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Abstract

Trustcito: A trust management system for distributed trust in V2X

Intelligent Transportation Systems (ITS) play a crucial role in realizing

sustainable transportation by addressing traffic congestion and ensuring

safe travel experiences. Among the key components of ITS, V2X commu-

nication facilitates the exchange of information between vehicles and ITS

entities. However, despite its potential benefits, the open wireless nature of

V2X communication renders it vulnerable to attacks. In response, many

researchers has provided different defense schemes. These schemes often

rely on direct interactions to identify malicious vehicles. However, direct

experiences of target vehicles are often unavailable due to network disrup-

tions or encounters with new users makes these defense out of work. In

response, I introduce the Trustcito framework, a recommendation-based

trust management system that can be used in every vehicle. This framework

continuously monitors potential malicious vehicles by requesting recommen-

dations from other entities and then evaluates them against a predefined

threshold. my analysis demonstrates that indirect trust can serve as a

valuable complement to direct trust within the proposed model. The per-

formance of proposed model is evaluated by Query-Hit Rate and precision

recall metrics. For accuracy, I achieve a high precision of above 70% in

every map. Regarding the query-hit rate, if there are many nodes and edges,

I can achieve a query-hit rate of over 70%.
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Preface

Intelligent Transportation Systems (ITS) are revolutionizing transporta-

tion with their promise of efficiency and safety. However, the open nature of

Vehicle-to-Everything (V2X) communication introduces cybersecurity chal-

lenges. Traditional defense schemes often fall short in dynamic vehicular

networks.

This thesis introduces the Trustcito framework, a recommendation-based

trust management system for V2X security. By leveraging indirect trust

through recommendations, Trustcito enhances security resilience. Eval-

uation metrics like Query-Hit Rate and precision-recall demonstrate its

effectiveness.

This work contributes to the evolution of Vehicle to Everything (V2X) secu-

rity, offering practical solutions for a safer and more reliable transportation

future.

xi



Chapter 1: Introduction

As the Internet developed, many connected systems showed up in this

generation. Due to traffic congestion, vehicle accidents, and traffic problems,

an Intelligent Transportation System (ITS) has been developed [16] [47]. ITS

can make an efficient transportation system by connecting all nodes for

each other and communicating to each node with certain protocols. V2X is

based on ITS. It includes protocols Vehicle to Infrastructure (V2I), Vehicle

to Network (V2N), Vehicle to Vehicle (V2V), Vehicle to Pedestrian (V2P), and

Vehicle to Device (V2D) [38]. By adopting V2X technology, every single car

can be connected to each other as well as roadside units. As a result, each

vehicle can not only get traffic information from other vehicles and roadside

units, but also receive alerts of incidents or unexpected accidents [45]. For

example, V2V communication allows vehicles to exchange information with

nearby vehicles, that includes location, speed, acceleration, and direction.

This enables advanced safety features like collision avoidance and safety

at intersections. V2I enables vehicles to communicate with infrastructure

elements such as traffic lights, road signs and toll booths. This allows for

optimized traffic flow, improved navigation and enhanced safety through

real-time information exchange. V2P allows vehicles to communicate with

pedestrians via their phones or personal devices. This can provide warnings

to pedestrians about approaching vehicles, enhancing safety for both drivers

and pedestrians.

However, there are many threats in the vehicular network [26]. For

example: Sybil-attack, Denial of Service...etc. The adversary model will

be detailed in chapter 3.These threats can be split into 2 subsets: inter-
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nal and external. The internal attackers means those attackers who have

already authenticated and joined into the network while external attack-

ers means non-authenticated attackers [3] [5].Internal attackers can be

more dangerous since they have already passed the authentication process.

Once authenticated, they can send malicious messages to others from the

network. For instance, attackers could convince individuals to detour to

hazardous locations. Without a way to prevent this behavior, it could result

in significant damage.

To deal with threats, many researchers have focused on how to deny

access to these attackers in vehicular networks. Some provide Crypto

schemes such as PKI-infrastructure to defend against malicious users

[19] [21]. However, these mechanisms can only be used against external

attackers since internal attackers has already passed the authenticated

challenges. To address the internal attacker problems, there are 3 main

proposed solutions [29]. One is data-centric system [57] [63] [61] another

one is node-based system [33] [32] [4] and the other is hybrid.[67] [14].

Data-centric systems: these kind of systems validate the accuracy and

plausibility of a packet’s content. The packet format used in V2X is the

Basic Safety Message (BSM) [34] [2]. There is a lot of information in the BSM

packet such as vehicle status, data, and vehicle behavior. The node-based

method is basically based on trust established by each vehicles on its own.

Every entity will generate a trust score after interacting with others. Some

research combines trust and data consistency to form a hybrid system.

There are 2 different ways to calculate trust in node-based schemes. One

is direct trust [28] [7] [27], and the other is indirect trust [37] [38] [6]. In

direct trust, vehicles interact with other vehicles so that it can calculate the

trust score. Indirect trust is based on recommendations from the others.
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In this thesis, I make a hypothesis that people can use trust that com-

bines direct trust and indirect trust to defend against malicious users in

vehicular systems. However, due to the limitations direct trust including

network problem, indirect trust can also be a helpful indicator to determine

trust relations. I need a recommendation-based system to develop a trust

score. To prove that, I provide a node-based scheme named Trustcito. This

system is based on node-based system which used into P2P system named

"VectorTrust" [69]. I will discuss VectorTrust in chapter 2 and discuss my

system model in chapter 4. I also add a trust decay feature in my model

since I believe that trust cannot be 100% transit in real-world case.

I have the following problem statements.

1. How can people generate and use indirect trust scores?

2. If direct trust is unavailable, how can vehicles trust each other?

3. What are the challenges faced while calculating indirect trust?

4. Why do we need V2X solutions instead of existing solutions on peer to

peer trust?

I designed my Trustcito framework to address these problems. There are

many 1 to 1 trust management systems in the world. However, if the vehicle

has not directly interacted with another car, how can others trust it? As

a result, I develop a recommendation-based trust management system to

solve this problem for one to many targets.

In this paper, I make the following of contributions:

1. Address the limitation of direct trust in situations where it is unavail-

able

2. Distinguish between benign vehicles and malicious vehicles.
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3. Address the use of a decentralized management system.

