
Groundhog: A Restart-based Systems Framework
for Increasing Availability in Threshold Cryptosystems

Ashish Kashinath†, Disha Agarwala†, Gabriel Kulp§, Sourav Das†, Sibin Mohan∗ and Radha Venkatagiri‡
†University of Illinois at Urbana-Champaign,§Oregon State University,

∗The George Washington University, ‡Georgetown University,
Email: †{ashishk3, disha, souravd2}@illinois.edu, §kulpga@oregonstate.edu,

∗sibin.mohan@gwu.edu, ‡radha.venkatagiri@georgetown.edu

Abstract—Threshold cryptosystems (TCs), developed to elim-
inate single points of failure in applications such as key
management-as-a-service, signature schemes, encrypted data
storage and even blockchain applications, rely on the assump-
tion that an adversary does not corrupt more than a fixed
number of nodes in a network. This assumption, once broken,
can lead to the entire system being compromised.

In this paper, we present a systems-level solution, viz.,
a reboot-based framework, Groundhog, that adds a layer of
resiliency on top of threshold cryptosystems (as well as others);
our framework ensures the system can be protected against
malicious (mobile) adversaries that can corrupt up all but one
device in the network. Groundhog ensures that a sufficient
number of honest devices is always available to ensure the
availability of the entire system. Our framework is general-
izable to multiple threshold cryptosystems — we demonstrate
this by integrating it with two well-known TC protocols —
the Distributed Symmetric key Encryption system (DiSE) and
the Boneh, Lynn and Shacham Distributed Signatures (BLS)
system. In fact, Groundhog may have applicability in sys-
tems beyond those based on threshold cryptography — we
demonstrate this on a simpler cryptographic protocol that we
developed named PassAround1.

We developed a (generalizable) container-based framework
that can be used to combine Groundhog (and its guarantees)
with cryptographic protocols and evaluated our system using,
(a) case studies of real world attacks as well as (b) extensive
measurements by implementing the aforementioned DiSE, BLS
and PassAround protocols on Groundhog. We show that
Groundhog is able to guarantee high availability with minimal
overheads (less than 7%) . In some instances, Groundhog
actually improves the performance of the TC schemes!2

1. Introduction

“Three can keep a secret, if two of them are dead,”
Benjamin Franklin is supposed to have opined once. While

1. In fact, this protocol was suggested by a USENIX Security reviewer
that we then refined, implemented and evaluated in conjunction with
Groundhog (see §6).

2. While it seems counter-intuitive, we explain the reasoning in §5.

we don’t need such extreme measures to ensure that secrets
are not leaked, perhaps we can glean an interesting nugget
that leads us to Threshold Cryptosystems (TC) [35] where
many nodes or parties are involved in jointly performing
a cryptographic operation. TC is based on the premise that
localizing secrets at a single node or party makes it easier to
subvert an application relying on conventional cryptography.
Hence, the TC method performs encryption or decryption
without any single node holding the secret key and a digital
signature algorithm without any single node holding the
signing key. Applications include but are not limited to
signature schemes [36] — where the secret information is
the signing key, encrypted data storage [14], [6] — where
the secret is the key used to encrypt data, cryptocurrency
wallets [40] — where the secret key can be used to transfer
money from an account, and even applications such as
secure data and payment on Internet of Things (IoT) devices
and ad-hoc sensor networks [75]. Corroborating their po-
tential, NIST has released calls for proposals to standardize
TCs [61], [24]. In addition to providing improved protection
of secrets, TC schemes also provide operationally important
security properties such as removing single points of failure
(SPoF), that can mitigate potential hardware or software
implementation flaws seen in practice [61]. Consequently,
availability i.e., the systems property of being able to always
produce an output is central to a TC scheme.

Typically, a TC defined by a tuple, (t, n) where ‘n’
is the total number of devices in the system and ‘t’ (i.e.,
“threshold”) is the minimum number of devices whose con-
tribution is necessary for the application to make (opera-
tional) progress. In addition, there is a security guarantee
that a contribution by less than ‘t’ devices does not reveal
any secret information. An adversary now needs to corrupt
enough nodes such that the TC does not have ‘t’ trusted
nodes3, in order to sabotage the application.

The choice of t and n can have significant effects
on availability as well as the security guarantees of the
system. Consider a Smart Home security application that
uses threshold cryptography with n = 5 devices that are
used to capture different biometrics viz., fingerprint, iris
signatures, gait, voice and facial recognition. If we set the

3. i.e., it needs to corrupt at least (n− t+ 1) nodes

threshold t = 4, i.e., the smart home application must
use four out of the five biometrics, then the TC system
is only resilient against an adversary that corrupts at most
1 device, as any additional corrupted devices will result
application failure. Alternately, if we set the threshold lower,
say t = 2, then the overall application becomes less resilient
to attackers — who only need to break a smaller number
of authenticated mechanisms/devices (two in this case) to
learn the secret, i.e., impersonate the user. Hence, there
is an inherent trade-off between availability and security
guarantees. While some protocols sidestep this issue by
resorting to a weaker threat model using a semi-honest
adversary [14], that leads to reduced resilience. Intuitively,
while using a higher threshold is better for security (adver-
sary must corrupt more nodes to leak the secret), we need
to ensure that the adversary cannot block the TC protocol,
and hence the application, (i.e., “availability”) by corrupting
the now smaller set of (n− t+ 1) nodes.

Motivated by this trade-off between security and avail-
ability, we propose Groundhog, a framework that uses
tamper-proof reboots to ensure that an adversary is unable
to subvert more than a limited number of nodes thus, as we
show soon, increasing the resiliency and availability of the
overall system. This tamper-proof rebooting is carried out
while ensuring that:

1) there are always at least t honest nodes — for the TC
to ensure availability at all times and

2) an adversary cannot take control of more than (n− t)
nodes thus ensuring the security of the system.

Groundhog guarantees availability even in the presence
of a mobile adversary4. Rebooting devices, albeit simple
when looked at superficially, are a promising practical ap-
proach since significant fractions of attacks (e.g., in embed-
ded/IoT/control systems or even cryptosystems) take finite
times to complete i.e., cause damage. Rebooting devices
has been studied extensively for both, eliminating faults as
well as deterring attacks in systems (e.g., [26], [68], [37],
[10], [12], [13], [11], [17], [73], [46]). These proposals,
however, primarily target single device systems. While there
exist some methods for distributed systems [73], [46], [26],
they require honest nodes to monitor others for signs of
adversarial behavior and run an agreement protocol (e.g.,
Byzantine [52]) to identify and restart misbehaving nodes.
Crucially, such approaches do not ensure availability during
reboots. Furthermore, they cannot protect the system in pres-
ence of stealthy adversaries that avoid setting off triggers
until they corrupt enough nodes in the network.

Unlike existing approaches, Groundhog (described
in §4) is able to thwart stealthy adversaries. Moreover,
Groundhog obviates the need for running an agreement
protocol (e.g., Byzantine [52] or otherwise) as we do not rely
on the identification of misbehaving nodes for its operation
— we reset nodes in a systematic fashion, regardless of
whether it is faulty or not! As a result, our protocol has a

4. A mobile adversary [77] can capture parties in a multi-party protocol
dynamically and is limited only by a bound on number of parties it can
control.

much lower communication cost, thus making it suitable for
use even in low-resource/embedded/IoT devices. We demon-
strate that Groundhog is able to ensure the correctness
and forward progress of the TC in spite of such resets. For
any TC running on Groundhog, we are able to guarantee
important properties, especially in the presence of an adver-
sary, viz.,: (a) correctness (i.e., the output of Groundhog
is semantically equivalent to that of a non-faulty centralized
system), (b) privacy (i.e., a malicious adversary corrupting
fewer than t nodes learns no information about the master
key even after participating in the protocol execution) and
(c) availability as already discussed. In fact, Groundhog is
not limited to TCs alone — as we demonstrate in §6.2, it is a
generalized reboot-based framework that can be used by any
such cryptographic protocol that requires high availability
and resiliency.

We demonstrate the use and effectiveness of
Groundhog using two existing TCs – Distributed
Symmetric Encryption (DiSE) [14] and Boneh, Lynn and
Shacham Distributed Signatures (BLS) system [21]. Our
results, explained in §6.1, show that Groundhog is not
only able to match the performance of the base TC in
spite of reboots, but often performs better with intelligent
book-keeping. We also apply Groundhog to two usecases
– a Blockchain ledger (§6.3) and a Smart Home application
(§6.4) to demonstrate our system in practical settings.

In summary, TCs often do not have safeguards that
guarantee availability. In fact, the relationships between
corruption threshold, availability and number of nodes
are often overlooked but impose practical and operational
constraints. Groundhog is a framework that can thread
the security-availability trade-off while adding resiliency.
Hence, we make the following contributions:

1) we designed Groundhog, a restart-based framework
that increases the availability of TCs

2) we developed a container-based framework that imple-
ments Groundhog5 that can be used with a variety of
cryptographic protocols (not just TCs)

3) we analyze Groundhog (i) atop multiple TCs (DiSE
and BLS), (ii) a Blockchain-based application and
Smart Home case studies and (iii) a simple crypto-
graphic protocol suggested by a reviewer.

2. System Assumptions and Threat Model

Our system model is based on scenarios used in TC
literature (e.g., [14], [21], [22]). We also analyzed a DARPA
case-study on known attacks against distributed systems [5]
to motivate some of the practical aspects of reboot and
attack times in the threat model in §2.1. Specifically, our
system comprises of:

(i) a fully-connected network of n agents under a trusted
owner O that initializes the secret keys of all agents.
The agents can be different components within the same

5. The code and instructions can be found at:
https://github.com/synercys/Groundhog

computing node or it can be multiple computing nodes com-
municating over a private network. In practice, O could be
the network administrator or the end-user. O is responsible
for the setup, execution and teardown of the TC.
(ii) a synchronous network i.e., messages sent between
honest devices are delivered within a known bounded time.
Frameworks guaranteeing finite end-to-end delay such as
RealFlow [47] can design such networks using Software-
defined Networking (SDN) and Traffic Engineering (TE)
mechanisms.
(iii) agents that run a time-synchronization protocol such as
NTP [55], PTP [33] or Lamport Vector Clocks [51] thereby
possessing a common, shared clock.
(iv) agents have access to a local source of randomness
and a tamper-proof rebooting mechanism. These are of-
ten built into most embedded/IoT platforms, e.g., STM32
Microcontrollers [1].

2.1. Threat Model

Mobile Adversary: We consider the presence of a mobile
adversary [77] that at any given point in time can corrupt
up to (t − 1) devices in the network. Once an adversary
compromises a device, it can access all of its internal state.
Moreover, the compromised device can deviate arbitrarily
from the specified protocol; e.g., potential attacks include
the adversary forcing devices it controls to share incorrect
or even malicious queries. Furthermore, the adversary can
force the compromised devices to arbitrarily drop messages
or not participate in the protocol at all [76]. Additionally, the
adversary can monitor the state of the network to observe
which nodes reboot at any given point in time. Since we
consider a mobile adversary, we allow the adversary to un-
corrupt a device (either deliberately or due to Groundhog)
and corrupt the device again at a later point in time. Lastly,
we assume that the adversary cannot break standard cryp-
tographic assumptions such as commitment schemes.
Finite, non-zero attack time: We assume an inherent delay
in compromising a new device in the network. Specifically,
we assume that the adversary takes at least a units of
time to corrupt a device. This is reasonable since attacks
take a finite amount of time and reboots thwart it; even if
intrusion is instantaneous, actual manifestations of attacks
take finite time; e.g., attacks in embedded/control systems,
ASLR derandomization etc. [17].
Finite, non-zero reboot time: We assume that each device
can be reset to a well-defined benign state6, and that a
rebooted device can communicate with other devices within
at most r units of time.
Relation between attack time and reboot time: We make
a practical assumption that the attack time a ≥ m · r for
an integer m > 1. An analysis of various APT attacks on
distributed systems as a part of the DARPA Transparent
Computing (TC) [5] illustrates that this is a practical as-
sumption for many real-world applications. Fig. 1 shows

6. A “clean” software state stored on, say, read-only memory.

Firefox Drakon APT Sysinfo
Firefox Drakon APT Elevate Copykatz

SSH BinFmt-Elevate
Firefox BITS Micro APT

Nmap SSH SCP
Firefox Drakon APT Elevate Inject

Firefox Drakon APT BinFmt-Elevate Inject
Appstarter APK Micro APT Elevate

Nginx Drakon APT
Firefox DNS Drakon APT FileFilter-Elevate

Firefox BITS Verifier Drakon APT
Firefox Drakon APT (Android 8)

Lockwatch APK Java APT

20 25

840
300

120
660

1,020
780

480
900

660
240

960
120

420

Time (in seconds)

Average Attack time Average Reboot Time

Figure 1. Average attack time for the attacks carried out by DARPA
Transparent Computing (TC) program during Engagement #5 [5]. Note that
the average reboot time for Amazon EC2 t3.xlarge instance (20.9 secs) and
Raspberry Pi 4 Model B (25.2 secs) << the average attack time.

a plot of attack times for various kinds of attacks. The y-
axis represents types of vulnerabilities analyzed and the x-
axis represents time. We found that the average attack time,
represented by blue horizontal bars, was 480 seconds. In
comparison, the reboot times of platforms such as a Rasp-
berry Pi 4 and an t3.xlarge Amazon EC2 instance, plotted
in red vertical lines, are approximately 25.3 seconds and
20.9 seconds respectively. The details of the attacks studied
in the DARPA dataset are given in §A of the Appendix.
Additionally, Table 1 shows some examples of attack and
reboot times from prior work involving reboots. Existing
papers [10], [11], [15] compute reboot times depending
on system state. For example, Fig. 1 in Yolo [17] is a
visualization of various reboot processes.
Tamper-proof rebooting mechanism: We assume that ev-
ery device has a tamper-resistant rebooting mechanism that
is inaccessible to the adversary i.e., an adversary cannot
tamper with, interrupt or disable the rebooting mechanism.
Table 1 lists examples and §3.1 covers details on realizing
such tamper-proof rebooting mechanisms in practice.

