
1

Prof. Sibin Mohan
Spring 2022 | Lec. 11: Multithreading 

and Synchronization

CS444/544
Operating Systems II

Adapted from content originally created by: Prof. Yeongjin Jang



Quiz 2

2



Administrivia

3

• Lab 3 due date extended: May 20, 2022 [Friday] at 11:59 PM!
• Lots of office hours/lab sessions this week and next

• Watch all Tutorials and go through the slides/textbook

May 10, 2022



Virtualization à Concurrency

Topics 
discussed 
today

Process / Thread

Synchronization via Mutex

Concurrency bugs / Deadlock

4



Process/Thread/Synchronization

• Why is concurrency useful?
• Difference between Process/Thread

• Data racing issues
• Synchronization (Mutual Exclusion)

5



Single-threaded CPU Performance

• # of transistors
• Increases linearly

• Performance
• No longer increasing linearly

6



CPU Speed Capped by 
Frequency/Power
• How to get a better performance?

7



CPU Speed Capped by 
Frequency/Power
• How to get a better performance?

8



Motivation for Concurrency

Trend in CPU

Same clock speed (3~5Ghz), more CPU cores

Increase System Performance

Run many jobs at the same time

fully utilize multiple cores

How to increase application 
performance?
Run multiple functions as separate jobs

at the same time!

Processes, Threads

9

vs



Concurrency Options

10

Process
program is a 

separate instance

Thread
program is same 

instance

owns resources shares resources

one 
to 
many



Process
• Each execution runs in isolated environment

• Does not share memory space
• Each process its has own page table

• Inter-Process Communication 
• for data sharing
• file, pipe, socket(), shared memory, etc.

11

CANNOT ACCESS MEMORY DIRECTLY

Page Directory/Table



Process (Environment in JOS)

Kernel

Others

Free

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free

Global
int counter;

Program

env_create()

Process creates a new private memory space

EMPTY

Parent Child



Process (Environment in JOS)

Kernel

Others

Free

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free

Global
int counter;

Program

env_create()

Process creates a new private memory space

EMPTY

Parent Child

int foo(arguments)
{

some code ;

some other code ;
}



Process (Environment in JOS)

Kernel

Others

Free

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free

Global
int counter;

Program

env_create()

Process creates a new private memory space

EMPTY

Parent Child

int foo(arguments)
{

some code ;
fork() ;
some other code ;

}



Process (Environment in JOS)

Kernel

Others

Free

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free

Global
int counter;

Program

env_create()

Process creates a new private memory space

EMPTY

Parent Child

int foo(arguments)
{

some code ;
fork() ;
some other code ;

}

int foo(arguments)
{

some code ;
fork() ;
some other code ;

}

Parent Child



Process (Environment in JOS)

Kernel

Others

Free

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free

Global
int counter;

Program

env_create()

Process creates a new private memory space

EMPTY

Parent Child

int foo(arguments)
{

some code ;
pid_t pid = fork() ;
if (pid == parent)

parent_function(arguments);
else 

child_function(arguments);
}

int parent_function(arguments)
{...}

int child_function(arguments)
{...}



Process (Environment in JOS)

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free

Global
int counter;

Program

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free

Global
int counter;

Program

fork()

Fork() creates new process by copying memory space
Process creates a new PRIVATE memory space

DOES NOT share
variables

EMPTY EMPTY

Parent Child



Process | Pros vs Cons

18

Pros Cons

Parallelism without program modifications More memory requirements à one per process

Separation of memory spaces [isolation] Separation of memory spaces [no data sharing]

Easy to start à fork() Each process needs to be ended separately



Process | Pros vs Cons

19

Pros Cons

Parallelism without program modifications More memory requirements à one per process

Separation of memory spaces [isolation] Separation of memory spaces [no data sharing]

Easy to start à fork() Each process needs to be ended separately



Process | Pros vs Cons

20

Pros Cons

Parallelism without program modifications More memory requirements à one per process

Separation of memory spaces [isolation] Separation of memory spaces [no data sharing]

Easy to start à fork() Each process needs to be ended separately



Process | Pros vs Cons

21

Pros Cons

Parallelism without program modifications More memory requirements à one per process

Separation of memory spaces [isolation] Separation of memory spaces [no data sharing]

Easy to start à fork() Each process needs to be ended separately

• Any write will incur memory duplication even in CoW fork()
• Inter-process Communication (IPC) is available, but slow
• Suitable for parallel ‘isolated’ execution
• Not suitable for parallel execution on shared data



Two Issues

22

Parallelism

Share a memory space

Threads!