The paper is organized as follows. Chapter 2 provides some overview

of related work. Chapter 3 describes some common attacks that happen

in V2X and I will discuss the threat model. Chapter 4 shows my system

model. Chapter 5 explains some normal faults that happen in V2X networks.

Chapter 6 discusses my experiments and result with some analysis. Chapter

7, is the conclusion.
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Chapter 2: Related Work

There are multiple different trust management schemes that exist. They

are catagorized into Peer to Peer (P2P), Mobile ad hoc networks (MANET)

and Vehicular ad hoc networks (VANET).

Zhao et al. [69] present the "VectorTrust" that used a product scheme

to chain every node in trust transit. They used a local trust table to store

every direct node ’s trust with neighbors and get an initial trust score. Then

they used different stages to transit the trust across the neighbors to the

target node. In their scheme, they forwarded every node’s local trust table

to the next hop (i.e., neighbor). After receiving a neighbor’s information,

every node will re-calculate the trust path and score to every node. If the

new result is bigger than the original trust score, they will replace the new

result in their local trust table. In Trustcito, I add a decay function to allow

the trust to decay based on path length.

Aifarez et al. [1] also use path product to calculate the trust from source

to target. They used a distributed number to determine trust level. They

used "-1" as distrust, while 0-4 is a level to increase the trust. Then they

multiplied every trust score in the path from source to target. They use

average to determine the final trust score if there exists multiple paths from

source to target. The paper is used in the P2P system, too. In Trustcito,I

used max value instead of average value as my indirect trust score. The

reasonis we believe that people will trust closer friend’s recommendation

more than normal friend’s recommendation.

Alnasser et al. [6] provide a scheme that calculates indirect trust with

product scheme. Then based on different situations, they used a different
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combination of direct trust and indirect trust. They used a credential

based scheme for recommendations. If the recommender ’s trust is over

threshold, the recommendation will be fully accepted. If its trust is between

low and high threshold, then the recommendation will be partially accepted.

Otherwise, the recommendation will be dropped. In Trustcito, I accept all

recommendations then pick the best among them.

Banerjee et al. [9] used a windows-based scheme to calculate the trust.

Every node will get an assigned sized window to store the trust. They

used 0 to represent distrust and 1 to represent trust. Then every node in

the scenario will contain a credit rating that means how much the node

influence the other node’s recommendation. Finally, they sum all bits in a

window and generate a final trust score. In Trustcito, I used a window-based

trust table to store the trust.

Xin et al. [35] provide a trust scheme that also used product of trust path

in a MANET. They used a packet forwarding rate to calculate the node’s trust

score. They separate trust level from 1 to 4. If trust score is low ie. level 1,

the node will automatically drop the packet from this low level node. They

assigned 0.75 initially for all nodes that have not interacted with each other.

After interacting with each other, every node will increase or decrease the

trust node to each neighbor. Then, they used a routing protocol to transmit

data and trust. After discovering the path from source to destination, they

also multiplied the whole path trust value. In Trustcito, I assign a trust

score of 0.5 initially for experiments because it represents the midpoint of

the trust scale. I don’t want to assume that all vehicles are good vehicles,

so a trust score of 0.75 is not suitable for my scenario.

Sanjay et al. [14] use their trust scheme in VANET . There are 4 phases

in their model including "Neighbor Discovery", "Data Dispatching", "Decision
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Making and Trust Updating" , and "Neighbor Monitoring". After getting a

trust score, they make each node monitor each other in order to identify

data that is sent by malicious vs a benign node. In Trustcito, vehicles directly

send recommendation packets to each other.

To address the forth point in our problem statement four, we offer the fol-

lowing explanation: Unlike traditional peer-to-peer networks, V2X operates

in dynamic, geographically dispersed settings where real-time communica-

tion and decision-making are crucial. For instance, consider an autonomous

vehicle navigating through a busy intersection; it must not only trust the rec-

ommendations of nearby vehicles to ensure safe passage but also consider

dynamic factors such as road conditions, traffic patterns and pedestrian

movements. The complexity of V2X systems stems from the multitude of

factors that need to be considered.

Furthermore, traditional peer-to-peer (P2P) systems are designed for

static networks, whereas V2X systems are designed for dynamic networks.

Vehicles can move anywhere, while computers in P2P systems may not

relocate frequently. The geography and roadside units may also change

over time. When the geography differs from the previous version, the V2X

network could be altered. Thus, dealing with V2X problems involves not

only considering node connections but also addressing the dynamic network

environment.
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Chapter 3: Threat Model

There are many attacks in the vehicular network. These attacks can be

separated into 5 groups according to attack goals [26].

Table 3.1: Attack table

Attack Goal Goal Attacks
Behavior Message spoofing attack, Eavesdropping

Message Replay Attack, Sybil Attack, Denial of Service (DoS)Attack, Black
Hole Attack

Software and Hard-
ware DoS Attack, Message spoofing attack

Infrastructure Session Hijacking Attack, Distributed Denial of Service (DDoS) Attack
Privacy Identity Revealing Attack, Location Tracking
Data Trust False Message Injection, Hidden Vehicle Attack

3.1 Attacks on behavior

In this kind of attack, I can separate attacks into 2 subsets: one is selfish

user and the other one is malicious user.

3.1.1 Selfish Attack

Selfish users may drop packets or not forward received packets to others.

They may not carry out harmful behaviors or cause damage to others but

they will only do what is benefit for themselves. The common attacks are

explained as fellow.

1. Message spoofing attack. In message spoofing attack, adversary may

send spoofed messages to benign users to misdirect them [44][52]. For

example, if the selfish user wants to empty the road of vehicles, they

may send a false message to other vehicles that this road is congested

then they will also send detour suggestions to benign users. This

attack can be defended by checking message integrity.
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2. Eavesdropping. In this attack, attackers attempt to intercept com-

munication between users in order to get sensitive information. This

information can then be used in the future attack. This attack can be

defended using Crypto scheme [50] [19].

3.1.2 Malicious Attack

Malicious attackers try to break or cause damage to other vehicles. The

common attacks are described below.