Additionally, adversaries cannot combine states across
reboots, owing to a special process known as key-resharing.
This is a valid assumption that has been used often in
literature [10], [11], [15], [17], [18], [46], [48], [60], [65],
[66], [73].
Side-channel attacks: Side-channels (e.g., power consumed
or time taken for an operation) accessible to the attackers
can be modeled using models such as the noisy leakage
model [29] or the probing model [45]. “In both models,
under reasonable assumptions on the statistical distribu-
tions of side-channel information, the complexity of a side-
channel attack of a suitable implementation with an n-out-
of-n secret sharing exponentially increases with the number
of shares” [61]. Thus, side-channel attacks, which generally
exploit implementation details, become infeasible when the
number of shares is high, and are further mitigated with
techniques such as secret sharing.
Out of scope: While Groundhog provides resilience

TABLE 1. POSITIONING GROUNDHOG AMONG EXISTING LITERATURE INVOLVING REBOOTING

Papers Tamper-Proof Reboot Mechanism Applications Reboot Times Attack
Times

Resecure [11], [46] Independent Watchdog Timer, TEE
(ARM TrustZone)

3-DOF-Helicopter, Building Au-
tomation

390ms, 10s 1.23s, 6000s

Software-Rejuvenation [65], [66] Kernel Module Enclave 6-DOF-Quadcopter 200ms 1s
YOLO [17] Read-only-memory ASLR Derandomization, Engine

Control, Flight Control
Tens of seconds,
20ms, 20ms

29s-3.6mins,
N/A, N/A

Reboot-oriented-IoT [73] TEE IoT/Edge lifecycle management 17-20s N/A
CRA [15] Multiple Adaptive Cruise Control N/A N/A
Groundhog [THIS PAPER] Watchdog Timer (or any of the

above)
Threshold-Cryptosystems
(DiSE, BLS), PassAround

20s, 3s 60s, 6s

TABLE 2. IMPACT OF GROUNDHOG ON THRESHOLD CRYPTOSYSTEMS

Systems Property Without
Groundhog

With
Groundhog

Tolerate up to (t − 1)
corruptions

× ✓

Availability given t Needs n = (2t−1) Needs n ≥ t

against practical attacks, as mentioned above, there are some
Groundhog cannot protect against, e.g.,(i) instantaneous
attacks that use location of a code pointer (JIT-ROP [72]),
(ii) persistent malware that remain after rebooting, e.g., in-
fecting filesystems/bootloader (Subvirt [49], BluePill [2]) –
complete recovery from persistent attacks is a hard problem
in IoTs that might require full reinstallations and (iii) attacks
against trusted environments (Boomerang [54]).

3. Background and Preliminaries

This section provides necessary background for
Groundhog viz., tamper-resistant reboots and realizing it
in practice, various cryptographic protocols and techniques
used in TCs – DiSE, BLS, PassAround (our simple
protocol) and secret sharing. The mathematical notations
used are listed in Table 3.

3.1. Tamper Resistant Rebooting Mechanism

Groundhog uses tamper-resistant rebooting mecha-
nisms to remove adversaries and get the system to a well-
defined safe state. The reboot mechanism must meet two
guarantees: (a) a tamper-resistant method to ensure the
reboot happens, even in the presence of faults/malicious
adversaries and (b) an adversary should not be able to
alter the rebooting sequence(s). Such mechanisms can be
implemented in several ways, of which two approaches are
described here.

(i) Using independent watchdog timers – We can use
an external watchdog timer to implement a tamper-resistant
reboot mechanism. A watchdog is a software timer used
to detect and recover from computer malfunctions [59].
Typically, watchdog timers have counters that a program
regularly resets. In general, the resets are done through a
watchdog control port. Failure to reset the timer, say due to
software or hardware faults, results in the timer rebooting the

system. Following an approach similar to Abdi et al. [11],
we configure the watchdog timer API to set the counter time
only once (i.e., immediately after reboots) in Groundhog.
Any subsequent calls to reset the watchdog timer before
the next reboot are ignored. This prevents adversaries from
resetting the timers to in order to circumvent our methods. It
is important that we use an independent hardware watchdog
timer (e.g., Dual Watchdog Timer Board [3]), as it uses its
own low-speed clock, so it stays active even in the event
of a main clock failure. Independent watchdog timers are
very common, and is available in major IoT devices such
as STM32 Microcontrollers. In fact, independent watchdog
timers are used in STM32 as a part of larger device security
features such as Secure boot (SB) and Secure firmware
update (SFU) [1]. Therefore, the cost of a tamper-proof
rebooting mechanism is zero as it pre-exists in most if not
all IoT platforms.

(ii) Scheduled reboots in cloud environments – Similar
to on-device rebooting mechanisms, scheduled reboots in
cloud environments can be done using the utilities provided
by cloud service providers. For e.g., AWS allows the reboot-
ing of devices using the Amazon EC2 console, a command-
line tool or the Amazon EC2 API [9]. Moreover, if the
system fails to shut down cleanly after initiating the reboots,
AWS performs a hard reboot of the instance within a few
minutes.

Note: Groundhog requires the reboot mechanisms to
be tamper-proof, and not the specific computational plat-
form (e.g., AWS EC2 instances, containers). Depending on
the specific reboot mechanisms (Table 1), breaking out
of containers may or may not increase vulnerability e.g.,
hardware watchdogs are harder to circumvent as opposed
to pure OS/software approaches [27], [39], [69]. Thus, con-
tainer security is tangential to Groundhog; we assume that
containers/applications employ standard security measures.

3.2. Threshold Cryptosystems (TCs)

TCs use threshold secret sharing schemes (§3.3) to
implement cryptographic primitives, that involve a compu-
tation (e.g., signature) over the secret shares with security
goals such as confidentiality, integrity and authenticity. In
addition to security goals, TCs also have operational goals
such as resiliency and availability. Examples of TC include

time

Slot 1

2
3
4

1

5

2
3
4

1

5

2
3
4

1

5

2
3
4

1

5

Slot 2 Slot 3 Slot 4 Slot 5

2
3
4

1

5

Honest Device Rebooting Device

Figure 2. PassAround scheme on a 5-node TC. Each slot demonstrates
one node performing the computation and passing the results to the next
node, and then being rebooted in a cyclical fashion. In slot 1, the orange
node d1 here is being rebooted at the end of its computation time [t1, t2],
before passing it to node d2 that computes during the interval [t2, t3],
before passing it to node d3 and so on.

Distributed Symmetric Encryption (DiSE) and the Boneh,
Lynn and Shacham (BLS) Distributed Signature.

3.2.1. Distributed Symmetric Encryption (DiSE). The
DiSE scheme consists of a setup phase and two interactive
protocols: DisEnc and DisDec. The setup phase is used to
generate the master-secret key, sk, and the corresponding
secret shares of each device, denoted by [sk1, sk2, . . . , skn]
where ski is the share of device di. To encrypt a message
m using the DisEnc protocol, a device (the “encryptor”),
interacts with t devices in the TC and requests for a par-
tial encryption on m. Each of these t devices uses their
secret share ski to compute the partial encryption of the
message m and sends this partial ciphertext back to the
encryptor. Note that the computation to generate the partial
ciphertext needs to be independent of m; otherwise the
device will learn information about m, which is undesirable.
The encryptor, upon receiving responses from the t devices,
aggregates them to compute the ciphertext using the master
secret key, i.e., c = Enc(sk,m). DisDec protocol is defined
in an analogous manner. The protocol must satisfy the fol-
lowing properties: (a) correctness, (b) message privacy and
(c) availability. We point the reader to Agrawal et al. [14]
for definitions of (a) , (b) and DisDec. Here, we discuss the
availability of DiSE.

Availability. This property of DiSE ensures that whenever
an honest encryptor initiates the DisEnc with a message m,
the DisEnc outputs a valid encryption of message m using
the master secret key, sk. Similarly, an honest decryptor
should be able to decrypt its ciphertexts at all times. Like-
wise, in the case of a (t, n)-threshold signature scheme, all
invocations of the protocol must terminate successfully and
produce a signature. In summary, availability for a TC im-
plies that such a system must always produce an output. We
seek to ensure availability of TC for any given encryption
threshold t < n. To ensure availability in the presence of a
malicious adversary, the number of honest nodes (n−t) must
be greater than the reconstruction threshold, t, i.e., t ≤ n

2 .
Otherwise, if t > n

2 , then the faulty nodes may not respond
to the queries made by the client7 and the protocol fails.

7. Note: Nodes may not respond either due to unintentional bugs such
as Heisenbugs [58], [32] or due to deliberate malicious behavior by an
attacker.

3.2.2. Boneh, Lynn and Shacham (BLS) Signatures. BLS
is a signature scheme that is shown to be deterministic, non-
malleable and efficient [22], [21]. BLS is used in applica-
tions such as point-to-point secure communication protocols,
in remote connections and is useful in applications when
minimal storage or bandwidth are required. This arises from
a single signature being sufficient to authenticate multiple
messages and public keys. Being a signature scheme, the
primary attack is a ‘rogue key attack’ [64], in which a
specially crafted public key, called the rogue key, is used
to forge an aggregated signature.

A TC-based BLS protocol [21] requires a threshold
number of responses to signature queries to recombine into a
full signature. Upon receiving a query, a responder (signing
node) in a TC would determine from the source of the query
if it should respond. If the request is accepted, then the
responder signs the message with its key share and replies
with the partial signature. The initiator (requesting node)
then receives partial signature shares from each responder
and, recombines them into a full signature.

3.2.3. PassAround-based TC. As a thought experiment,
we also studied a specialized TC that combines reboot
sequences and secret sharing. Consider a (t, n) TC where a
scheme is as follows - the owner O initiates threshold secret
sharing such that the secret key sk is split into shares {ski},
where ski is the share to device di. The reboot sequence is
designed such that at time ti, the sequence is a n-bit number
where, {di = 1|t ∈ [ti, ti+1]} i.e., node d1 reboots at time
t1, node d2 reboots at time t2 and so on. In addition, the
computation is done in a pass-around, cyclical manner as
follows – at the start, node d1 computes on message m using
its secret share sk1 until time t1, when it d1 reboots. Then,
it passes its partial encryption to node d2, which computes
until time t2 and passes its partial encryption to node d3,
which computes and passes to node d4 at t4 and so on. Note
that for this reboot sequence, at any point in time ti, only
one device di, that has the secret share ski is performing the
computation as shown in Fig. 2. We implement this scheme
in Groundhog and study the effect of this specialized
reboot sequence in §6.2.

3.3. Threshold Secret Sharing

A (t, n) threshold secret sharing scheme enables us
to share a secret s ∈ Zq among n devices D =
{d1, d2, . . . , dn}, with each device getting a secret share
such that any subset of devices d ⊆ D can recover the
original secret only if |d| ≥ t. If |d| ≤ (t − 1), the secret
s cannot be recovered. In other words, in threshold secret
sharing, only the cardinality of the set of shares matter.
Consider splitting a key K ∈ Zq into n = 4 devices. If
we pick three K1, K2, K3 at random from Zq to be the key
shares, and let the fourth key share K4 = K1⊕K2⊕K3⊕K,
where ⊕ is the exclusive OR operation if the keys are bit
strings, then no three shares provide any information about
the key K, and all the shares are required to recover K.

