
CS444/544
Operating Systems II

Prof. Sibin Mohan
Spring 2022 | Lec. 12: Locks

Adapted from content originally created by: Prof. Yeongjin Jang

Process (Environment in JOS)

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free

Global
int counter;

Program

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free

Global
int counter;

Program

fork()

Fork() creates new process by copying memory space
Process creates a new PRIVATE memory space

DOES NOT share
variables

EMPTY EMPTY

Parent Child

May 15, 2022 2

Thread
Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free

Global
int counter;

Program

pthread_create()

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free

Global
int counter;

Program

USTACK 2 Add a new stack!

Adding value

The same variable

EMPTY EMPTY

3May 15, 2022

Concurrency Issues

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free

Global
int counter;

Program

pthread_create()

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free

Global
int counter;

Program

USTACK 2

The same variable

EMPTY EMPTY

4

Why not 2000000?

May 15, 2022

Thread 1

Data Race Example (Race cond.)

edx = value• counter += value
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;

• Assume at start,
• counter = 0
• value = 1

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

eax = 0

eax = 1

counter = 1

edx = 1

eax = 0

eax = 1

counter = 1

Overwrite, inconsistent!

5May 15, 2022

Mutex Example
Thread 1 Thread 2

Critical Section

edx = value
eax = counter

eax = edx + eax
counter = eax

lock()

unlock()

Critical Section

edx = value
eax = counter

eax = edx + eax
counter = eax

lock()

unlock()

Critical Section

edx = value
eax = counter

eax = edx + eax
counter = eax

lock()

unlock()
6May 15, 2022

How Can We Create
Lock/Unlock for Mutex? -- Spinlock
• Only one can run in critical section

• Others must wait!
• Until nobody runs in critical section

• How can we create such
• Lock() / Unlock() ?

Thread 1

Critical Section

edx = value
eax = counter

eax = edx + eax
counter = eax

lock()

unlock()

Thread 2

Critical Section

lock()

Thread 3

Critical Section

lock()

7May 15, 2022

How Can We Implement Locks?

8

Thread 1 Thread 2
Critical Section

edx = value
eax = counter

eax = edx + eax
counter = eax

bad_lock()

bad_unlock()

Critical Section

edx = value
eax = counter

eax = edx + eax
counter = eax

bad_lock()

bad_unlock()

*lock == 0, pass while
*lock = 1 (T1)

*lock == 1, stay in while (T2)

*lock = 0 (T1)
*lock == 0, break while (T2)
*lock = 1 (T2)

Critical
Section

Unfortunately, only works in
single CPU environment

May 15, 2022

How Can We Create
Lock/Unlock for Mutex? | Spinlock
• Run in a loop to check if critical section is empty
• Set a lock variable, e.g., lock
• 1 à locked
• 0 à open

• locking(lock)
• Wait until lock value becomes 0
while(*lock == 1);
• set *lock = 1

• unlocking(lock)
• set *lock = 0

9

*lock == 0 *lock == 1

May 15, 2022

Then, nobody runs in the critical section!

How Can We Create
Lock/Unlock for Mutex? | Spinlock
• Run in a loop to check if critical section is empty
• Set a lock variable, e.g., lock
• 1 à locked
• 0 à open

• locking(lock)
• Wait until lock value becomes 0
while(*lock == 1);
• set *lock = 1

• unlocking(lock)
• set *lock = 0

10

*lock == 0

*lock == 1

May 15, 2022

Critical Section

edx = value
eax = counter

eax = edx + eax

counter = eax

while(*lock ==1)

*lock = 0

*lock = 1

lock()

unlock()

Spinlock
Critical Section

edx = value
eax = counter

eax = edx + eax

counter = eax

while(*lock ==1)

*lock = 0

*lock = 1
Lock

Unlock

Critical Section
while(*lock ==1)

Lock

Critical Section
while(*lock ==1)Lock

*lock = 1

edx = value
eax = counter

eax = edx + eax

counter = eax

while(*lock ==1)

11
May 15, 2022

Spinlock
Candidates

May 15, 2022 12

no lock

bad lock

xchg lock

cmpxchg lock

tts lock

backoff cmpxchg

pthread_mutex

Spinlock Implementations

• https://gitlab.unexploitable.systems/root/lock-example
git clone git@gitlab.unexploitable.systems:root/lock-example

• Run 30 threads, each counts up to 10000 à total 300,000 counts
• Build code
• $ make

• Run code
• $./lock xchg # shows the result of using xchg lock
• $./perf-lock.sh xchg # shows the result of using xchg lock, with cache-miss

May 15, 2022

https://gitlab.unexploitable.systems/root/lock-example

How lock-example works

Main thread

Child thread Child thread Child thread Child thread Child thread

………..