1. Message Replay Attack Attacker replays previously captured network

packets at regular intervals. This attack can lead to unauthorized

access or manipulation of data, potentially confusing the authorities.

However, it can be defended against using timestamp authentication.

[48][44] [11].

2. Sybil Attack Attacker generate numbers of fake identities and send

message to benign nodes . These fake entities deceive the system into

perceiving them as real users. The goal is to affect users’ trust relations

in decentralized systems. Attackers can combine the Sybil attack with

a bad-mouth attack to target benign nodes [17] [48]. This attack can

be defended by checking identity for each car.

3. Denial of Service (Dos) Attack Attackers will send large numbers of

worthless packets to occupy resources, preventing benign cars from

transmitting packets to each other. Consequently, this can cause

traffic jams or accidents [65][48][44] . This attack can be defended by

behavior analysis.

4. Black Hole Attack Attackers attract packets sent from other nodes

and drop them, disrupting communication. The attacker acts as a

9



“black-hole,” causing legitimate traffic to disappear [41] [20]. This

attack can be defended against using a trust scheme. By adjusting

trust scores (either decreasing or increasing), I can determine whether

to send the packet to neighbors.

3.2 Attacks on Software and Hardware

In this type of attack, attackers focus on software and hardware. The

common attacks are shown below.

1. Denial of Service (Dos) Attack Attackers will send a large number of

worthless packets to occupy resources, preventing benign cars from

transmitting packets to each other. Consequently, this can cause traffic

jams or accidents [65][48][44]. This attack can be defended by behavior

analysis.

2. Message spoofing attack In message spoofing attack, adversary may

send spoofed messages to benign users to misdirect them [44][52]. For

example, if the selfish user wants to empty the road of vehicles, they

may send a false message to other vehicles that this road is congested

then they will also send detour suggestions to benign users. This

attack can be defended by checking message integrity.

3.3 Attacks on Infrastructure

In this attack type, attackers focus on the infrastructure, network. The

common attacks are shown below.

1. Session Hijacking Attack In V2X networks, session tokens are used

to recognize each user’s connections and manage their sessions. The

10



attacker’s goal is to compromise the session token, either by stealing

or predicting a valid token, to gain unauthorized access [43] [70]. This

attack can be defended against by setting up session expiration time.

Once the session timeout is reached, users should automatically log

out.

2. Distributed Denial of Service (DDos) Attack A DDoS attack is an

advanced form of a DoS attack where attackers send a massive volume

of packets frommultiple sources simultaneously to flood the bandwidth

of a target network, overwhelming its capacity and causing the entire

network to crash. This type of attack is often orchestrated using a

botnet, a network of compromised devices controlled by the attacker,

which amplifies the impact and makes it harder to mitigate the attack.

The difference between Dos and DDos is the source[58][62]. DDos

cause more damage than Dos

3.4 Attacks on Privacy

In this attack type, attackers try to steal benign user’s privacy. The

common attack type are explained below.

1. Identity Revealing Attack In this attack, attacker gains unauthorized

access to information that can expose the identity of entities involved in

the communication network. This could include revealing the identity

of vehicles, infrastructure components, or individuals interacting with

the system [30][26]. This attack can be defended by using pseudonyms

instead of real ID.

2. Location Tracking In this attack, attackers track the vehicles’ location

and path. It could cause severe privacy violations. Furthermore, it can
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be used for future attacks. For example, if the president’s vehicle is

tracked, terrorists may follow his car and attack [40][15]. This attack

can also be defended against by using pseudonyms instead of real IDs.

3.5 Attack on Data Trust

In this attack type, attackers will modify or alter the data during transit.

The common attack type are explained below.

1. False Message Injection Attackers send false messages to benign

nodes, misleading them and affecting the overall network. These false

messages can contain critical information such as incorrect speed, dis-

tance, or acceleration data. This misinformation can lead to potentially

dangerous situations on the road or compromise the efficiency and

safety of the V2X network [29][55][22]. This attack can be defended by

trust-based system.

2. Hidden Vehicle Attack In this attack, attackers generate false posi-

tions to hide cars and potentially cause accidents. This type of attack

manipulates GPS information, leading to what is commonly known

as GPS spoofing. Such attacks can result in dangerous situations,

including false collision warnings, incorrect traffic flow management,

or unauthorized access to secure zones. Defenses against this attack

include GPS Spoofing Detection mechanisms [52][64].

Mohammad et. al. categorize a different type of attack happened in V2X.

They separate attacks to different risk levels by reproducibility, impact and

stealthiness indicators [8].

12



3.6 My Threat model

In my threat model, I prioritize attacks on the recommendation side over

privacy concerns because Trustcito is a recommendation-based framework.

Attacks on recommendations pose a greater threat to my system. If Trustcito

cannot provide accurate recommendations, it may lead benign vehicles to

mistrust malicious vehicles, resulting in significant damage. For example,

malicious vehicles could send detour-to-danger-zone packets to benign

vehicles. If the benign vehicles trust these packets, they could end up in

danger zones. To address this threat model, I first categorize attacks based

on their goals and targets. I consider three types of attacks in my model:

1. Recommendation-Based Attacks

2. Routing-Based Attacks

3. False Message Injections

3.6.1 Recommendation-Based Attack

In recommendation-based attack [68], the attackers may try to send

fake recommendations to benign nodes. As a result, the benign nodes will

incorrectly trust the malicious vehicles’ peers. For example: Good mouth

attack. In Good mouth attack, attackers will send false, but high trust score

recommendations to the benign node. Once the benign node accepts these

recommendations, they will trust these malicious cars, and accept their

packets. On the other hand, benign nodes will distrust other benign nodes

in Bad mouth Attacks. In such situations, attackers try to slander benign

vehicles. As soon as benign vehicles trust this fake information, the benign

vehicles will disconnect from other benign vehicles and drop packets sent

13



from those vehicles[3][39][49]. There is another attack called Sybil attack

[17][48], which will create a lot of fake entities to confuse the benign cars.

Another problem is that of the New User problem. Vehicles cannot get

any information on new vehicles, so that attacker can easily pretend benign

cars mix into the new users and cause damage.