Figure 3. (a) A 5-node TC {d1, d2, . . . , d5} that illustrates that without
any additional mechanism, for any given n, t can be at most (n + 1)/2,
i.e., t can be ≤ 3. (b) In the same TC, If t > 3, the system is not available
because the adversary can corrupt device d2, d3, and d5. As a result, shares
of device d1 and d4 are not sufficient for the application.

This is a case of t = 4 and is a strawman example of (4, 4)
threshold secret sharing scheme.

Depending on the methodology of generating individual
secret shares, there are multiple schemes such as the Blak-
ley’s Secret Sharing [19], Secret Sharing via the Chinese Re-
mainder Theorem [57] and the Shamir Secret Sharing [70].
We use the Shamir Secret Sharing (SSS) scheme.

4. Groundhog Design

The design of Groundhog revolves around goals of
the underlying Threshold Cryptosystem (TC) i.e., (a) cor-
rectness, (b) message privacy, and (c) availability. We first
cover some challenges in TC’s that hinder attaining these
goals, then present our terminology and our design.

4.1. Challenges in Threshold Cryptosystems

Observation: Availability is challenging at higher thresh-
olds. By definition, a (t, n) TC needs at least t nodes for
making progress. For e.g., in DiSE, to encrypt a message m,
the encryptor queries t devices for partial encryption on the
message. However, since adversary A can infect up to t−1
devices in the network, corrupt devices may never respond
to the encryption queries. As a result, in the presence of
A, only n− (t− 1) devices are guaranteed to respond with
the partial encryption. Now, if n − (t − 1) < t, then the
n− (t−1) responses are insufficient to encrypt the message
and DiSE system is no longer available. Thus, without any
additional mechanisms, DiSE requires n− (t− 1) ≥ t, i.e.,
n ≥ 2t− 1.
Example: Fig. 3 illustrates this for a network with n = 5
nodes. Fig. 3(a) illustrates the case when t = 3. Let us
consider the scenario where adversary A can corrupt up to
(t − 1) i.e., two nodes. If we assume that A corrupts two
nodes – d2 and d3, that leaves the remaining three nodes
– d1, d4 and d5 to perform the encryption processes. We
note that this is sufficient for the application requirement
since t = 3. Alternatively, in Fig. 3(b) we consider the
case when t = 4. Similarly, let us assume that adversary A
can corrupt up to (t− 1) i.e., three nodes. Suppose that A
corrupts nodes d2, d3 and d5, then shares of the remaining
nodes – d1 and d4 are insufficient for the application to
make progress. Hence, without any additional mechanisms,
this TC with a higher threshold does not ensure availability.

Key Insight: For a given threshold t, TCs requires at
least (2t−1) nodes to ensure availability. Alternately, for a

time

.

Attack time (a)
Reboot time (r)

1 2 m

Figure 4. For a single device, attack time (a) is at least as large as m times
the reboot time (r) i.e., a ≥ m ∗ r.

TABLE 3. KEY MATHEMATICAL NOTATIONS

Notation Interpretation in Groundhog

s Master secret
di Devices in the network
si Secret share of device di
n Total number of devices in the network
t Minimum number of devices needed for encryption,

availability guaranteed by Groundhog
a Attack time
r Reboot time
k Number of devices rebooted per slot
(t+ k) Number of honest devices in a slot
n− (t+ k) Number of non-honest devices in a slot
m Number of slots in an epoch such that a ≥ m ∗ r
⌈(t

m
)⌉ Number of devices rebooted per slot (= k)

Zq Set of integers modulo q
A Adversary

given number of nodes n, the TC can operate at thresholds
≤ (n+1)

2 to ensure availability. Thus, this relation between
n and t is an added limitation on TC to ensure availability.

4.2. Enabling Availability at High Thresholds

Groundhog provides availability at high thresholds and
supports arbitrary threshold i.e., t ≤ n (instead of (n+1)

2) by:
• Iteratively rebooting potentially faulty devices to safe

state using the tamper-resistant rebooting mechanism,
• while maintaining the following invariant — For any

given threshold t, at any given time, at least t devices
in the network are guaranteed to be honest.

As a result, these devices will always participate in the
threshold protocol. Next we describe Groundhog.

4.3. Groundhog: Terminology

Groundhog defines attack time a as the time taken
to access the shared secret on a single device. Additionally,
reboot time r is defined as the time for a device to reboot
and be available to participate in the threshold protocol.
Groundhog has slots, a small time window where we
reboot a small subset of devices. The duration of a slot
is the time it takes for a device to reboot and partici-
pate in the threshold protocol after rebooting. In each slot,
Groundhog selects a subset of devices to reboot. The se-
lected devices then reboot themselves at the start of the slot
and hence are available to participate in the protocol by end
of the corresponding slot. Consequently, a core contribution
of Groundhog is the analysis and development of temporal
reboot sequences that ensure availability of t nodes for TCs.

time

. Slot 1 Slot 2 Slot 3 Slot m

Epoch 1

. . . Slot
(m+1)

Epoch 2

Slot
(m+2)

Epoch 3

Figure 5. The execution of Groundhog is divided into continuous seg-
ments of time called slots. A sequence of m slots comprise an epoch.

Number of devices (n)
Threshold (t)
Attack Time (a)
Reboot Time (r)

Calculate epoch size (m)
!

"#! ≤ m ≤ $%

Calculate devices to reboot
per slot per epoch

Threshold Cryptosystem Parameters

Generate reboot
sequence

TC-based primitives (e.g., DiSE, BLS)

Reboot sequence over time

Groundhog

Encryptor

d2
d3

d4

d1

d5

n = 5, t = 3

d1 d2 d3 d4 d5

U U U U U
U U U D D
D U U U D

1

2

3

U: UP, D: DOWNtime
UP

4

DOWN

Figure 6. Overview of Groundhog. In Groundhog, we determine the
reboot sequence using the given parameters t and n. We then calculate the
size of an epoch using attack and reboot times. We use this epoch size
and threshold t to find the number of devices we need to reboot per slot.
Each device then uses this slot information and generated reboot sequence
to find its next reboot time.

We denote a sequence of m > 1 slots as an epoch. We
refer to an epoch by the starting slot number of the epoch.
For e.g., when an epoch starts in slot ℓ, we refer to it the
ℓth epoch. Throughout the paper, we follow the convention
that slot number starts at 1. The size of an epoch i.e., m, is
a system parameter and can be application specific. In our
design and evaluation, we choose m based on the estimate
of the time required by an attacker to corrupt a device. In
particular, if an attacker takes a seconds to compromise
a device and the reboot time of a device is r seconds,
then m is chosen such that a ≥ m · r. In other words,
m represents the time, in number of slots, that an attacker
takes to compromise a device. E.g., considering an attack
time a = 40 seconds and a reboot time r = 20 seconds, we
get m ≤ a/r = 2, i.e., each epoch will be 2 slots long.

4.4. Groundhog: High-level Overview

The overall design of Groundhog, applied to a n-
node TC with threshold t, attack time a and reboot time
r, is shown in Fig. 6. We first calculate the size of an
epoch i.e., m using the attack time (a) and reboot time
(r) (Ref. 1). Next, using the epoch size and threshold, we
determine the number of devices rebooted per slot (Ref. 2).
Depending on the nature of the reboot sequence required,
we generate a sequential or random scheme. The reboot
sequence can be computed locally or using the owner O
(Ref. 3). Groundhog also allows integrating key reshar-

time

Slot 1

2
3
4

1

5
6
7

2
3
4

1

5
6
7

2
3
4

1

5
6
7

2
3
4

1

5
6
7

2
3
4

1

5
6
7

Epoch Slot Rebooting Devices Honest Devices Devices Available to Attacker

Epoch 1 Slot 1 3,4
Slot 2 5,6

Epoch 2 Slot 3 7,1 3,4,5,6 2
Slot 4 2,3 5,6,7,1 4

Epoch 3 Slot 5 4,5 7,1,2,3 6
Slot 6 6,7 2,3,4,5 1

Epoch 4 Slot 7 1,2 4,5,6,7 3
Slot 8 3,4 6,7,1,2 5

Epoch 5 Slot 9 5,6 1,2,3,4 7
Slot 10 7,1 3,4,5,6 2

Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8 Slot 9 Slot 10

2
3
4

1

5
6
7

2
3
4

1

5
6
7

2
3
4

1

5
6
7

2
3
4

1

5
6
7

2
3
4

1

5
6
7

Honest Device Rebooting Device Attacker Device

Figure 7. TC with n = 7 and t = 4 with reboot sequence
{d3, d4, d6, d5, d1, d7, d2} and with k = 2 devices rebooted every slot.

ing schemes to refresh the secrets, either initiated by the
device or encryptor (Ref. 4) – while ensuring it satisfies
availability and security guarantees (See Lemma 1, Lemma
2 and Theorem 3).

4.5. Number of devices to reboot

Let k be the number of devices that are rebooted in any
given slot. We need to calculate the number of devices to
reboot in any given slot and epoch to ensure availability.

4.5.1. Naive Strategy. Since an attacker takes at least m
slots to corrupt a device, a naı̈ve strategy would be to reboot
all the devices after every m slots. This will ensure that no
device will ever be corrupt. However, one issue is that since
we reboot all the devices at once, while the nodes are getting
rebooted, no device will be available to serve the application.
Furthermore, this approach does not take the threshold t into
consideration, and as a result can be highly inefficient when
t ≪ n.

4.5.2. Groundhog Strategy. Groundhog uses the fol-
lowing two observations to calculate k. (i) For any given
threshold t, to ensure availability at all times, it is sufficient
to ensure that at least t distinct honest devices are available
at all times. (ii) Once a device is rebooted, it remains honest
for up to m · r units of time. We combine these to compute
the number of devices to be rebooted in any given slot.

For any given t and m, we describe our approach for
t ≥ m and t < m separately. When t ≥ m, Groundhog
reboots k = ⌈t/m⌉ devices in every slot. Moreover, in
any consecutive m slots, i.e., in each epoch, Groundhog
reboots each device at most once. As a result, in each epoch
of m slots, Groundhog reboots at least m · k ≥ t devices.
Example: In Fig. 7, since m = 2 and t = 4, Groundhog
reboots k = t/m = 2 devices in each slot, and t distinct
devices in every epoch. In particular, Groundhog reboots
device d3 and d4 during slot 1, and d6 and d5 during slot 2.
We reboot devices d3, d4, d6 and d5 in epoch 1 and, devices
d1, d7, d2, and d3 in epoch 3.

time

Slot 1

2
3
4

1

5
6
7

2
3
4

1

5
6
7

2
3
4

1

5
6
7

2
3
4

1

5
6
7

2
3
4

1

5
6
7

Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8 Slot 9 Slot 10

2
3
4

1

5
6
7

2
3
4

1

5
6
7

2
3
4

1

5
6
7

2
3
4

1

5
6
7

2
3
4

1

5
6
7

Honest Device Rebooting Device

Epoch Slot Rebooting Devices Honest Devices Devices Available to Attacker

Epoch 1 Slot 1 3 All* None*Slot 2 4

Epoch 2 Slot 3 - All* None*Slot 4 -

Epoch 3 Slot 5 5 3,4 1,2,6,7
Slot 6 6 4,5 1,2,3,7

Epoch 4 Slot 7 - 5,6 1,2,3,4,7
Slot 8 - 5,6 1,2,3,4,7

Epoch 5 Slot 9 7 5,6 1,2,3,4
Slot 10 1 6,7 2,3,4,5

Epoch 6 Slot 11 7 7,1 2,3,4,5

Figure 8. TC with n = 7 and t = 2, with reboot sequence
{d3, d4, d5, d6, d7, d1} and with k = 1 device rebooted every slot. *
- a device is honest for 4 slots after reboot.

When t < m, Groundhog reboots at most one device
per slot. This implies that there are slots when Groundhog
do not reboot any device. Specifically, during a slot ℓ,
Groundhog reboots a device only if (ℓ − 1) mod m < t
and do not reboot any device otherwise. Note that, in every
slot, Groundhog ensures that there are at least t = 4 honest
nodes for availability and the adversary is not controlling
more than (n− t) = 3 nodes for security.
Example: In Fig. 8, where n = 7, t = 2, and m = 4. Hence,
Groundhog reboots at most one node per slot. Moreover,
we only reboot nodes in slot 1 and 2 because both (1 −
1) mod 4 = 0 < 2 and (2 − 1) mod 4 = 1 < 2. Likewise,
we do not reboot any device in slots 3 and 4. As in the
previous case, we note that the Groundhog invariants are
maintained here as well. Interestingly, the larger value of m
ensures here that the attacker gets kicked out of the TC, on
rebooting, before the attack time thus thwarting the attack,
e.g., moving from slots 8 → 9.