Threads
• What is a thread?
• creates a shared memory space 
• runs concurrently

• Sharing
• access the same memory space
• e.g., global variables, etc.

• A process contains 1 or more threads

23

Page Directory/Table

Process
• creates a new private memory space
• runs concurrently



Thread | 
Sharing 
Memory

24

• Process Creation via fork()
• Naïve design

• copy all physical pages
• create a new page directory/table 
• has same virtual mapping (to new, corresponding physical pages)

• Copy-on-write
• do not copy all physical pages but keep the same mappings 
• provide a private copy when write on COW page occurs

• Thread Creation
• Get a new execution environment
• Assign the same page directory/table (e.g., assign the same CR3)
• Create a new stack / storage for register context to store execution 

context separately
• Use less memory than fork()



Thread
Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free

Global
int counter;

Program

pthread_create()

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free

Global
int counter;

Program

USTACK 2 Add a new stack!

Adding value

The same variable

EMPTY EMPTY

25



Thread | Pros vs Cons

26

Pros Cons

Easier to share memory across threads No isolation! Programmers must be careful

Less memory, compared to fork 
[only new stack, registers]

All threads share same address space



Thread | Pros vs Cons

27

Pros Cons

Easier to share memory across threads No isolation! Programmers must be careful

Less memory, compared to fork 
[only new stack, registers]

All threads share same address space



Thread | Pros vs Cons

28

Pros Cons

Easier to share memory across threads No isolation! Programmers must be careful

Less memory, compared to fork 
[only new stack, registers]

All threads share same address space

• Suitable for parallel execution on shared data
• Not suitable for having a private execution



Thread Problems

29



Thread
Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free

Global
int counter;

Program

pthread_create()

Kernel

Heap

Others

UXSTACK

USTACK
EMPTY

Free

Global
int counter;

Program

USTACK 2

The same variable

EMPTY EMPTY

30

Why not 2000000?



Data Race

• A thread’s execution result could be inconsistent
• other threads intervene its execution!

• counter += value
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;

31



Thread 1

Data Race Example (No race)

edx = value• counter += value
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;

• Assume at start,
• counter = 0 
• value = 1

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

eax = 0

eax = 1

counter = 1

edx = 1

eax = 1

eax = 2

counter = 2

OK, consistent!
32



Thread 1

Data Race Example (Race cond.)

edx = value• counter += value
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;

• Assume at start,
• counter = 0 
• value = 1

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

eax = 0

eax = 1

counter = 1

edx = 1

eax = 0

eax = 1

counter = 1

Overwrite, inconsistent!

33



Thread 1

Data Race Example (Race cond.)

edx = value• counter += value
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;

• Assume at start,
• counter = 0 
• value = 1

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

eax = 0

eax = 1

counter = 1

edx = 1

eax = 0

eax = 1

counter = 1

This load must run after
Storing of a counter 



Thread 1

Data Race Example (Race cond.)

edx = value• counter += value
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;

• Assume at start,
• counter = 0 
• value = 1

eax = counter

eax = edx + eax

counter = eax

Thread 2

edx = value

eax = counter

eax = edx + eax

counter = eax

edx = 1

eax = 0

eax = 1

counter = 1

edx = 1

eax = 1

eax = 2

counter = 2

35



How to Prevent Data Races?

• Root-cause
• A thread may load the ‘previous version’ of shared data (counter = 0) 
• Before the previously running thread properly stores it (counter += 1)

• Store instruction of the previous thread must finish
• before the load instruction of the next thread

• Solution
• Make all loads on shared variable wait until previous load-store finishes
• Mutual exclusion

36



How to Prevent Data Racing?
• Mutual Exclusion / Critical Section
• Combine multiple instructions as a chunk
• Let only one chunk execution run
• Block other executions
• Next execution 

• only after finishing all previous critical sections

• pthread_mutex() does this for you
• learn how we can implement locks soon

Thread 1
Critical Section

edx = value

eax = counter

eax = edx + eax

counter = eax

Thread 2

Critical Section
edx = value

eax = counter

eax = edx + eax

counter = eax

No access to 
counter

37



How to Prevent Data Racing?
Thread 1

Critical Section
edx = value

eax = counter

eax = edx + eax

counter = eax

Thread 2

Critical Section
edx = value

eax = counter

eax = edx + eax

counter = eax

No access to 
counter

38

• Mutual Exclusion / Critical Section
• Combine multiple instructions as a chunk
• Let only one chunk execution run
• Block other executions
• Next execution 