3.6.2 Routing-Based Attack

In Routing-based attacks, the adversary tries to focus on the routing be-

havior and make every effort to interfere with the connection. Furthermore,

they may try to block the connection. The common example is Denial of

Service (Dos) attack [65][48][44]. Attackers send many and many worthless

packets to choke the whole bandwidth, so that vehicles cannot connect to

each other.

The other famous routing based attack is Black-hole attack [41] [20]

where attackers try to send packets to benign nodes to attract benign users

to send requests to the attacker. Then the attacker will drop or suspend

the packets.

3.6.3 False Message Injection

In false message injection, attacker will send fake information to other

vehicles like urgent brake BSM packets. If benign node trusts the attacker, it

will immediately brake that may cause a lot of damage. It can not only cause

property damage, but also lead to traffic jams. If it happens in highways,

the damage can even get larger cause the behind car may collide your car

with very high Velocity.
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Chapter 4: System Model

In my proposed model, I provide a decentralized trust scheme to calculate

Trust in the V2X system. There is no central server in my proposed model.

I adopted a recommendation-based scheme in my system. Each vehicle in

the vehicular network is represented as a node in the network. The overview

of my framework is shown in Figure 4.2. I have the following procedure for

a car to get indirect trust scores. Figure 4.1 shows an example of a V2X

network. In the network, some cars are connected to each other. A car

can send a BSM packet to another car only if they are directly connected

to each other. For example, in Figure 4.1, vehicle A can send packets to

vehicles B, C, D and E. They can share information with each other and

alert messages such as emergency braking packet. If an accident occurs

in front of vehicle B, it can send an alert message to the vehicles behind

it, prompting them to brake so they do not collide with vehicle B. However,

malicious vehicles can cause problem by sending inaccurate packets or any

malicious content to benign cars. Thus, we have to figure out a way to trust

vehicles. A packet coming from a well-trusted source is more reliable than

one from an unknown source. As a result, I want to find a way for cars to

trust each other. In Figure 4.1, Suppose vehicle A wants to obtain a trust

score for vehicle G. There is no direct connection. How can vehicle A achieve

this?

1. Request a recommendation from its neighbor.

2. The neighbor receiving the request packet will check if the target node

is in its local trust table.
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Figure 4.1: V2X Example

(a) If the target node is in the neighbor’s local trust table, then return

the path and trust score to the source node.

(b) If the target is not in the neighbor’s local trust table, then forward

it to neighbors until the target node is found.

3. After obtaining the trust path, the source node will calculate the trust

score from the path and determine the indirect score.

4. Finally, it will judge to determine if the node is benign or malicious.

4.1 Local Trust Table

Each node in the network represents an entity. The trust exists between

nodes. After each node interacts with others, they will form some level

of trust towards each other. In my scenario, trust is represented as a

continuous number ranging from 0 to 1. A trust score of "1" indicates full

trust, while a score of 0 means complete distrust. Trust is a relative value

rather than an absolute one. Since 0.5 is the middle of the trust score. If

the score is below 0.5, it suggests that the node may view the other node as
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Figure 4.2: System

malicious, whereas a score above 0.5 indicates a benign node.

I make the assumption that each node can differentiate between benign

and malicious nodes after directly interacting with them. For example, if

node A has interacted with node B, A would generate a trust score for B.

Assuming this score is 0.8, I understand that A trusts B to some extent but

not completely. Each node in the network must have interacted with some

other nodes to form these trust scores.

I store these trust scores in a "local trust table" within each node. This

table operates on a queue-based system, following a first-come-first-serve

approach. When the table reaches its maximum capacity and new records

need to be added, the oldest record is automatically removed. In my model,

I set the maximum capacity to 50 records. If there are too many records in
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the trust table, it may occupy too much memory. This scheme is inspired

by computer cache concepts, allowing each node to manage its table size

efficiently.

Table 4.1 shows node A’s personal view in its local trust table. Figure 4.3

shows the node A’s connecting nodes. Node A has previously interacted

with [B, C, D, E], and the corresponding trust scores were [0.7, 0.8, 0.2,

0.4] respectively.

Figure 4.3: Example A

Table 4.1: Node A’s local trust table

Node Trust score
B 0.7
C 0.8
D 0.2
E 0.4

4.2 Transitive Trust

It is a common assumption that trust is transitive; however, this is

not entirely true. Trust must satisfy certain conditions to be considered

transitive and I refer to this as "indirect trust".
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Firstly, trust is unidirectional. For instance, if A trusts B, it does not

imply that B trusts A. All trust scores in my model are unidirectional. When

A includes B’s trust score in its local trust table, A establishes a relative

trust score for B. For example, if A’s local trust table shows a score of 0.6

for B, it indicates that A trusts B with a score of 0.6. I cannot derive any

information about A’s trust score from B’s perspective in A’s local trust

table.

Trust can only be transitive if the recommender is trusted by the source

node, and the recommender provides effective recommendations. For exam-

ple, let’s say A wants to repair a car but doesn’t have the skills. A asks B

for help because B is A’s best friend. Although B also can’t fix the car, B

knows someone, C, who can. So, B recommends C to A for car repair. This

is a good example of trust transitivity.

However, if C is not skilled in fixing cars but is instead skilled in fixing

computers, then B cannot recommend C to A because it would be an invalid

trust transitivity[12] [31] [1].

4.2.1 Trust Decay

In my model, I firmly believe that trust cannot be 100% transitive to

other nodes [12] [36]. Therefore, I have implemented a "trust decay" function

to determine the decay coefficient. By incorporating path length into the

parameters, I can distinguish between short path lengths and long path

lengths. As cited in prior work [36], trust decay is non-linear with increasing

hops. Trust decays slowly with fewer hops, but as the number of hops

increases, trust decays drastically.

I apply a real-world concept to trust, where if your friend B recommends

person C to you, you may not trust C 100%, but you would still assign a
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high trust score due to your friend’s recommendation. However, if C then

recommends a new person, D, to you, you might feel a slight distrust toward

D. If D further recommends another new person, E, to you, your distrust of

E would increase. As the path length increases, so does the level of distrust.

In my model, I use the following hyperbolic formula to represent the trust

decay coefficient [36].