4.5.3. Relation between k and availability. We note that
k can not be arbitrarily large, since during every slot, n−k
nodes are available to the TC. This implies that n − k ≥ t
for availability i.e., k ≤ n− t.

k =
⌈ t

m

⌉
≤ n− t ⇒ m ≥ t

n− t
(1)

Devices rebooting per slot
assuming m divides t

Eqn. (1) illustrates that given n and t, there is
a minimum m and hence a minimum attack time that
Groundhog can tolerate while ensuring availability. Ta-
ble 4 illustrates the minimum values of m Groundhog
can tolerate. In summary, for any t ≤ n/3, Groundhog
can ensure availability for even m = 1. For n/3 < t < n,
the minimum value of m increases to up to t. In the limit
when t = n, i.e., all devices are required for the TC to make
progress, Groundhog cannot reboot any device, which
makes sense because rebooting even a single device would
violate availability.

TABLE 4. MINIMUM REQUIRED m FOR ANY THRESHOLD t AND n ≥ 3.

Threshold t 1 n/3 n/2 2n/3 n− 1 n

Minimum m 1 1 2 3 t = n− 1 —

4.5.4. Analysis of Groundhog guarantees. We will first
argue that at any given point in time, at least t honest devices
are always available for the threshold system. This immedi-
ately implies that Groundhog always ensures availability.

Lemma 1. For any given n, t and m ≥ t/(n − t),
Groundhog ensures that at least t devices are available
in every slot.

Proof. The lemma is trivially true for the first m slots of the
system. For a slot ℓ > m, we will first calculate the number
of devices that gets rebooted in slots [ℓ−(m+1), ℓ−1] (both
inclusive). This is because all the devices rebooted during
the interval will remain honest during slot m.

When t ≥ m, Groundhog reboots at least ⌈t/m⌉
devices per slot. Thus, Groundhog will reboot at least
t devices in every m consecutive slots, including in slots
[ℓ− (m+ 1), ℓ− 1]. When t < m, Groundhog reboots a
device in each slot ℓ where ℓ mod m < t. Since there are
exactly t such slots within any consecutive m interval, this
implies that Groundhog reboots exactly t devices during
the interval [ℓ− (m+ 1), ℓ− 1].

4.6. Selecting Reboot Sequence

To select which devices to reboot in any given slot,
we observe that as long as we reboot at least t distinct
devices in each epoch, the exact order in which devices are
rebooted are not crucial to ensure availability. Nonetheless,
the exact order of rebooting devices might be critical in
many applications, and we discuss two different approaches
to select the order in which devices need to be rebooted.

4.6.1. Sequential Reboot Sequence. The most natural ap-
proach to reboot devices sequentially is in a round robin
manner, say according to their device identities.

Let d1, d2, . . . , dn be the device identities. When t ≥ m,
in the sequential approach, Groundhog reboots k =
⌈t/m⌉ devices in each slot. In particular, during slot ℓ,
Groundhog reboots all devices dj where j = (k(ℓ− 1) +
i) mod n for all i = 1, 2, . . . , k.

Alternatively, when t < m, Groundhog reboots at
most one device per slot. Therefore, there are slots when
Groundhog does not reboot any device. Specifically, dur-
ing a slot ℓ, Groundhog reboots a device only if (ℓ −
1) mod m < t. In particular, during slot ℓ where (ℓ−1) mod
m < t, Groundhog reboots the device with identity dj
where, j = (⌊(ℓ− 1)/m⌋ · t+ (ℓ− 1) mod t) mod n

Example: Fig. 9(a) and Fig.9(b) illustrates the sequen-
tial reboot sequences for t < m and t > m respectively, in
a network with n = 5. We assume an attack time a = 40
seconds and reboot time r = 20 seconds, giving m = 2.

2 3 41 5

Up Device Rebooted Device

2 3 41 5

(a) a=40, r=20, t=1
⇒ m=2, k=1

(b) a=40, r=20, t=3
⇒ m=2, k=2

1 2 3 4
d1 d2

1 2 3 4
d1,d2d3,d4d5,d1d2,d3

Figure 9. Sequential reboot approach in a network of 5 devices
d1, d2, . . . , d5. For part (a) we pick t = 1 < m and for part (b) we
pick t = 3 > m.

In Fig. 9(a) we choose t = 1, hence Groundhog
reboots at most ⌈t/m⌉ = 1 device in each slot. Furthermore,
as described above, when t < m Groundhog reboots a
device in a slot ℓ, only when (ℓ − 1) mod m < t. Hence,
Groundhog reboots only in slot 1, 3, 5, and so on. In
Fig. 9(b) we choose t = 3, hence k = ⌈t/m⌉ = 2 i.e.,
Groundhog reboots two devices in every slot in a round
robin manner. Hence, in this case, Groundhog reboots
device d1 and d2 in slot 1, device d2 and d3 in slot 2,
device d5 and d1 in slot 3, and so on.

The primary advantage of a sequential approach is its
simplicity and efficiency. For e.g.,, each device can locally
determine when it should reboot itself. Additionally, each
device can also compute the subset of devices that were
rebooted during the last m slots. The downside of this
approach is that the reboot sequence is deterministic and
is fixed given n, t, and m. An attacker can exploit this de-
terministic nature of the reboot schedule to corrupt devices
strategically using techniques such as Scheduleak [30].

4.6.2. Random Reboot Sequence. To prevent an attacker
from exploiting the deterministic nature of the sequential
reboot sequence, one could reboot a random subset of
devices in every slot, making the attacker play whac-a-mole
figuratively. Essentially, a random order is a permutation π
of {1, 2, . . . , n}, wherein the position of i in that permuta-
tion determines the slot device di should reboot itself. Note
that, during the calculation of a permutation, the protocol
must reveal to node i, only its position in π. This ensures
that upon corrupting a device, the adversary will learn only
about that device and not others.

However, the random rebooting approach brings along
with a set of challenges:

C1. For any given slot, how many and which devices
should we reboot in that slot;

C2. Even if the protocol designer knows which devices
to reboot in any given slot, how will the devices know the
slot they need to reboot,

C3. How do we guarantee the correctness of this ap-
proach, i.e., ensuring that at least t distinct devices gets
rebooted in every m slots, while ensuring an adversary
cannot learn the slots when honest nodes will get rebooted.

There are 2 broad approaches to address C1–C3 – (i)
with the help of a trusted owner O and (ii) without any
assistance from O.

In the first case, a trusted owner, O, can locally sam-
ple random sequences and notify each device about the
slot it needs to reboot. If each device is equipped with a
tamper-resistant networking stack to interact with the O,
it can be informed about when to reboot. In applications
such as Smart Home, where trusted owners are a realistic
assumption, this approach is highly efficient in terms of
communication and computation cost.

In the second case, a naı̈ve approach to random reboots
can be achieved by each node locally sampling a biased bit
b and rebooting itself if b = 1. Let p be the probability of
b = 1, then the expected number of nodes that gets rebooted
in each slot is np (expected value of n independent Bernoulli
trials). Thus, if we choose p = t/(nm), then on expectation
t will be rebooted in every m consecutive slots. However,
we need to guarantee that t nodes reboot in m slots with
high probability i.e., p ≫ t/nm [43]. Additionally, to ensure
availability, we require that at most (n − t) devices gets
rebooted in any given slot with high probability. Thus we
also need that p ≪ (n− t)/n. Combining the above we get
that for a valid p, m ≫ t/(n−t). As a ≥ m.r, this condition
requires the attack time to be very large, thus restricting the
class of attacks Groundhog can tolerate.

An alternate approach to random reboots without a
trusted owner is to run a secure Multi-Party Computa-
tion (MPC) [53] among the devices to generate the ran-
dom reboot order The major drawback of the MPC-based
approach is its high communication and computation cost,
which makes them undesirable for larger TCs.

In Groundhog we address a variant of the problem
which is more communication and computation efficient but
only achieves a weaker security than MPC as described next.

In every slot ℓ where ℓ−1 mod n/k = 0, the TC uses the
master secret key to generate a fresh shared random string
µℓ. Concretely, µℓ can be either generated by a honest device
or in a distributed manner e.g., threshold signatures on a
agreed upon message such as the current slot number [20],
[56] and distributed randomness [23]. In any given slot ℓ, let
µℓ be the generated randomness. Then each device locally
uses µℓ as a seed to generate a pseudo-random permutation
πℓ of {1, 2, . . . , n} using the Fisher–Yates [38] shuffling
algorithm. Each device di then chooses the next slot to
reboot itself according to index of i in πℓ. Algorithm 1 in
the appendix is a listing of this algorithm.

Our discussion so far of generating the pseudo-random
permutation does not take into consideration that the newly
generated permutation πℓ may violate the invariant that at
least t distinct devices gets rebooted in every epochs. In
particular, such a violations may occur in epochs where
some devices are rebooted as per the previous permutation
and some devices are rebooted as per πℓ. Without any
additional mechanism it is possible that a subset of devices
gets repeatedly rebooted in the epoch, potentially breaking
the requirement of t distinct devices in m slot. To handle
this, we modify our approach as follows.

Upon generating the random seed µℓ, each device uses
µℓ+θ as the seed to the Fisher–Yates algorithm to generate
the pseudo-random permutation πℓ,θ. Here θ is a non-

TABLE 5. ILLUSTRATION OF PRIVACY VIOLATION IN A TC WITH
n = 7, t = 4 AND m = 2.

Slot 1 2 3 4 5 6

Devices rebooted d1, d2 d3, d4 d5, d6 d7, d1 d2, d3 d4, d5
Malicious devices — — d7 d2 d4 d6

negative integer with a default value of 0. Each device
locally checks whether πℓ,θ is consistent with πℓ′ , the latest
used permutation, in the following sense. For any given
m and t two permutations are called inconsistent if the
suffix of πℓ′ of length κ and the prefix of πℓ,θ of length
t− κ has less than t distinct devices. Thus, upon finding a
consistent permutation πℓ,θ∗ , each device sets πℓ as πℓ,θ∗ .
This inconsistency check ensures Lemma 1 i.e., t distinct
devices gets rebooted in every m slots. Thus, if for any
θ, πℓ,θ is inconsistent, then devices increment θ and re-
generates a new permutation with the updated θ. We next
describe key resharing.

4.7. Key Resharing

One problem for Groundhog is that it allows the
adversary, A to corrupt additional nodes over time, without
a provision to update shares of each device. Thus, A can
eventually corrupt enough devices to recover the master
secret and, hence, violate the message privacy of the TC.

Example. Consider a TC of n = 7 devices {d1, d2, . . . , d7},
with t = 4 and m = 2. Since k = ⌈t/m⌉ = 2, Groundhog
reboots two devices in every slot. Let s be the master secret
shared among all devices and si be device di’s share of s.
Table 5 illustrates the set of devices Groundhog reboots
in each slot along with the possible set of corrupt device in
each slot. Observe that Groundhog reboots devices d1 and
d2 in slot 1, devices d3 and d4 in slot 2 and so on. As m = 2
and all devices were rebooted at the start of the system, A
cannot corrupt any device till slot 2 (since attack time is at
least twice the reboot time). During slot 3, A can corrupt
device d7 as m = 2 slots have passed since d7 was rebooted
at start of the system. Similarly, A corrupts device d2, d4
and d6 at the start of slot 4, 5 and 6, respectively. Since A
gets access to the secret share of a corrupt device, at the
beginning of slot 6 , A will have access to 4 shares of the
master secret viz., s7, s2, s4 and s6. Since t = 4, these four
shares are sufficient for A to reconstruct secret s. Note that
Groundhog ensures availability of the TC at all times, as
at least four devices were available in every slot.

4.7.1. Naı̈ve Strategy. A naı̈ve approach to prevent the
attacker from collecting the master secret over time would be
reboot each device within m slots i.e., within a units of time
from its last reboot. This will ensure that the attacker cannot
corrupt any device and will never recover the secret. Note
that this approach will require us to reboot all n devices
every m slots, whereas Groundhog reboots t devices in
every m slots.