30 threads

uint32_t count 0

pthread_create()

14May 15, 2022

How lock-example works

Main thread

Child thread Child thread Child thread Child thread Child thread

………..

30 threads

uint32_t count 0

Each thread increases count by 1 for a total of 10000 times

+1

How lock-example works

Main thread

Child thread Child thread Child thread Child thread Child thread

………..

30 threads

uint32_t count 0

Each thread increases count by 1 for a total of 10000 times

1

+1

How lock-example works

Main thread

Child thread Child thread Child thread Child thread Child thread

………..

30 threads

uint32_t count 0

Each thread increases count by 1 for a total of 10000 times

2

+1

How lock-example works

Main thread

Child thread Child thread Child thread Child thread Child thread

………..

30 threads

uint32_t count 0

Each thread increases count by 1 for a total of 10000 times

3

+1

How lock-example works

Main thread

Child thread Child thread Child thread Child thread Child thread

………..

30 threads

uint32_t count 0

Each thread increases count by 1 for a total of 10000 times

29

+1

lock.c
Implementation

• Multi-threaded Program
• 30 threads
• Each counts 10,000

• Correct result = 300,000

20 May 15, 2022

lock.c Implementation [contd.]

May 15, 2022 21

Run 30 threads

Wait to join

lock.c Implementation [contd.]

May 15, 2022 22

lock.c Implementation [contd.]

May 15, 2022 23

Results:

Race condition!

Lock Example

• Thread functions
• $./lock no # using no lock at all
• $./lock bad # using a bad lock implementation
• $./lock xchg # using xchg lock
• $./lock cmpxchg # using lock cmpxchg
• $./lock tts # using soft test-and-test & set with xchg
• $./lock backoff # using exponential backoff cmpxchg
• $./lock mutex # using pthread mutex

24May 15, 2022

inconsistent

consistent

1st Candidate: bad_lock

• bad_lock
• Wait until lock becomes 0 (loops if 1)
• set lockà 1
• Others must wait!

• bad_unlock
• Just set *lockà 0

25May 15, 2022

set to “1” to block others

set to “0” to release

critical
section

1st Candidate: bad_lock Result

•Inconsistent!

WHY?

26May 15, 2022

Inconsistency in bad_lock

27May 15, 2022

Is there an issue here?

Inconsistency in bad_lock

28May 15, 2022

mov (%rdi), %eax
cmp $0x1, %eax
je 0x400b60, <bad_lock>
movl $0x1, (%rdi)

mov (%rdi), %eax
cmp $0x1, %eax
je 0x400b60, <bad_lock>
movl $0x1, (%rdi)

thread 1 thread 2

ex
pe

ct
ed

 b
eh

av
io

r

waiting on spin lock

Inconsistency in bad_lock

29May 15, 2022

mov (%rdi), %eax

cmp $0x1, %eax

je 0x400b60, <bad_lock>

movl $0x1, (%rdi)

mov (%rdi), %eax

cmp $0x1, %eax

je 0x400b60, <bad_lock>

movl $0x1, (%rdi)

thread 1 thread 2

ac
tu

al
 b

eh
av

io
r!

both get locks!
both enter critical section!
Inconsistent!

race condition still exists

Inconsistency in bad_lock

30May 15, 2022

mov (%rdi), %eax
cmp $0x1, %eax
je 0x400b60, <bad_lock>

movl $0x1, (%rdi)
mov (%rdi), %eax

cmp $0x1, %eax
je 0x400b60, <bad_lock>
movl $0x1, (%rdi)

thread 1 thread 2

ac
tu

al
 b

eh
av

io
r!

both get locks!
both enter critical section!
Inconsistent!

race condition still exists

How to avoid
race conditions?