• only after finishing all previous critical sections

• pthread_mutex() does this for you
• learn how we can implement locks soon



Would Mutex Render Threading Useless?
Thread 1

Critical Section

Thread 2

Exclusion

Critical Section

Critical Section

Exclusion

Critical Section

Exclusion

Critical Section

Exclusion

Exclusion

Thread 1

Critical Section

Critical Section

Critical Section

Critical Section

Critical Section

39



Use Critical Section Only If Required

Critical Section

Parallel Job

Parallel Job

40

Critical Section

Parallel Job

Parallel Job



Use Critical Section Only If Required

Critical Section

Parallel Job

Parallel Job

41

Critical Section

Parallel Job

Parallel Job

Thread 1



Thread 1

Use Critical Section Only If Required

Critical Section

Parallel Job

Parallel Job

42

Critical Section

Parallel Job

Parallel Job



Thread 2Thread 1

Use Critical Section Only If Required

Critical Section

Parallel Job

Parallel Job

43

Critical Section

Parallel Job

Parallel Job



Thread 2Thread 1

Use Critical Section Only If Required

Critical Section

Parallel Job

Parallel Job

44

Critical Section

Parallel Job

Parallel Job

Exclusion



Thread 2Thread 1

Use Critical Section Only If Required

Critical Section

Parallel Job

Parallel Job

45

Critical Section

Parallel Job

Exclusion
Parallel Job



Thread 2Thread 1

Use Critical Section Only If Required

Critical Section

Parallel Job

Parallel Job

46

Critical Section

Parallel Job

Exclusion
Parallel Job

Critical Section

Parallel Job

Parallel Job

Critical Section

Parallel Job

Parallel Job



Caveat: Apply Mutex only if required

47

Mutex can synchronize 
multiple threads and yield 

consistent results

• No read before previous 
thread stores shared data

Making entire program a 
critical section is 

meaningless for parallelism

• Running time will be same 
as single-threaded 
execution

Apply critical section as 
short as possible

• maximize benefit of 
having concurrency

• Non-critical sections will 
run concurrently!



Enabling Mutual Exclusion

• cli, in a single processor computer
• Clear interrupt bit

• CPU will never get interrupt until it runs sti
• Set interrupt bit

• There will be no other execution
• Any problems?
• Multi CPU?
• cli/sti available in Ring 0 

• counter += value
• cli
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;
• sti

48



Mutex (Mutual Exclusion)

• Lock
• Prevent others enter the critical section

• Unlock
• Release the lock, let others acquire the lock

• counter += value
• lock()
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;
• unlock()

49



Mutex (Mutual Exclusion)
• Lock à prevent others from entering critical section

• How?
• Check if any other execution in the critical section

• If it is, wait; busy-waiting with while()
• If not, acquire the lock!

• Others cannot get into the critical section
• Run critical section
• Unlock, let other execution know that I am out!

• counter += value
• lock()
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;
• unlock()

50



Mutex Example
Thread 1 Thread 2

Critical Section

edx = value
eax = counter

eax = edx + eax
counter = eax

lock()

unlock()

Critical Section

edx = value
eax = counter

eax = edx + eax
counter = eax

lock()

unlock()

Critical Section

edx = value
eax = counter

eax = edx + eax
counter = eax

lock()

unlock()

wait!

run!

wait!

run!

51



How Can We Implement Locks?

52

Thread 1 Thread 2
Critical Section

edx = value
eax = counter

eax = edx + eax
counter = eax

bad_lock()

bad_unlock()

Critical Section

edx = value
eax = counter

eax = edx + eax
counter = eax

bad_lock()

bad_unlock()

*lock == 0, pass while
*lock = 1 (T1)

*lock == 1, stay in while (T2)

*lock = 0 (T1)
*lock == 0, break while (T2)
*lock = 1 (T2)

Critical
Section

Unfortunately, only works in 
single CPU environment



Summary

• Single-threaded CPU performance does not increase linearly anymore
• CPU contains many cores to speed up by concurrent execution

• Process and Thread are two options for exploiting concurrency
• Process: new page directory/table; do not share memory; isolated
• Thread: shares CR3 (page directory/table); shared memory; not isolated

• Data race could happen if two or more threads access same memory
• Mutex is one way of avoiding this

53