4.7.2. Proactive Secret Sharing. Since Groundhog is
a systems framework, we can incorporate existing (and
future) cryptographic schemes to address these problems.
In the rest of this section, we discuss one such mechanism,
viz., Proactive Secret Sharing (PSS) [62] in order to protect
the master secret in the aforementioned scenarios — by
periodically refreshing the share for each device. Hence, an
adversary needs to corrupt at least t devices within a short
span of time to recover the secret. However, there exist
challenges to directly using PSS in Groundhog, viz.,

(i) Different Threat Models PSS refreshes shares of each
device after a pre-specified time interval (phase). Their
threat model assumes an adversary can corrupt at most t de-
vices in each phase. Groundhog considers a much stronger
adversary model where corruption rate is only limited by the
attack time a and the adversary can corrupt all devices in
parallel. For instance, if no devices are rebooted for more
than a units of time, then A can corrupt all n devices.

Example. Consider the example in Table 5 for a network
of n devices with threshold t > n/2, where Groundhog
reboots k devices in each slot. We will have t honest,
recently-rebooted devices and k currently-rebooting devices
in any slot — i.e., (t+ k) honest devices in any slot. Now,
A can compromise only the remaining n − (t + k) non-
honest devices. Let ℓ be a slot where A has compromised
n − (t + k) devices. Then, if we successfully refresh of
shares for each device during slot ℓ, then by end of the
refresh protocol, A will have access to at least n− (t+ k)
new shares of the master secret! Consider t = n/2, if A
corrupts k new devices in the next slot, which is possible
in our threat model, we will lose privacy by the next slot.
The above is true, independent of m or the attack times.

(ii) Phase vs Attack Time When PSS is used as discussed
above, A can recover the secrets immediately after the phase,
whereas once Groundhog updates the shares of each de-
vice, A will not be able to recover the master secret for at
least m slots. Thus, Groundhog with strategic reboots, is
able to thwart the attacker using the notion of attack time.

4.7.3. (Changes to) PSS for Groundhog. We intend
to achieve the following goals by adapting PSS to
Groundhog: (i) after resharing, A will not be able to
recover the secret up to m − 1 slots, (ii) every m slots,
reboot only t devices instead of all the n nodes and (iii)
only run the PSS scheme once every m slots.

Let Groundhog run the resharing protocol in slot ℓ.
Also, let Hℓ be the set of devices that are honest during
slot ℓ. Note that |Hℓ| ≥ t and Hℓ consists of devices that
were rebooted during slot [ℓ−m, ℓ−1]. Then, Groundhog
only runs the PSS resharing protocol among the devices
in Hℓ. Furthermore, once the resharing phase terminates,
only devices in Hℓ get new shares. All other devices do
not learn their updated shares immediately; instead, they
get their (new) shares after their next reboot.

Concretely, the master secret s, in Groundhog, is

shared among devices using a degree-(t, t) bi-variate poly-
nomial uZq[x, y] where q is a prime and

u(x, y) =

i=t,j=t∑
i=1,j=1

ui,jx
iyj (2)

Then the master secret s = u(0, 0) and shares of device di
are two polynomials defined as ai(y) = u(i, y) and bi(x) =
u(x, i). Also, di uses si = ai(0) as its input to the threshold
cryptosystem. With this new secret sharing scheme, after the
resharing protocol terminates, the new shares of each device
di ∈ Hℓ are polynomials a′i(y) and b′i(x).

Let Rℓ be the set of devices that are rebooted in slot ℓ.
Then, to assist a device dj ∈ Rℓ to recover its new share,
each device in di ∈ Hℓ sends ai(j) and bi(j) to dj . Device
dj , upon receiving messages from t + 1 distinct devices
in Hℓ, interpolates them using Lagrange interpolation to
construct a′j(y), b′j(x) and sets s′j = aj(0). We refer the
reader to Cachin et al. [25] and Tassa et al. [74] for details.

Let Hℓ+1 be the set of devices that are (a) guaranteed
to be honest in slot ℓ+ 1 and (b) has received new shares.
Note that Hℓ+1 = {Hℓ ∪Rℓ} \Xℓ+1. Here Xℓ+1 is the set
of devices A corrupts at the beginning of slot ℓ+1. During
ℓ + 1, devices in Hℓ+1 assist devices in Rℓ+1 to get their
new shares — this cycle continues for m slots i.e., till slot
ℓ+m. Then during slot ℓ+m, devices in Hℓ+m rerun the
resharing protocol to refresh shares of the master secret.

4.7.4. Analysis of PSS Guarantees. We show that upon
resharing at any given slot ℓ, the secret remains inaccessible
to A till slot ℓ + m without any resharing of shares in
between. We also show that in any given slot, there exists
a pre-defined set of devices that are bound to be honest in
that slot. In particular, these include the devices that were
rebooted in previous m slots. Also, note that for any given
threshold t, there are at least t such devices.

Moreover, unlike existing PSS schemes, our updated ver-
sion is communication-efficient, — it has a communication
cost of O(n2) and does not require any broadcast channel,
due to communication with only honest nodes.

Lemma 2. If the resharing protocol is run during any given
slot ℓ, then the master secret remains inaccessible to the
attacker till slot ℓ+m even when no resharing protocol is
run during slots [ℓ+ 1, ℓ+m].

Proof. When the shares of the master secret are reshared
during slot ℓ, the set of shares accessible to A are only
those of the devices that become corrupt after slot ℓ. For
any slot ℓ′ > ℓ, let Xℓ′ denote the set of devices A corrupts
during slot ℓ′. Then by construction,

ℓ+m∑
ℓ′=ℓ+1

|Xℓ′ | < t (3)

Equation (3) implies that the total number of devices A
corrupts between slot ℓ+1 and ℓ+m (both inclusive) is less
than n, which completely hides the master secret s.

Theorem 3. Assuming the existence of a malicious secure
proactive secret sharing with guaranteed output delivery,
Groundhog ensures message privacy against a malicious
adversary for any arbitrary threshold.

Proof. Let Π be any (n, t) be malicious secure proactive
secret sharing scheme. Also, for simplicity, let’s assume
that t is also the encryption threshold of Groundhog.
Then, by Lemma 1, Groundhog ensures that at every slot
there exist at least t honest devices in the network. This
implies that, if we start Π at any given slot, it will terminate
successfully and each honest device will receive a new share
immediately after reboot. Hence, by the security property of
PSS, the share collected by the A from any corrupt device
will become obsolete the next time they reboot.

Lemma 1 also implies that at any slot the A will corrupt
at most max(t, n−t) devices. Hence, by the secrecy property
of the underlying threshold secret scheme and the security
of Π, the secret remains hidden from the adversary. This
implies that if the underlying encryption scheme ensures
message privacy, then Groundhog also ensures the same.

5. Implementation

Our container-based implementation allows us to study
Groundhog in a realistic distributed setting8. In our imple-
mentation, an “initiator” uses bookkeeping to track the state
all responder nodes and only requests responses from nodes
that are “alive”. Additionally, containers can be individually
stopped and re-instantiated to achieve the same effect as a
physical device using watchdog or external timers. Further
details about the implementation are in Appendix §B.

The implementation9, includes three types of TCs: (i)
Distributed Symmetric Encryption (DiSE) [14], [4], (ii)
Boneh, Lynn and Shacham (BLS) distributed signatures [21]
and (iii) our simple protocol, PassAround.

6. Evaluation

The primary goals of our evaluation are to – (a) analyze
the availability guarantees offered by Groundhog, (b) mea-
sure the performance overhead, if any, due to Groundhog,
(c) evaluate Groundhog across multiple applications viz.,
DiSE and BLS and, finally, (d) demonstrate Groundhog on
realistic case studies. Throughout our evaluation, we pick the
attack time, a as the least time that our system can defend
against as described in Table 4 and the reboot time, r from
empirical measurements.

Evaluation setup. We extend the implementation of [4] to
a distributed system setup where each device is a separate
docker container. We use the cryptotools [7] library for
efficient implementations of primitives.

8. One of the original TC implementations [4] emulated different parties
as separate threads using a multi-threaded application on a single server.

9. Available at https://github.com/synercys/Groundhog

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

 14000

 15000

 16000

 1 2 3

P
er

fo
rm

an
ce

 in
 E

nc
/s

ec

Threshold (M)

DiSE
Groundhog + DiSE

4 Nodes

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 1 2 3 4 5 6 7

P
er

fo
rm

an
ce

 in
 E

nc
/s

ec

Threshold (M)

DiSE
Groundhog + DiSE

8 Nodes

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 0 1 2 3 4 5 6 7 8 9 10 11

P
er

fo
rm

an
ce

 in
 E

nc
/s

ec

Threshold (M)

DiSE
Groundhog + DiSE

12 Nodes

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
er

fo
rm

an
ce

 in
 E

nc
/s

ec

Threshold (M)

DiSE
Groundhog + DiSE

16 Nodes

Figure 10. Performance Analysis of Groundhog-Enabled Threshold Cryptosystems for Distributed Symmetric Encryption (DiSE) application Each graph
represents a cryptosystem with certain number of nodes (N). In each graph, the x-axis shows the number of participating nodes (i.e., threshold, M) and the
y-axis shows the performance in encryptions per second. We see that at low thresholds (< 25%), Groundhog-enabled system performs close to the baseline
threshold cryptosystem. However, at high thresholds, we see that enabling Groundhog has higher performance. This is because in a Groundhog-enabled
system, the client is aware of the liveness state of the nodes and hence communicates with only M nodes, whereas in the baseline threshold cryptosystem,
the client communicates with N nodes, aggregating the first M responses.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1 2 3 4 5 6 7

P
er

fo
rm

a
nc

e
in

 s
ig

na
tu

re
s

th
ro

ug
hp

ut

Threshold (M)

BLS
Groundhog + BLS

8 Nodes

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 1 2 3 4 5 6 7 8 9 10 11

P
er

fo
rm

a
nc

e
in

 s
ig

na
tu

re
s

th
ro

ug
hp

ut

Threshold (M)

BLS
Groundhog + BLS

12 Nodes

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

P
er

fo
rm

a
nc

e
in

 s
ig

na
tu

re
s

th
ro

ug
hp

ut

Threshold (M)

BLS
Groundhog + BLS

18 Nodes

Figure 11. BLS Application Performance in signatures/second as a function of different threshold ratios. The performance with Groundhog is very close
to the baseline.

 160000

 180000

 200000

 220000

 240000

 260000

 280000

 300000

4 Nodes
8 Nodes

12 Nodes
16 Nodes

20 Nodes

P
er

fo
rm

an
ce

 in
 E

nc
/s

ec

Threshold (M)

PassAround
PassAround scheme

Figure 12. PassAround using Groundhog This graph describes the per-
formance of a protocol where nodes pass around the secret share in a cyclic
manner. Each of the nodes reboots itself within a time lesser than the attack
time before passing the secret share to the next node. The y-axis shows
performance of PassAround in encryptions per second and the x-axis
represents threshold cryptosystems of varying number of nodes (N) where
this cyclic protocol is executed.

We perform experiments with varying number of devices
in the network from n = 4 to n = 18 and varying the
threshold from t = 2 to t = 16. We pick these numbers to
match with parameters in Agrawal et al. [14]. Additionally,
for a slot duration (r) of 30 seconds, the attack time (a) is
derived using Eqn. (1). Thus, for n = 12 and t = 6, the
attack time comes to tr/(n− t) = 30 seconds.

In Groundhog, as we proved in Lemma 1, we ensure
that t honest nodes required for encryptions/decryptions are
available at all times in the network. We maintain a list of
nodes locally that rebooted recently and the initiator used

this to query only those nodes.

6.1. Evaluation on DiSE and BLS

The results of applying Groundhog on DiSE are shown
in Fig. 10. We note that at low thresholds, the performance
TCs of multiple sizes ranging from 4 nodes to 16 nodes are
very close, with Groundhog being only marginally lower
(e.g., around 6-7% in case of 4 Nodes). As the threshold
increases, we note that Groundhog with its knowledge
of rebooting sequences, is able to give higher encryption
throughput. In Groundhog, we use a separate docker con-
tainer to track the liveness of various nodes and the client
uses this to query the secret share computations from the
specific nodes. On the contrary, DiSE by default relies on
waiting for responses from the first t number of nodes by
checking the status each of the nodes one-by-one.

For the case of BLS, the results are shown in Fig. 11.
The x-axis depicts threshold ratio and the y-axis depicts the
performance in signatures per second. We observe that in
BLS, as with the DiSE, as the number of nodes participating
in the signature scheme (i.e., the threshold) increases, the
number of signatures per second drops – both for vanilla
BLS and in the case of Groundhog + BLS. Note that
for higher thresholds, there is a small, but negligible drop
(less than 5%) in performance due to reboots which comes
from querying the nodes for their liveness as opposed to
maintaining a list of nodes that are rebooted in a known,
generated sequence.