Formula 1.

d = 1− 1
1+ e−k(l−c)

In this function, d represents the decay coefficient, while k and c are

constants. L denotes path length, and k and c are used to address different

scenarios. The variable k primarily determines the convergence of trust

decay when l equals c. The variable c determines how many path lengths

are considered in the scenario.

Since path length =c results in a value of 0.5, indicating that even benign

nodes with a trust score of 1 will be multiplied by 0.5, potentially leading

to a classification as a malicious node. In my model, I set k=1 and c=6.

According to the small world characteristic [42], most paths can be found

within 6 hops. Therefore, I assume a maximum path length of 6.

I set k equal to 1 because I believe trust decays slowly for paths of 4-5

hops and decays quickly for paths of 6 hops. The trust decay coefficient

begins to decrease significantly starting from a path length of 3.

4.3 Graph-based Algorithm

To propagate trust through multiple nodes, I’ve reworked my approach

into a graph-based algorithm. Since V2X vehicles are interconnected, we

can represent them as nodes in a graph, with connections between vehicles
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forming the edges. By transforming the V2X problem into a graph problem,

we can apply various graph algorithms such as Longest Path Problem [66]

and path-finding problem [23]. First of all, I find all paths from source node

to the target node in the network. Then I calculate the path by the following

formula. T(a,c) means trust path from node a to node c. For instance, as

shows in Figure 4.4, if node A wants to get indirect trust score with C, A can

start to find a neighbor and routing to find a path to C. If there is at least

one path from A to C, A can go through this path and calculate indirect

trust by formula 2. Assuming A has interacted with B and has trust score

of B (0.8), B has interacted with C and has trust score of C (0.9) , then

trust decay is 0.5 . In this scenario, A can get the indirect trust of C by B’s

recommendation. The indirect trust score will be 0.8 × 0.9 × 0.5=0.36.

As the number of cars increases, some may not connect to any others

initially. In this case, Trustcito cannot function because it cannot obtain

recommendations. Consequently, it cannot use a recommendation system

to calculate the trust score. Trustcito have to find another solution to start

with, such as a direct trust scheme, to address the problem.

Figure 4.4: Example of A get C

Formula 2.

Ta,c = Ta,b ·Tb,c ·d
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4.4 Multiple Paths

As more vehicles connect to each other, the potential for multiple paths

between a source and destination increases. However, as I need to choose

one path to be the trusted path and calculate indirect trust We need to

select that path. There are many schemes for such a selection.

Zhao et al. (2013) [69] use the maximum value to calculate indirect

trust while facing multiple paths, referring to the chosen path as the Most

Trustable Path (MTP). In our model, I adopt this approach. I believe that

individuals may place varying levels of trust in their friends, with recom-

mendations from closer friends being more convincing than those from

more distant acquaintances. However, by selecting the maximum value, I

am vulnerable to Good-mouth attacks[68] which attacker can send fake

recommendation with high trust score to their malicious peers. To address

this issue, I dynamically monitor the path scores. If a path’s score falls

below a certain threshold, I discard it and select an alternative path for

calculating indirect trust. This method allows us to mitigate the influence

of potentially malicious recommendations on the chosen path.

Aifarez et al. (1998) [1] use the average to calculate trust over multiple

paths. This method is less susceptible to good-mouth or bad-mouth attacks

unless there is a high density of attackers in the environment. By computing

the average value, this approach tends to reflect the collective recommenda-

tion more closely. However, it does not account for varying levels of trust

among friends. I believe that in the real world, recommendations from closer

friends hold greater weight than those from more distant acquaintances,

even when averaged with others’ opinions.

Shabut et al. (2018) [56] use the minimum value to calculate trust
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while facing multiple path. This method is effective in defending against

good-mouth attacks but is vulnerable to bad-mouth attacks which use

fake recommendation with low trust score to benign vehicles [60]. With

the minimum value, individuals can assess the minimum level of trust

they can place in a node. If people adopt this method, they may be less

easily deceived by malicious nodes in the environment, as it trusts fewer

nodes compared to the maximum value method. However, I believe that

individuals will be reluctant to trust nodes with low scores. If the vehicle’s

trust score is low, it means that this vehicles is not trusted by others. Thus,

its recommendation cannot be a great recommendation.

Seaton et al. [54] propose an alternative method for selecting paths

when faced with multiple options. Their model calculates risk, that can

be reversed to represent trust. Initially, they determine the set of possible

paths. Then, they calculate risk using their unique property, "extension".

In their model, the "extension" property ensures that a path maintains a

high risk (low trust in our context) as nodes are added to it. For example,

if the risk score for the path [A–>B–>C–>G] is 0.9, and there exists an

alternative path [A–>B–>C–>D–>F–>G] with a risk score of 0.8, they still

choose the path with the higher risk score of 0.9. In their model, they

can effectively defend against attackers from nodes D and F, which might

provide inaccurate recommendations, thereby leading to inaccurate risk

assessments.

4.5 Time To Live

In my model, I have added the Time To Live (TTL) feature. If a node sends

a request to another node and does not receive any response within the given

time, the node will search for an alternative path to seek recommendations.
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This helps us defend against routing-based attacks such as black-hole

attacks [41] [20].

Furthermore, I aim to enhance the redundancy and fault tolerance

of my model. Since there are various reasons why a node may not re-

ceive responses from its neighbors (e.g., neighbors being exploited, network

unreachability, etc.), being able to find a new path for recommendations

prevents the node from getting stuck in a loop of sending requests and

waiting for responses. This improvement can significantly enhance the

overall performance of the system.
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Chapter 5: Fault Tolerance

5.1 Fault VS Failure

In any kind of end to end device including P2P system, Vehicle to Every-

thing(V2X) systems etc., it is imperative to distinguish fault and failures, as

these terms play an important role in assessing the system’s reliability and

performance.

5.1.1 Faults

According to ISO document 10303-226 [46], fault is defined as a defect

or abnormal condition within a system that can lead to a failure. In V2X,

for example, a fault may occur due to malfunction in a single sensor that is

responsible for providing accurate environmental data to an autonomous

vehicle. In this scenario, the sensor fault is the potential issue, resulting a

deviation from its expected behavior.