31

Reason for Race Conditions?

• Separate load and store instructions

• while (*lock == 1); *lock = 0; was a bad implementation

• Need a method to remove gap between load and store!

May 15, 2022 32

load

store

Atomic Test-and-Set

• if (*lock == 0); *lock = 1;

• The “test” and “set” must be atomic!

• Hardware support is required
• xchg in x86 does exactly this
• An atomic test-and-set operation

33May 15, 2022

Must be a SINGLE INSTRUCTION!

xchg: Atomic Value Exchange in x86

• Exchange content in [memory] with the value in %reg atomically
xchg [memory], %reg

• How do we use it?

• Consider the following example:
mov $1, %eax
xchg lock, %eax

34May 15, 2022

load the value “1” into the eax register

exchange that with the value in “lock”

How does xchg work?

• xchg always sets lock to “1”
• Returns previous value of lock into (eax) register

mov $1, %eax
xchg lock, %eax

May 15, 2022 35

start: lock was “0”
result after xchg:
lock à 1
eax à 0

start: lock was “1”
result after xchg:
lock à 1
eax à 1

lock à 1

lock à 1

only one thread will
see lock == 0

hardware locking
memory bus

Details

May 15, 2022 36

start: lock was “0”
result after xchg:
lock à 1
eax à 0

start: lock was “1”
result after xchg:
lock à 1
eax à 1

lock was ‘0’
We acquired the lock!

lock was ‘1’
We did not acquire the lock!

2nd Candidate: xchg_lock [using ‘xchg’]

• xchg_lock
• Use atomic ‘xchg’ instruction
• Load and store values atomically
• Set value to `1’, and compare return value

• If 0, then you can acquire the lock
• If 1, lock is 1, you must wait

• xchg_unlock
• Use atomic ‘xchg’ instructon
• Set value to `0’
• No need to check!

• You are the only thread in critical section!

37May 15, 2022

critical
section

2nd Candidate: xchg_lock Result

• Consistent!

https://gitlab.unexploitable.systems/root/lock-example
[You can run this by cloning the repo!]

38May 15, 2022

High overheads!

cache coherency!

https://gitlab.unexploitable.systems/root/lock-example

Detour | Cache Coherency

May 15, 2022 39

Memory

Data Value = 1

CPU 1

Data Value = 1

Detour | Cache Coherency

May 15, 2022 40

Memory

Data Value = 1

CPU 1

Data Value = 2
update

Detour | Cache Coherency

May 15, 2022 41

Memory

Data Value = 2

CPU 1

Data Value = 2

Detour | Cache Coherency

May 15, 2022 42

Memory

Data Value = 2

CPU 1

Data Value = 2

CPU 1

Data Value = 3

Detour | Cache Coherency

May 15, 2022 43

Memory

Data Value = 2

CPU 1

Data Value = 2

CPU 1

Data Value = 3

update

Detour | Cache Coherency

May 15, 2022 44

Memory

Data Value = 3

CPU 1

Data Value = 2

CPU 1

Data Value = 3

Detour | Cache Coherency

May 15, 2022 45

Memory

Data Value = 3

CPU 1

Data Value = 2

CPU 1

Data Value = 3

Inconsistent!

Detour | Cache Coherency

May 15, 2022 46

Memory

Data Value = 3

CPU 1

Data Value = 2

CPU 1

Data Value = 3

Invalidate!
Flush CPU1 L1 cache

Detour | Cache Coherency

May 15, 2022 47

Memory

Data Value = 3

CPU 1

Data Value = 2

CPU 1

Data Value = 3

load again

Detour | Cache Coherency

May 15, 2022 48

Memory

Data Value = 3

CPU 1

Data Value = 3

CPU 1

Data Value = 3

consistent

Back to xchg

• Atomic xchg instruction loads/stores data at the same time
• There is no gap for race condition

• But it could cause cache contention!
• Many threads update the same ‘lock’ variable
• Multiple CPUs cache ‘lock’ variable
• Update to lock invalidates cache!

49May 15, 2022