6.2. Evaluation on PassAround

We next look at the performance of PassAround
using Groundhog in Fig. 12. While we expect that for a
given threshold, with increasing size of TC, the performance
would drop (15000 to 5000 as we increase N from 4 to 16
with M=2) due to higher communication and computations
involved in bigger TCs, here, we see that the performance of
PassAround is remaining relatively constant (within 10%)
even as the size of the TC increases. This is expected since,
at any time only two nodes communicate and pass the secret
share computations around. Thus, Groundhog can be used
to efficiently implement protocols such as PassAround.

6.3. Blockchain Case Study

A blockchain mechanism uses a decentralized ledger
system, in which each block of data must be confirmed by
every participating party. By virtue of being a distributed
ledger, it is constantly updated with transaction data. How-
ever, as the number of transactions in a blockchain grows,
the storage cost of the ledger grows quadratically since every
party must keep a copy of the ledger.
TC for Blockchain Ledger: Chen et al. [31] propose using
TCs to reduce this storage cost by dividing the blockchain
transaction block into n nodes, such that t nodes can recover
the original ledger file, but any number of nodes < t
cannot. Their scheme is able to reduce the storage cost of
traditional blockchain by 1/t, without introducing additional
communication cost. The TC version consists of 2 phases:

(a) Shadow Distribution Phase: The TC owner, O uses
a (t, n) scheme to share the transaction block S among n
nodes, e.g., using the Shamir Secret Sharing. At the end of
this phase, each node gets a secret share (a “shadow”).

(b) Secret Reconstruction Phase: O retrieves shares from
various nodes to reconstruct the transaction block S. Secret
shares from participating nodes provide t distinct points for
reconstruction, say using Lagrange interpolation10.
Performance Analysis We can use Groundhog to provide
availability guarantees for the ledger, i.e., ensuring that t
parties are always available. We analyze the storage cost
of a blockchain by dividing the ledger among n = 20
nodes11. We vary the threshold number of nodes from t = 8
to t = 18 parties. We analyze storage performance by
measuring the performance of shadow distribution and se-
cret reconstruction. We measure the performance of storage
operations per second by ensuring the parties participate in a
TC application with 100, 000 operations. As the application
makes progress, we observe its throughput in terms of file
operations per second (#ops/sec) and plot it in Fig. 13 across
varying thresholds. The nature of the performance curve is
similar to what we observe in other TCs, where application
throughput increases as the number of nodes increases.
When the threshold is lower, the application performance

10. Additional details can be found in the original paper.
11. Using a fixed n represents private blockchains used by small/medium

organizations.

TABLE 6. EXAMPLE REBOOT SEQUENCES OBSERVED ON THE
BLOCKCHAIN LEDGER TC. u REPRESENTS A NODE BEING UP, d

REPRESENTS A NODE BEING DOWN.

Threshold Example Reboot Sequences
8 ududdudddduduudddudu, uududududududddddddu
10 uduuuudddduduudududd, uuddduuudududddduduu
12 uduuuuudddduuuuddduu, uudduuduuuudduduuudd
14 ududduududuuuuuuuuud, uuuuuuuudududuudduud
16 ududduuduuuuuuuuuuuu, uuduuuuuduuuuuuuduud
18 uduuduuuuuuuuuuuuuuu, uuuuduuduuuuuuuuuuuu

drops because the communication costs (between the owner
and the nodes) dominate the computation cost at the nodes.
Consequently, from an application throughput standpoint,
the wait time increases. However, as the number of nodes
increases, this wait time is compensated by higher number
of participating nodes, as there is a larger chance of some
node’s computation overlapping with it. Consequently, the
throughput of the application increases as the number of
nodes increases. We note some of the reboot sequences gen-
erated by Groundhog for various thresholds in Table 6.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

P
er

fo
rm

an
ce

 [f
ile

 o
ps

/s
ec

]

Threshold Nodes for Ledger Storage (M)

Groundhog + TC

TC-based Blockchain Ledger

Figure 13. Performance of Groundhog in a TC-based Blockchain ledger
application for various threshold number of nodes.

6.4. Smart Home Case Study

We demonstrate Groundhog on an IoT-based Home
automation usecase [28] where a door lock mechanism is
operated by a controller. The door controller is connected to
multiple sensors in order to detect presence, acceleration and
contact (of a person), as well as the presence of the user’s
smartphone. When an individual shows up and interacts
with the door lock mechanism, it triggers a combination
of these sensors. The sensors then send a message to the
door controller and go through other components to perform
certain actions, such as setting up timers to close the door.

Note that the individual nodes (sensors) lack computa-
tional power and hence are not amenable to traditional secret
protection methods. Additionally, these environments are
simple, fragile and the devices can malfunction at anytime
or be easily compromised by an adversary. Consequently, a
TC-enabled door lock mechanism is applicable here, with

the computation shared among threshold number of nodes,
and the door controller acting as the TC owner O.
Performance Analysis We apply Groundhog in this sce-
nario and measure the performance for varying levels of
thresholds. The results are shown in Fig. 14, where the x-
axis shows number of nodes participating in the encryption
and y-axis shows the performance in encryptions per second.
At every point on the graph, we demonstrate reboot se-
quences generated across different nodes from top to bottom.
We see that at every step, at least threshold nodes are
available while providing high encryption performance.

Figure 14. Application example of a door lock mechanism in Home
Automation environment [28]. During the setup phase, the door controller
is the O which computes and shares the partial secret keys with all the
nodes (sensors, timers and user’s phone) in the TC.

7. Discussion

Attack Types: Groundhog is effective against attacks that,
(a) exploit volatile memory (reboots reset its contents) and
(b) exhibit non-trivial attack times. The motivation for (a)
comes from an RSA report [63] which shows that 80%
of attacks include memory safety/integer over/underflow
and that many attackers do not utilize persistent storage to
remain stealthy, while that for (b) comes from attacks seen
in CPS/IoT/Embedded systems that take finite time from
intrusion to manifestation (e.g., intruding into a drone can
be fast but physically crashing it takes much longer).
Attack Times: Note that Groundhog does not assume the
attackers operate slowly, but relies on the practical notion
that adversaries have finite capacities. This finite limitation
of adversaries is directly inspired from TC papers, where
an adversary only has capacity to a query finite number of
devices (Ref. §6.3 & Lemma 7.5 in Agrawal et al. [14]).
Reboot Times: Groundhog does not depend on a par-
ticular value of reboot time and can trade-off availability
guarantees vis-à-vis reboot times. A ‘worst-case’ reboot
time has stronger availability guarantees but protects against
fewer attacks, whereas an ‘average’ value can reduce avail-
ability guarantees. The analysis of reboot times (including
workload-based experiments to estimate it) are carried out
offline, before system deployment.

Statefulness: Groundhog assumes that the attacker cannot
carry over state between reboots on a node. So once the local
node has been rebooted, we assume that the attacker has
been kicked out and the node’s software state is reset to a
trusted version. However, Groundhog does not expect the
application to be stateless. So, for applications such as key
management, the local nodes will communicate results of
their computations to the trusted owner who then updates the
application state, say in a database. This is an assumption we
directly borrow from the TC literature where the local nodes
just carry out computations on its shares at the behest of
a central entity/owner. The reason behind Groundhog not
carrying state across reboots (for the local node) is precisely
because an attacker could take advantage of information
about the rebooting mechanism.
Usability: To use Groundhog, a system designer can
configure system parameters (e.g., reboot schedule) and then
step back. The designer could be a separate entity or the sys-
tem scheduler (local or distributed in cloud settings). Hence,
there is no need for any “coordination” or management after
that (unless the underlying system changes, in which case
designer/scheduler has to step in). O, which orchestrates the
TC operations such as secret sharing can also be the entity
that does the setup but does not have to be.
Synchronous Networks: Groundhog assumes that end-
to-end network latencies are finite i.e., network packets, say
those corresponding to secret sharing or partial encryptions,
are guaranteed to reach the destination without any packet
drops. While we assume synchronous networks in this work,
Groundhog does not rely on them and it is left up to the
application+TC protocol designer to adapt the underlying
application and the protocol to handle asynchrony (e.g., [78],
[34]). Note that Groundhog is a design-time framework
where the reboot sequences are initialized by the system
designer (e.g., O as mentioned above). After the reboot
sequences have been set up at various nodes, Groundhog
does not require any further inter-node communication —
for the rebooting part, not the application progress which is
the responsibility of the owner. Thus, Groundhog is ag-
nostic to inter-node communication delays. In other words,
the reboot mechanism depends only on that local node’s
watchdog timer. Thus, (a) any synchronization needs or (b)
any change in availability, both come from the underlying
TC application and protocol during the application exe-
cution. Once the TC protocol has been finalized, and the
thresholds and reboot sequences have been computed, we
can set up the reboot sequence (perhaps using some sort of
time synchronization). We then turn off (any) time/network
synchronization, start up the system and then let the ap-
plication execute. 12 Hence, the choice of synchronous or
asynchronous networks is a choice/property of the applica-
tion and/or TC protocols and not that of Groundhog.

To illustrate how Groundhog can be used with asyn-
chronous networks, consider a recent dynamic proactive
secret sharing scheme [78], a TC protocol that uses an

12. It has been shown that some TC protocols can operate correctly with
asynchronous networks albeit with lower thresholds [67], [42].

Asynchronous Complete Secret Sharing (ACSS) method. It
demonstrates that by using Multi-Valued Byzantine Agree-
ment (MVBA), shared secrets can be set up in a new set of
nodes running an application (committee) — all while guar-
anteeing agreement, termination and correctness. In such a
scenario, we argue that Groundhog can be used on the new
committee and provide availability guarantees, even on the
asynchronous network viz., by installing reboot sequences
on the new committee during transfer of commitment. As
Groundhog requires no inter-node communication, it con-
tinues to provide availability guarantees for the TC.
0-day attacks: Groundhog is particularly effective against
attacks whose attack time values are known in advance.
Thus, for 0-day attacks, whose attack times are unknown,
we will require a redesign of the reboot sequences from the
trusted controller. A relevant direction is using rebooting as
a defense-in-depth mechanism, where attacks could be used
as a trigger to initiate reboots, though it needs to consider
stealthy adversaries as discussed in §8.

8. Related Work

Multiple studies have investigated the use of device re-
boots as a method for recovering compromised systems [26],
[68], [10], [12], [13], [11], [17], [73], [46]. All these designs
target single device systems and consider specific types of
faults. Many of these approaches also use a trigger to reboot
nodes and offer limited to no availability guarantees during
reboots. Trigger-based approaches can be limiting, specif-
ically in a multi-device setting especially in the presence
of a stealthy self-propagating adversary such as Mirai [16]
or Hajime [44] — a stealthy adversary can corrupt the
entire network before exhibiting any malicious behavior.
In contrast, our work does not require any triggers, isn’t
specific to any particular faults and can offer availability
even in the presence of reboots.

Candea and Fox [26] use reboots to achieve high avail-
ability and fault recovery in software infrastructures. Their
primary focus was faults or software bugs (Heisenbugs)
that are difficult to reproduce, leading to scenarios such
as infinite loops or deadlocks. In contrast, Groundhog
tolerates arbitrary faults while ensuring availability.

More recent work, [10], [12], [13], [11], [46]
uses reboots to protect cyber-physical systems (CPS).
Abdi et al. [12] propose a restart-based recovery approach
where the system is rebooted if the system approaches a
safety boundary faults and critical tasks are re-executed.
They also provide boot sequence optimizations which re-
duces the reboot time of the system. Abdi et al. [11] uses
the system’s physical properties, such as inertia in the case
of drones, to keep the system stable during reboots. In
Jagtap et al. [46], a system controller triggers a reboot if
the output of the system can lead to a fail-stop behavior.
Suzaki et al. [73] use reboots to ensure secure software
update of IoT devices using a trusted environment to verify
the updates provided by a remote server. They issue reboots
if there are timeouts or unregistered binaries in the system
and deactivates the system if the certificates for the devices

are expired. Maintaining a list of valid binaries or even a
trusted environment may be complex. On the other hand,
Groundhog does not need to store such large binaries.

Yolo [17] periodically reboots the device depending on
models based on a physical plant’s states and examines
whether the plant would be recoverable after rebooting the
controller. Unlike Groundhog, Yolo focuses on single-
node CPS systems and does not address multi-node systems
(such as TCs). Yolo also does not provide operational guar-
antees e.g., availability.