5.1.2 Failures

Failure is a combination of different defects that finally lead to software

failures and results in the loss of information in critical modules , thereby

making the system unresponsive. System failures can happen due to various

factors, including hardware malfunctions, software bugs, network issues,

or environmental challenges. Depending on the severity of the failure, the

result can range from inconveniences to critical disruptions.

Felix et. al. [24], provide a that fault is a system state that can cause

error. An error can finally turn into a failure which means the system

25



deviated from its expected behavior. In V2X, there are also some factors that

will cause failure; for example, network crash. It will disrupt the continuous

traffic which may cause severe damage. For instance, cars cannot transmit

messages to each other. Some important messages cannot be delivered.

More detail will be presented in the next section.

There are various failure types in V2X. I provide a failure classification

for developers to easily detect, mitigate and tolerate the fault [53][10] .

1. Crash Failures: A component or node in the system abruptly stops

functioning, resulting in a complete failure. It can be caused by many

factors including software bugs, hardware failure, and network prob-

lems. Here are some common crash failures.

(a) Memory errors: If a vehicle’s onboard systems experience mem-

ory exhaustion or corruption, it could lead to critical failures,

potentially resulting in safety hazards or loss of functionality.

(b) Resource contention: Competing for system resources like CPU

and network bandwidth could lead to delays in critical communi-

cations or even system crashes, impacting the ability of vehicles

to exchange important safety information.

(c) Software bugs: Flaws in the software controlling various vehicle

systems could cause unpredictable behavior or system crashes,

affecting the reliability of vehicle-to-vehicle (V2V) and vehicle-to-

infrastructure (V2I) communications.

(d) Hardware failures: Malfunctions in hardware components could

disrupt crucial vehicle systems, compromising safety-critical func-

tions such as braking or steering.

(e) Network connectivity issues: Problems with the network, including
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latency, packet loss, or signal interference, could lead to commu-

nication failures between vehicles and infrastructure, impacting

the effectiveness of V2X communication.

(f) External Dependencies: Dependencies on external services or

components, such as GPS or traffic management systems, could

introduce vulnerabilities or points of failure into the V2X ecosys-

tem.

(g) Security Vulnerabilities: Exploitable security flaws could be lever-

aged by malicious actors to disrupt or compromise V2X communi-

cations, potentially leading to accidents or unauthorized access

to vehicle systems.

2. Omission Failures: Omission failures in a V2X could occur if critical

safety features or communication protocols are not properly imple-

mented or are inadvertently left out of the design. This could result in

gaps in the V2X communication ecosystem, reducing its effectiveness

in preventing accidents or coordinating traffic flow.

3. Timing Failures: Timing failures could occur if V2X components fail

to meet strict timing constraints for transmitting or receiving critical

safety messages. Delays or inconsistencies in message delivery could

compromise the reliability of V2X communications and hinder timely

responses to potential hazards on the road.

4. Performance Failures: Performance failures in a V2X could cause as

bad network throughput or increased latency, impacting the respon-

siveness of V2X communications and diminishing the effectiveness

of safety-critical applications such as collision avoidance systems or

cooperative intersection management.
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5. Byzantine Failures: Byzantine failures occur when components behave

arbitrarily, potentially providing incorrect or malicious information to

other components in the system. In a V2X, Byzantine failures could

lead to miscommunication between vehicles or between vehicles and

infrastructure, undermining the trustworthiness of the entire V2X

network and compromising road safety[18].

5.2 Fault Tolerance

To consider fault tolerance, I may need two major classes of system prop-

erties describing system behavior: safety and liveness[25]. Safety property

is to make sure that the system always runs in a "legal" state. A simple

safety property can be shown as follows: Considering a V2X example, the

communication must never be start when users pass the authentication.

People will not be safe if communication can start without any authenti-

cation. In normal status, communication should always remain closed.

Once the authentication passed, the communication can be open. An easy

program can be used to explain this.

begin

*normal

If authentication=1 -> communication open

else -> communication closed

*fault

If authentication=0 -> communication open

end

On the other hand, liveness property, is to make sure that state will

finally reverse. The state will finally turn into a "good" condition. Taking
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the communication example again, if user pass authentication, communi-

cation can be opened. In normal status, there always exists a way to pass

authentication so that can open the communication.

No matter how well the system is designed, there will be faults in the

system. The goal of fault tolerance is to provide a solution when system

faces some faults in order to make sure that system will not fail;i.e., the

fault will not lead to failure in system. In formal fault tolerance, I need to

know what fault class I need to tolerate. In V2X, I may meet different kind

of faults such as crash, network errors, etc. To address these faults, I may

consider solutions for each fault. However, there still may be some general

solution for some faults such as redundancy.

The term redundancy means I need to have a backup plan [51]. When a

system fault occurs, I have a back up plan to execute. There are 2 classes

of redundancy. One is redundancy in space and the other is redundancy

in time[25]. The definition of redundant in space is "If there is no fault, all

executions in the redundancy part will never be reached". On the other hand,

The definition of redundant in time is "If there is no fault, all executions in

redundancy part will never be executed"

In my model, when I transmit trust between nodes , some faults will

occur. In my model, the most common fault occur is network connectivity

issues. To address network problem in my model, I adopt redundancy in

my model. I choose redundancy in time. First I setup a time variable. If the

program reached a timeout, means there must be a problem in the path to

next node. It could not only be network problem but also due to black-hole

attack. As a result, I setup a function that delete the corresponding node

in trust table so that the path will be drop out. Then I will choose another

path to calculate trust. I may choose the remaining path from the routing
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result and select the maximum value along that path as the trust score to

derive an indirect measure of trust. In normal status, I do not execute that

function to make sure redundancy in time.
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Chapter 6: Experiments and Analysis

I evaluate my model using simulations. The simulator parameters are

listed in Table 6.2. I used veins-F2MD[59] runs in Ubuntu 18.04 to do the

experiments. Veins-F2MD is a powerful framework that usually use into

simulate v2x environment. It integrates with OMNeT++ and SUMO, providing

a robust simulation platform. F2MD is the framework for misbehavior

detection. I choose the following maps in the veins-F2MD. I have 3 different

experiments. One is a comparison of different map . A second one modifies

the number of vehicles and the final one is modifies the attacker percentage.

