• Waits until lock == 0 with a while loop (why it’s called spinlock)

• Naïve code implementation never works
• Load/Store must be atomic

• xchg is a “test and set” atomic instruction
• Consistent, however, many cache misses, slow! (950ms)

• Lock cmpxchg is a “test and test&set” atomic instruction
• But Intel implemented this as xchg… slow! (1150ms)

• We can implement test-and-test-and-set (tts) with while + xchg
• Faster! (500ms) 

• We can also implement exponential backoff to reduce contention
• Much faster! (200ms)

May 23, 2022