Another approach related to secure threshold systems is
proactive secret sharing (PSS) proposed by Ostrovsky and
Yung [62] where shares of long-lived secret are refreshed
periodically in a manner that the adversary needs to com-
promise a large fraction of devices in the system within a
short time interval. Recently, Kondi et al. [50] combines
PSS with reboots to protect cryptocurrency wallets. The
main challenge is to ensure consistency in the system during
periods when an adversary gain controls over a majority
of live nodes, e.g., when a large fraction of honest nodes
is getting rebooted. To address this issue, they rely on a
tamper-proof public ledger to post the outcome of re-sharing
phase. Note that with an appropriate choice of parameters,
Groundhog can ensure a super-majority of honest nodes
is available at all times. As a result, we can eliminate the
use of expensive distributed ledger from the system.

Acknowledgments

We would like to thank the anonymous shepherd and
reviewers for helping us improve the paper. We also wish
to thank Dr. Mihai Christodorescu, Dr. Shashank Agrawal
and Prof. Arkady Yerukhimovich for detailed discussions
and feedback. The material in this paper is based upon
work supported in part by the U.S. National Science Foun-
dation (NSF) under grant NSF CPS 2246937. Any findings,
opinions, recommendations or conclusions expressed in the
paper are those of the authors and do not necessarily reflect
the views of sponsors.
References

[1] AN5156 Introduction to STM32 microcontrollers security.

[2] Introducing Blue Pill. https://theinvisiblethings.blogspot.com/2006/
06/introducing-blue-pill.html. Accessed: 09-2024.

[3] Dual WatchDog Timer - SwitchDoc Labs Blog. https://www.
switchdoc.com/dual-watchdog-timer, December 2016.

[4] Implementation of DiSE: Distributed Symmetric-key Encryption.
https://github.com/visa/dise, May 2020.

[5] Transparent Computing. https://github.com/darpa-i2o/
Transparent-Computing, April 2020.

[6] Sepior: The New Standard For Key Management and Protection.
https://sepior.com/technology, 2021.

[7] Cryptotools library. https://github.com/ladnir/cryptoTools, June 2023.

[8] Metasploit | Penetration Testing Software, Pen Testing Security |
Metasploit. https://www.metasploit.com, June 2023.

[9] Reboot your instance - Amazon Elastic Compute Cloud.
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
ec2-instance-reboot.html, June 2023.

[10] Fardin Abdi Taghi Abad, Renato Mancuso, Stanley Bak, Or Dantsker,
and Marco Caccamo. Reset-based recovery for real-time cyber-
physical systems with temporal safety constraints. In 2016 IEEE
21st International Conference on Emerging Technologies and Factory
Automation (ETFA), pages 1–8. IEEE, 2016.

[11] Fardin Abdi, Chien-Ying Chen, Monowar Hasan, Songran Liu, Sibin
Mohan, and Marco Caccamo. Guaranteed physical security with
restart-based design for cyber-physical systems. In 2018 ACM/IEEE
9th International Conference on Cyber-Physical Systems (ICCPS),
pages 10–21. IEEE, 2018.

[12] Fardin Abdi, Renato Mancuso, Rohan Tabish, and Marco Caccamo.
Restart-based fault-tolerance: System design and schedulability anal-
ysis. In 2017 IEEE 23rd International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA), pages 1–
10. IEEE, 2017.

[13] Fardin Abdi, Rohan Tabish, Matthias Rungger, Majid Zamani, and
Marco Caccamo. Application and system-level software fault toler-
ance through full system restarts. In 2017 ACM/IEEE 8th Interna-
tional Conference on Cyber-Physical Systems (ICCPS), pages 197–
206. IEEE, 2017.

[14] Shashank Agrawal, Payman Mohassel, Pratyay Mukherjee, and Peter
Rindal. Dise: Distributed symmetric-key encryption. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1993–2010, 2018.

[15] Abdullah Al Maruf, Luyao Niu, Andrew Clark, J Sukarno Mertoguno,
and Radha Poovendran. A timing-based framework for designing
resilient cyber-physical systems under safety constraint. ACM Trans-
actions on Cyber-Physical Systems, 7(3):1–25, 2023.

[16] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie
Bursztein, Jaime Cochran, Zakir Durumeric, J Alex Halderman, Luca
Invernizzi, Michalis Kallitsis, et al. Understanding the mirai botnet. In
26th {USENIX} security symposium ({USENIX} Security 17), pages
1093–1110, 2017.

[17] Miguel A Arroyo, M Tarek Ibn Ziad, Hidenori Kobayashi, Junfeng
Yang, and Simha Sethumadhavan. Yolo: frequently resetting cyber-
physical systems for security. In Autonomous Systems: Sensors,
Processing, and Security for Vehicles and Infrastructure 2019, volume
11009, page 110090P. International Society for Optics and Photonics,
2019.

[18] Vijay Banerjee, Sena Hounsinou, Habeeb Olufowobi, Monowar
Hasan, and Gedare Bloom. Secure reboots for real-time cyber-
physical systems. In Proceedings of the 4th Workshop on CPS &
IoT Security and Privacy, pages 27–33, 2022.

[19] George Robert Blakley. Safeguarding cryptographic keys. In Man-
aging Requirements Knowledge, International Workshop on, pages
313–313. IEEE Computer Society, 1979.

[20] Alexandra Boldyreva. Threshold signatures, multisignatures and blind
signatures based on the gap-Diffie-Hellman-group signature scheme.
In International Workshop on Public Key Cryptography, pages 31–46.
Springer, 2003.

[21] Dan Boneh, Sergey Gorbunov, Riad S. Wahby, Hoeteck Wee, Christo-
pher A. Wood, and Zhenfei Zhang. BLS Signatures. Internet-Draft
draft-irtf-cfrg-bls-signature-05, Internet Engineering Task Force, June
2022. Work in Progress.

[22] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from
the weil pairing. In International conference on the theory and
application of cryptology and information security, pages 514–532.
Springer, 2001.

[23] Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. On Bitcoin as
a public randomness source. IACR Cryptol. ePrint Arch., 2015:1015,
2015.

[24] Luı́s TAN Brandão, Nicky Mouha, and Apostol Vassilev. Threshold
schemes for cryptographic primitives: challenges and opportunities in
standardization and validation of threshold cryptography. Technical
report, National Institute of Standards and Technology, 2018.

[25] Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, and Reto
Strobl. Asynchronous verifiable secret sharing and proactive cryp-
tosystems. In Proceedings of the 9th ACM Conference on Computer
and Communications Security, pages 88–97, 2002.

[26] George Candea and Armando Fox. Recursive restartability: Turning
the reboot sledgehammer into a scalpel. In Proceedings Eighth
Workshop on Hot Topics in Operating Systems, pages 125–130. IEEE,
2001.

[27] Antonio Celesti, Lorenzo Carnevale, Antonino Galletta, Maria Fazio,
and Massimo Villari. A watchdog service making container-based
micro-services reliable in iot clouds. In 2017 IEEE 5th International
Conference on Future Internet of Things and Cloud (FiCloud), pages
372–378, 2017.

[28] Z. Berkay Celik, Leonardo Babun, Amit K. Sikder, Hidayet Aksu,
Gang Tan, Patrick McDaniel, and A. Selcuk Uluagac. Sensitive infor-
mation tracking in commodity iot. In USENIX Security Symposium,
Baltimore, MD, August 2018.

[29] Suresh Chari, Charanjit S Jutla, Josyula R Rao, and Pankaj Rohatgi.
Towards sound approaches to counteract power-analysis attacks. In
Advances in Cryptology—CRYPTO’99: 19th Annual International
Cryptology Conference Santa Barbara, California, USA, August 15–
19, 1999 Proceedings 19, pages 398–412. Springer, 1999.

[30] Chien-Ying Chen, Sibin Mohan, Rodolfo Pellizzoni, Rakesh B Bobba,
and Negar Kiyavash. A novel side-channel in real-time schedulers.
In 2019 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 90–102. IEEE, 2019.

[31] Hefeng Chen, Hsiao-Ling Wu, Chin-Chen Chang, and Long-Sheng
Chen. Light repository blockchain system with multisecret sharing
for industrial big data. Security and Communication Networks,
2019(1):9060756, 2019.

[32] T. C. Chou. Beyond fault tolerance. Computer, 30:47–49, 1997.

[33] K. Correll. Design considerations for software-only implementations
of the ieee 1588 precision time protocol. Proc. 2005 IEEE 1588
Conference, Zurich, 2005.

[34] Ivan Damgård, Daniel Escudero, and Antigoni Polychroniadou.
Phoenix: Secure computation in an unstable network with dropouts
and comebacks. Cryptology ePrint Archive, 2021.

[35] Yvo Desmedt. Threshold cryptosystems. In International Workshop
on the Theory and Application of Cryptographic Techniques, pages
1–14. Springer, 1992.

[36] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Thresh-
old ECDSA from ECDSA assumptions: the multiparty case. In 2019
IEEE Symposium on Security and Privacy (SP), pages 1051–1066.
IEEE, 2019.

[37] Shlomi Dolev, Karim ElDefrawy, Joshua Lampkins, Rafail Ostrovsky,
and Moti Yung. Brief announcement: Proactive secret sharing with a
dishonest majority. In Proceedings of the 2016 ACM Symposium on
Principles of Distributed Computing, pages 401–403, 2016.

[38] Ronald A Fisher and Frank Yates. Statistical tables: For biological,
agricultural and medical research. Oliver and Boyd, 1938.

[39] Hilscher Forum. Thread 685: [title of the thread], n.d. Accessed:
2024-10-04.

[40] Steven Goldfeder, Rosario Gennaro, Harry Kalodner, Joseph Bon-
neau, Joshua A Kroll, Edward W Felten, and Arvind Narayanan.
Securing Bitcoin wallets via a new DSA/ECDSA threshold signature
scheme. In et al. 2015.

[41] John Griffith, Derrick Kong, Armando Caro, Brett Benyo, Joud
Khoury, Timothy Upthegrove, Timothy Christovich, Stanislav
Ponomorov, Ali Sydney, Arjun Saini, et al. Scalable transparency
architecture for research collaboration (starc)-darpa transparent com-
puting (tc) program. Raytheon BBN Technologies Corp. Cambridge
United States, Tech. Rep, 2020.

[42] Jens Groth and Victor Shoup. Design and analysis of a distributed
ecdsa signing service. Cryptology ePrint Archive, 2022.

[43] Torben Hagerup and Christine Rüb. A guided tour of Chernoff
bounds. Information processing letters, 33(6):305–308, 1990.

[44] Stephen Herwig, Katura Harvey, George Hughey, Richard Roberts,
and Dave Levin. Measurement and analysis of hajime, a peer-to-
peer iot botnet. In Network and Distributed Systems Security (NDSS)
Symposium, 2019.

[45] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Secur-
ing hardware against probing attacks. In Advances in Cryptology-
CRYPTO 2003: 23rd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 17-21, 2003. Proceedings
23, pages 463–481. Springer, 2003.

[46] Pushpak Jagtap, Fardin Abdi, Matthias Rungger, Majid Zamani, and
Marco Caccamo. Software fault tolerance for cyber-physical systems
via full system restart. ACM Transactions on Cyber-Physical Systems,
4(4):1–20, 2020.

[47] Ashish Kashinath, Monowar Hasan, Rakesh Kumar, Sibin Mohan,
Rakesh B Bobba, and Smruti Padhy. Safety critical networks using
commodity sdns. In IEEE INFOCOM 2021-IEEE Conference on
Computer Communications, pages 1–10. IEEE, 2021.

[48] David R Keppler, M Faraz Karim, Matthew S Mickelson, and
J Sukarno Mertoguno. Experimentation and implementation of bft++
cyber-attack resilience mechanism for cyber physical systems. ACM
Transactions on Cyber-Physical Systems, 2023.

[49] S.T. King and P.M. Chen. Subvirt: implementing malware with
virtual machines. In 2006 IEEE Symposium on Security and Privacy
(S&P’06), pages 14 pp.–327, 2006.

[50] Yashvanth Kondi, Bernardo Magri, Claudio Orlandi, and Omer Shlo-
movits. Refresh when you wake up: Proactive threshold wallets with
offline devices. IACR Cryptol. ePrint Arch., 2019:1328, 2019.

[51] Leslie Lamport. Time, clocks, and the ordering of events in a
distributed system. In Concurrency: the Works of Leslie Lamport,
pages 179–196. 2019.

[52] LESLIE LAMPORT, ROBERT SHOSTAK, and MARSHALL
PEASE. The byzantine generals problem. ACM Transactions on
Programming Languages and Systems, 4(3):382–401, 1982.

[53] Yehuda Lindell. Secure Multiparty Computation (MPC). IACR
Cryptol. ePrint Arch., 2020:300, 2020.