1. IRTSystemXSCenario: The original map is in Veins-F2MD, depicting

the IRTSX campus. Figure 6.1a

2. LustMiniScenario: The smallest Luxembourg map depicts a partial

area of Luxembourg, inheriting some traffic data from the LustScenario.

However, its scale is smaller compared to it. (See Figure 6.1c.)

3. LustNanoScenario: The smaller Luxembourg map retains only a few

parts of the larger Luxembourg map, with minimal traffic depicted on

it. Figure 6.1b

4. LustScenario: The entire Luxembourg map, also utilized in Veins-

F2MD, is quite extensive, featuring a complex traffic layout. (See

Figure 6.1d.)
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(a) IRTSystemXScenario (b) LustMiniScenario

(c) LustNanoScenario (d) LustScenario

Figure 6.1: Different maps

For comparing against different vehicle percentage, I setup different

initial vehicle numbers in simulator. Then I compare nodes and edges

generated by the model as well as the query-hit rate (Detailed in Sec 6.2).

The vehicle number I used is 50 vehicles versus the full route vehicles that

is the default setup in the simulation. Each map’s vehicle number is shown

in Table 6.5

To compare different attack percentages, I choose various malicious rates

to simulate using LustScenario [13]. Specifically, I select 10% as a very low
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attacker percentage, 30% for a higher attacker percentage, 60% for more

than half of the nodes being attackers, and 90% for nearly all nodes being

attackers. I then compare the outcomes and performance in these four

scenarios.

Table 6.1: Attacker percentage

Attacker percentage Explain
0.1 Very low attacker percentage
0.3 Some attacker
0.6 More than half
0.9 Almost attacker

Table 6.2: Experiment Parameters

Simulation Time 3600s
Malicious Rate 10% / 30% / 60% / 90%

Initialy trust for benign Random 0.51-1
Initialy trust for Malicious Random 0-0.49

Judge Threshold 0.3
Query times 1000

k 1
c 6

Attack Type Mix

I will do the following analysis in experiments:

1. Precision, Recall, and F1 (Detailed in Sec 6.3)

2. Query hit rate (Detailed in Sec 6.2)

6.1 Generate the Trust

In order to evaluate my model, I first used a script to randomly assign

different direct trust scores to each node in the initial stage. I randomly

assign trust score higher than 0.5 to benign nodes and lower than 0.5 to
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malicious. This is to fit my assumption that each node can distinguish the

benign node and malicious node after direct interactions.

Then I start my simulator. I randomly select one pair of source and

destination vehicle to calculate trust . The source node will ask for recom-

mendation from neighbors and get the trust score.

I set up the threshold to determine the node’s label. If the final trust

score obtained from the path is larger than the threshold, I label it as a

benign node; otherwise, I label it as malicious. In my model, I set the

threshold to 0.3. This decision is influenced by my trust decay coefficient,

which limits the trust score a malicious node can achieve since their initial

trust score is below 0.5. If path length is 6, it will get 0.5 decay from the

decay function. As a result, attacker cannot gain higher than 0.3 in any

case. I repeated this process 1000 times to calculate accuracy.

6.2 Query hit rate

In each query in my model, if the node gets the final trust score from rec-

ommendation, I mark it as successful query. Then I count every successful

query and divide the total query to get the rate. In a highly connected map,

as there are numerous edges, the query hit rate will be high. However, in

less connected map, with fewer edges, the query hit rate will be lower.

6.3 Results

The Figure 6.2a, Figure 6.2b, Figure 6.2c, and Figure 6.2d represent

the results for each map. The horizontal axis represents three classes:

precision, recall, and F1 score, with values ranging from 0 to 1. I use box

plots to show the deviation in each simulation. A larger box indicates greater
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deviation.

I set up the same number of vehicles (50 vehicles) for each map. Since

different maps have different characteristics, the results vary accordingly.

Table 6.4 shows the different nodes and edges generated by the simulation

with 50 vehicles. More edges generally result in a higher query hit rate.

Additionally, Table 6.5 displays the different nodes and edges in the

simulation with full vehicles.

Table 6.3: True positive matrix

Benign (Model) Attacker (Model)
Benign (Dataset) True positive False negative
Attacker (Dataset) Fasle Positive True Negative

Table 6.4: Nodes and Edges in Each Map with 50 vehicles

Nodes Edges
IRTSystemXScenario 22 238
LustMiniScenario 44 139

LustScenario 44 167
LustNanoScenario 24 34

I employed Precision, Recall, and F1 score as evaluation metrics for my

model. True positives are instances where a node labeled as benign is indeed

benign, as detailed in Table 6.3 Through my research and experimental

findings, Trustcito has conclusively showcased the efficacy of indirect trust

mechanisms in discerning between malicious and benign vehicles within

V2X networks.

Precision =
TruePositive

TruePositive+FalsePositive

Recall =
TruePositive

TruePositive+FalseNegative

F1 = 2∗ Precision∗Recall
Precision+Recall

35



6.3.1 Experiment1-Different Maps

In the IRTSystemXScenario, I achieved approximately 80% precision and

nearly 100% recall. The F1 score is higher than 0.8 which is the highest F1

score in all maps. This is because there are most edges and fewest nodes in

IRTSystemXScenario.

In the LustNanoScenario, precision exceeded 90%, while recall rates

ranged from 75% to 92%. In this map, there are the fewest edges then it

exhibits the highest deviation. This observation leads me to conclude that

the fewer the edges, the greater the deviation. The F1 score is range from

80% to 95%.

In the LustMiniScenario, precision also exceeded 90%, but recall rates

were below 50%, resulting in an average F1 score of around 0.6.

Lastly, in the LustScenario, precision exceeded 90%, with recall rates

below 50%, The F1 score is higher than 60%.

Based on the results, it’s evident that my model can function effectively

across various maps. The generation of nodes and edges by Trustcito varies

depending on the map used, consequently yielding diverse outcomes.

In analyzing the Query-Hit rate across different scenarios Figure 6.3,

it’s evident that the characteristics of each map and the density of vehicles

within them play crucial roles in determining the effectiveness of information

dissemination.

In the case of the IRTSystemXScenario, where the query-hit rate is the

highest, the sparse distribution of nodes coupled with a dense network of

edges facilitates efficient communication among vehicles. This scenario

likely represents an urban environment with well-established infrastructure

and a high density of vehicles, allowing for reliable information exchange.