[54] Aravind Machiry, Eric Gustafson, Chad Spensky, Christopher Salls,
Nick Stephens, Ruoyu Wang, Antonio Bianchi, Yung Ryn Choe,
Christopher Kruegel, and Giovanni Vigna. Boomerang: Exploiting
the semantic gap in trusted execution environments. In NDSS, 2017.

[55] Jim Martin, Jack Burbank, William Kasch, and Professor David L.
Mills. Network Time Protocol Version 4: Protocol and Algorithms
Specification. RFC 5905, June 2010.

[56] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter
Wuille. Simple schnorr multi-signatures with applications to bitcoin.
Designs, Codes and Cryptography, 87(9):2139–2164, 2019.

[57] Maurice Mignotte. How to share a secret. In Cryptography: Proceed-
ings of the Workshop on Cryptography Burg Feuerstein, Germany,
March 29–April 2, 1982 1, pages 371–375. Springer, 1983.

[58] Brendan Murphy and Neil Davies. System reliability and availability
drivers of tru64 unix. In Proc. 29th International Symposium on
Fault-Tolerant Computing, 1999.

[59] Niall Murphy and Michael Barr. Watchdog timers. Embedded Systems
Programming, 14(11):79–80, 2001.

[60] Luyao Niu, Abdullah Al Maruf, Andrew Clark, J Sukarno Mertoguno,
and Radha Poovendran. An analytical framework for control synthesis
of cyber-physical systems with safety guarantee. In 2022 IEEE 61st
Conference on Decision and Control (CDC), pages 1533–1540. IEEE,
2022.

[61] National Institute of Standards and Technology. Threshold Cryptog-
raphy, 2020.

[62] Rafail Ostrovsky and Moti Yung. How to withstand mobile virus
attacks. In Proceedings of the tenth annual ACM symposium on
Principles of distributed computing, pages 51–59, 1991.

[63] Tim Rains, Matt Miller, and David Weston. Exploitation trends: From
potential risk to actual risk. In RSA Conference, 2015.

[64] Thomas Ristenpart and Scott Yilek. The power of proofs-of-
possession: Securing multiparty signatures against rogue-key attacks.
In Advances in Cryptology-EUROCRYPT 2007: 26th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, Barcelona, Spain, May 20-24, 2007. Proceedings 26,
pages 228–245. Springer, 2007.

[65] Raffaele Romagnoli, Bruce H Krogh, Dionisio de Niz, Anton D
Hristozov, and Bruno Sinopoli. Runtime System Support for CPS
Software Rejuvenation. IEEE Transactions on Emerging Topics in
Computing, 2023.

[66] Raffaele Romagnoli, Bruce H Krogh, Dionisio de Niz, Anton D
Hristozov, and Bruno Sinopoli. Software Rejuvenation for Safe
Operation of Cyber–Physical Systems in the Presence of Run-Time
Cyberattacks. IEEE Transactions on Control Systems Technology,
2023.

[67] Tim Ruffing, Viktoria Ronge, Elliott Jin, Jonas Schneider-Bensch, and
Dominique Schröder. Roast: robust asynchronous schnorr threshold
signatures. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, pages 2551–2564, 2022.

[68] Yosra Ben Saied, Alexis Olivereau, Djamal Zeghlache, and Maryline
Laurent. Trust management system design for the internet of things:
A context-aware and multi-service approach. Computers & Security,
39:351–365, 2013.

[69] Dr.R. SenthamilSelvan, Dr.V. Mahalakshmi, Dr.S.P. Vijayaragavan,
Dr.S Arulselvi, and Dr. M. Jasmin. A novel watchdog timer for real-
time intensive applications. EAI, 6 2021.

[70] Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

[71] Aashish Sharma, Zbigniew Kalbarczyk, R Iyer, and James Barlow.
Analysis of credential stealing attacks in an open networked envi-
ronment. In 2010 Fourth International Conference on Network and
System Security, pages 144–151. IEEE, 2010.

[72] Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko,
Christopher Liebchen, and Ahmad-Reza Sadeghi. Just-in-time code
reuse: On the effectiveness of fine-grained address space layout
randomization. In 2013 IEEE Symposium on Security and Privacy,
pages 574–588, 2013.

[73] Kuniyasu Suzaki, Akira Tsukamoto, Andy Green, and Mohammad
Mannan. Reboot-oriented iot: Life cycle management in trusted ex-
ecution environment for disposable iot devices. In Annual Computer
Security Applications Conference, pages 428–441, 2020.

[74] Tamir Tassa and Nira Dyn. Multipartite secret sharing by bivariate
interpolation. Journal of Cryptology, 22:227–258, 2009.

[75] Vishnu Venukumar and Vinod Pathari. A survey of applications
of threshold cryptography—proposed and practiced. Information
Security Journal: A Global Perspective, 25(4-6):180–190, 2016.

[76] Zhibo Wang, Defang Liu, Yunan Sun, Xiaoyi Pang, Peng Sun, Feng
Lin, John C S Lui, and Kui Ren. A survey on iot-enabled home
automation systems: Attacks and defenses. IEEE Communications
Surveys & Tutorials, 24(4), 2022-24.

[77] Moti Yung. The ”mobile adversary” paradigm in distributed com-
putation and systems. In Proceedings of the 2015 ACM Symposium
on Principles of Distributed Computing, PODC ’15, page 171–172,
New York, NY, USA, 2015. Association for Computing Machinery.

[78] Thomas Yurek, Zhuolun Xiang, Yu Xia, and Andrew Miller. Long live
the honey badger: Robust asynchronous {DPSS} and its applications.
In 32nd USENIX Security Symposium (USENIX Security 23), pages
5413–5430, 2023.

Appendix A.
DARPA APT Case Study

The DARPA Transparent Computing (TC) program [41],
[5] released an open-access dataset describing a design-
space exploration of APT attacks on modern computing
systems. The TC program also studied 13 different real-
world attacks, where logs were captured to analyze system
behavior. These attacks include:

(i) Firefox Drakon APT, Firefox BITS Verifier, Fire-
fox DNS Drakon APT These APT attacks exploit the Fire-
fox backdoor. Here, the victim visits an attacker-controlled
website, thereby making a connection between the attacker’s
and victim’s machine. Subsequently, malware is loaded into
memory where it performs privilege escalation, allowing the
attacker to read cached credentials on the victim’s system.

(ii) Nmap SSH SCP attack and SSH BinFMT-Elevate
attack involve accessing a victim’s machine using stolen
ssh credentials. An attacker masquerades as a legitimate
user and exploits system vulnerabilities to perform privi-
lege escalation, allowing it to load a module and get root
access [71].

(iii) The Nginx attack involved sending a malicious
HTTP POST to the victim. The HTTP POST message
contains a malicious payload with a specific magic value
and shellcode. The shellcode executes on the victim machine
and establishes connection to the attacker’s machine.

(iv) Android Package(APK) attacks are also present
in the DARPA dataset with built-in metasploit [8].

Dataset Analysis. Using logs from the dataset, we measure
attack time a as the time it takes for an attacker to exploit
a vulnerability and access the file system of the device —
which is when we consider the attack to be complete. Across
the successful attacks , we found that the minimum, average,
and maximum attack times were 60 seconds, 480 seconds,
and 1080 seconds respectively. We also analyzed sysadmin
logs to study any recorded anomalies (due to faults and/or
attacks) in the system behaviour. The logs note that, often
due to lack of visibility, when a sysadmin could not debug
the source of anomaly, they rebooted the system. In fact,
reboots were used 70% of the time – as a recovery method
– when the logs reported a deviation from expected behavior.

Appendix B.
Implementation Aspects

Design. We use Docker to setup containers i.e., an isolated,
sandboxed environment representing every agent in the TC.
Docker enables a clean setup of TC and its dependencies,
and allows for easy automation. We use docker-compose to
bring up a swarm of containers, each of which were built by
the docker build tool using a Dockerfile capturing libraries
and utilities shown in Table 7. Groundhog comprises 3
types of Docker containers: (i) Client – Client is an agent,
who is the user i.e., requestor of cryptographic computation.
The client is not in the threshold set of components and

Algorithm 1 Calculating next reboot time for each node
1: Input Number of nodes n, threshold t, Random Permutation of generators

g1, .., gk , attack time a, reboot time r, current node
2: Output Reboot time
3: /* Initialize Counter ← Number of reboots, and rt ←

Last reboot timestamp as 0 */
4: /* Calculate the number of intervals, m */
5: m = max(1, ⌊a/r⌋)
6: Pick the generator, gi where i = counter
7: Generate set S =

⋃p−1
i=0 gi mod p)

8: Preserving the order remove elements S ∩ {1, 2, 3.....n} from S
9: /* Calculate the value of si for each interval in m such that

∑m
i=1 si ≥ (t+1)

*/
10: Case1 : t + 1 < m
11: Prod = 1
12: while S ! = {} do
13: Assign t + 1 elements to first t + 1 intervals of Prod ∗m from set S
14: Remove assigned elements from S
15: end while
16: Case2 : (t + 1) % m == 0
17: Prod = 1
18: quotient = (t + 1)/m
19: while S ! = {} do
20: Assign quotient elements to each

interval ∈ [((Prod− 1) ∗m), (Prod ∗m)] from set S
21: Remove assigned elements from S
22: end while
23: Case3 : (t + 1) % m! = 0 and (t + 1) > m
24: Prod = 1
25: quotient = (t + 1)/m
26: while S ! = {} do
27: Assign quotient elements to each

interval ∈ [((Prod− 1) ∗m), (Prod ∗m)] from set S
28: remainder = (t + 1)/m
29: rcounter = Prod ∗m
30: while remainder ! = 0 do
31: Assign remainder element from set S to interval rCounter

32: decrements remainder and rCounter

33: end while
34: Remove assigned elements from S
35: end while
36: Find slot number of assignment for current node in steps 9-35
37: Calculate reboot time as rt + r ∗ slot number

then Output: reboot time

TABLE 7. PLATFORM DETAILS OF OUR EVALUATION SYSTEM

System Details
AWS
EC2
(t2.large)

Hardware: Intel Xeon E5-2686, 2.3 GHz, 8GB,
OS: Debian Linux 5.17.3,
Software: Docker 20.10.18, Docker-Compose
2.11.0, Python 3.10.7

Containers Base Image: Alpine Linux 3.15,
Additional Software: gcc 10.3.1, openssl 1.1.1r-r0,

Core
Libraries

Software: cryptoTools 1.5 commit 76ca2aff,
span-lite 2987dd8, relic 2987dd8, boost 1.77.0

has the responsibility to perform the setup, execution and
termination of the threshold scheme, (ii) Server– Servers
are agents, who participate in the threshold scheme and
denote one of the n agents, out of which t are required
for the protocol to go forward. Server containers go up and
down depending on the reboot sequence, and (iii) Uptime
– Uptime containers are agents that keep track of various
servers’ states (up or down) during TC execution. The client
container uses this information to perform the TC operations
with only the live agents, thereby avoiding the large wait
times that can result in timeouts when requesting a share
from a server that is rebooting.

Appendix C.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

C.1. Summary

The authors design a system, Groundhog, which pro-
vides existing threshold cryptosystems with a way of in-
creasing resiliency and availability. Groundhog is a restart-
based framework that ensures there are at least t (threshold)
honest nodes available in the system at any given time, and
that the adversary can never control more than n− t nodes
(where n is the number of nodes in the system) at any
time. External independent watchdog timers, and scheduled
reboots in cloud environments are proposed as two differ-
ent ways of supporting their restart-based framework. The
key complexity the authors address is a systematic way of
scheduling device reboots such that every potentially faulty
devices reboots to a safe state while at the same time there
are always, for any given threshold t, at least t devices in
the network guaranteed to be honest. The authors evaluate
their solution by analyzing a container based implementation
on existing threshold encryption and signature schemes as
well as a smart home scenario. They show reasonable per-
formance of these cryptosystems when implemented with
Groundhog.

C.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field

C.3. Reasons for Acceptance

1) Groundhog provides a valuable step forward by focus-
ing on availability and guaranteeing that device reboots
do not put the system in a state where computation
cannot be securely done. The main contribution is
the generic design of the system, which can be in-
corporated with different threshold systems and for
heterogeneous devices.

C.4. Noteworthy Concerns

1) The core of the paper assumes that attacker exploit
times exceed reboot times, but there could be cases
in practice where attacks occur in less than the time
allocated for reboots.

Appendix D.
Response to the Meta-Review

Groundhog demonstrates a technique to apply reboot-
based mechanisms to address practical attacks, and general-
ize an approach thus far used in single-node cyber-physical

and embedded systems to multi-node systems, while offer-
ing operational guarantees such as availability. While this
work focusses on TCs, Groundhog can be applied to
general multi-node systems beyond TCs.