Conversely, the LustNanoScenario, with its lowest query-hit rate, reflects
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(a) IRTSystemXScenario (b) LustMiniScenario

(c) LustNanoScenario (d) LustScenario

Figure 6.2: Different map with 50 vehicles simulated
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a scenario with limited connectivity and sparse vehicle presence. In such

environments, vehicles may struggle to establish reliable communication

links, leading to a reduced ability to exchange information effectively.

For LustScenario and LustMiniScenario, due to the same nodes and

similar edges, these two maps exhibit similar query-hit rates.

The impact of different maps cause different nodes and edges generate by

Trustcito leading to different query-hit rate. While the IRTSystemXScenario

benefits from its dense network topology, scenarios like LustNanoScenario

face limitations due to their sparse connectivity.
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Figure 6.3: Query Hit on Different map with 50 vehicles

6.3.2 Experiment2- Different Numbers of vehicle

The other factor that affects the query-hit rate is the number of vehicles.

In Table 6.5, I used the original vehicle numbers to simulate. Then I

compared the results with 50 vehicles simulated. In Figure 6.4c, Figure 6.4b,

and Figure 6.4a, ’partial route’ means the 50-vehicle simulation, while ’full

route’ means the default vehicles in the simulation. Table 6.5 shows the

vehicle numbers for each map. The vertical axis represents the successfully
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hit rate in 1000 simulations. As the number of nodes increases, the query-

hit rate drops. This is because we have set the maximum path length to

6. As more vehicles join the network, even though many cars connect to

each other, if they cannot establish a connection within 6 hops, they still

cannot obtain a trust score through Trustcito.This results in a drop to the

query-hit well.

In the IRTSystemXScenario, with a simulated vehicle count of 50, the

query-hit rate nearly reaches 100%. However, when the number of simulated

vehicles increases to 1069, the query-hit rate drops to only 30%-40%. This

outcome indicates that as the number of vehicles increases, the nodes

generated by Trustcito also increase in number. Despite having numerous

edges, the system still struggles to achieve a very high query-hit rate.

In LustMiniScenario and LustScenario, initially, both maps achieve an

80% query-hit rate. However, as the number of vehicles increases, their

query-hit rates drop to 20% and 40% respectively. This outcome further

highlights that as the number of nodes increases, the query-hit rate may

decrease.

Comparing simulations with different vehicle counts across scenarios,

it’s evident that increasing the number of vehicles leads to a larger number

of nodes, which in turn impacts the query-hit rate. This relationship is

observed across scenarios, such as the IRTSystemXScenario (Figure 6.4c),

where a higher vehicle count results in a significant drop in query-hit rate,

despite having numerous edges. Similarly, in LustMiniScenario (Figure 6.4b)

and LustScenario (Figure 6.4a), the query-hit rates decrease as the number

of vehicles increases, indicating a correlation between node size and query-

hit rate.
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Table 6.5: Nodes and Edges in Each Map with all vehicles

Nodes Edges vehicle numbers
IRTSystemXScenario 545 9607 1069
LustMiniScenario 161 539 184

LustScenario 317 3619 923
LustNanoScenario 24 37 55

(a) LustScenario (b) LustMiniScenario (c) IRTSystemXScenario

Figure 6.4: Query-Hit for each map

6.3.3 Experiment3-Different Malicious Rate

At various attack percentages, represented in Figure 6.5a (10%), Fig-

ure 6.5b (30%), Figure 6.5c (60%), and Figure 6.5d (90%), distinct values for

precision, recall, and F1 score are observable. Specifically, at a malicious

rate of 10%, the system achieves the highest precision and recall rates. How-

ever, at a malicious rate of 90%, the precision and recall values decrease

significantly, indicating a decrease in the system’s ability to accurately detect

benign instances. It is obvious that recommendation is ineffective due to
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the high attacker percentage.

In scenarios where the attacker percentage is 10%, I consistently achieve

over a 70% F1 score with nearly 99% precision using Trustcito. This demon-

strates the exceptional performance of Trustcito when the attacker percent-

age is low. The effectiveness of Trustcito stems from its recommendation-

based system, where the accuracy of recommendations plays a pivotal role.

With fewer attackers present, Trustcito can rely on accurate recommenda-

tions to calculate precise indirect trust scores.

However, as the attacker percentage increases, the effectiveness of recom-

mendations diminishes. With more attackers sending inaccurate recommen-

dations, the reliability of the recommendation mechanism is compromised.

In scenarios where the attacker percentage reaches 90%, nearly all actors

in the environment are attackers. Consequently, the F1 score obtained is

less than 20%, highlighting the significant impact of increasing attacker

percentages on the performance of Trustcito.
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(a) LustScenario-0.1 (b) LustScenario-0.3

(c) LustScenario-0.6 (d) LustScenario-0.9

Figure 6.5: Different attack percentage with 50 vehicles simulated
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Chapter 7: Conclusion

In conclusion, I found that map characteristics and the number of

vehicles will affect the nodes and edges generated by trustcito. Due to

different nodes and edges, I will get different results. More edges and fewer

nodes lead to a higher query-hit rate. In terms of accuracy, I found that

map characteristics and malicious rates will also affect accuracy. These

findings are detailed in chapter 6.

The development and implementation of the trustcito framework in the

V2X environment have significantly contributed to enhancing the trustwor-

thiness and security of V2X communication networks. This provides an

alternative approach to calculating trust relationships when direct trust is

unavailable, thereby confirming my hypothesis that indirect trust can also

be an indicator. The trustcito framework offers users the flexibility to assess

trust in situations where traditional direct trust measurements are not fea-

sible, thus enhancing the reliability and robustness of V2X communication

systems.

However, my model has its limitations. Specifically, as the number of

nodes and edges within the network grows, the computational time and

resource consumption required to calculate trust scores increase substan-

tially. This scalability issue poses a challenge for the real-world deployment

and adoption of my framework. In the future, I will focus on improving

the algorithm. I may use better algorithm to make the process faster and

consume fewer resources. By continuing my efforts to improve my model, I

can advance the safety and efficiency of future transportation systems.
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