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Abstract—There is a space of uncertainty in the modeling of
vehicular dynamics of autonomous systems due to noise in sensor
readings, environmental factors or modeling errors. We present
REQUIEM, a software-only, blackbox approach that exploits this
space in a stealthy manner causing target systems, e.g., unmanned
aerial vehicles (UAVs), to significantly deviate from their mission
parameters. Our system achieves this by modifying sensor values,
all while avoiding detection by onboard anomaly detectors (hence,
“stealthy”). The REQUIEM framework uses a combination of
multiple deep learning models (that we refer to as “surrogates”
and “spoofers”) coupled with extensive, realistic simulations on a
software-in-the-loop quadrotor UAV system. REQUIEM makes no
assumptions about either the (types of) sensors or the onboard
state estimation algorithm(s) — it works so long as the latter is
“learnable”[1], [2], [3].

We demonstrate the effectiveness of our system using various
attacks across multiple missions as well as multiple sets of
statistical analyses. We show that REQUIEM successfully ex-
ploits the modeling errors (i.e., causes significant deviations from
planned mission parameters) while remaining stealthy (no detec-
tion even after tens of meters of deviations) and are generalizable
(REQUIEM has potential to work across different attacks and
sensor types).

I. INTRODUCTION

“Life is a set of choices. Lead or be led astray” –
Beyonce.

Autonomous Vehicles (AVs) try to navigate through the world
using sensors and state estimation algorithms; they may find

use in a variety of applications, from agriculture and logistics
to safety critical domains such as military[4], [5] and dis-
aster response[6]. An increasing proportion of safety-critical
vehicular operations (such as collision avoidance, obstacle
detection/avoidance during lane-change, identifying stop signs,
staying under the speed-limit etc.) that, until recently, ex-
clusively depended on manual intervention/control are now
increasingly being integrated into the intelligent navigation and
control systems of contemporary vehicles with the eventual
goal of achieving safe, reliable and law-abiding autonomous
vehicular control across the gamut.

State estimation algorithms (e.g., Extended Kalman Fil-
ter [7]) in AVs are used to model the state1 of the system.
They may have to account for deviations from the “ideal”
state, that could be the result of system malfunctions (such as
engine failure, GPS failure, etc.) and/or environmental factors
(obstacle, micro-burst wind shear, etc.) or, in what could be
a critical issue, errors/noise in the measurements. In practice,
even the most meticulously designed control systems always
operate under a certain amount of error because of the un-
avoidable observational/measurement errors involved in both,
sensor measurement and complexity of modeling vehicular
dynamics. Note that all AVs require sensors to perceive their
environments. It is what enables an AV to correct itself when
deviating from expected operational parameters. However,
inaccurate sensor observations can prevent such corrections.

All of this creates a space that can be exploited by an
adversary without risk of detection. REQUIEM, our general
framework, exploits this space to generate spoofed input values
in order to attack AVs, causing them to deviate away from mis-

1State means different things in different contexts, but we can think of
it as a description of the physical system using a set of parameters (called
“state variables”). State is static, i.e., it does not offer any information about
how/whether a system evolves over time.
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sion objectives. Figure 1 shows two examples of an unmanned
aerial vehicle (UAV)2 deviating away from its expected mis-
sion and the state estimation algorithms not realizing that a
disruption has occurred! Ideally, the algorithms (or anomaly
detectors) on the UAV should have detected these deviations
and corrected for it. However, the reported sensor value during
the attack remains very close to the normal/expected values,
as shown in Figure 2 — the difference between the nominal3
and attack sensor values is within the margin of error.

: Normal : Attack

Fig. 1: Example of stealthy attack: the vehicle thinks it is
following the mission path (blue) while in actuality, it is
deviating (red). A realistic example is shown on the right where
the attack trajectory is offset to north.
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Fig. 2: Error space exploitation. Nominal mission trace (blue)
vs same mission under stealthy attack (red). Grey region is the
difference being exploited (i.e., accumulated error). By the end
of the accumulation, the vehicle’s true position differs from the
reported GPS position. To remain stealthy, the reported GPS
position becomes similar to the nominal.

Such attack spaces have been shown to exist for EKF, the
de-facto standard for vehicles with non-linear dynamics [8].
Pajic et al. [9] showed that stealthy attacks under linear time-
invariant systems is not feasible. However, Hallyburton et al.
[8] showed that finding optimal stealthy false data injection
(FDI) values for non-linear dynamical systems is computation-
ally feasible. Arnstrom and Teixeira [10] demonstrated stealthy
FDI for an EKF through numerical simulation. Khazraei et
al. [11] demonstrated such an attack against the CARLA[12]
autonomous driving simulator. However, vehicular dynamics
for a UAV is more complex than a car since the former has
to persistently balance itself in the air to be stable. They
also demonstrated an attack that works only on their own
implementation of a theoretical UAV model [13], [14]. Other
work shows attacks against the perception module on the
PX44 system [15], [16]. However, this (whitebox) approach

2We use UAVs and “drones” interchangeably in this paper.
3We use ‘nominal’ and ‘normal’ interchangeably in this paper.
4PX4 is an opensource flight controller suite for various types of vehicles

requires that an attacker has full knowledge of the state esti-
mator, which may not be very feasible. ARES [17] proposed
a reinforcement learning based approach to find adversarial
values for the control task to move the vehicle away from
its planned path. It is also a whitebox approach and the
objective isn’t stealthy deviations like the examples shown
in Figure 1. Overall, existing literature in this space show
that EKF-based algorithms are susceptible to stealthy attacks
— this includes EKF-based anomaly detectors, e.g., SAVIOR
[18]. However, they are either specific to a particular state
estimation algorithm, or require extensive knowledge about
implementation details.

We present REQUIEM, a general framework that can be
used to target state estimation models (e.g., EKF) in au-
tonomous systems and generate spoofed input/sensor values
that can lead the systems astray. REQUIEM presents a blackbox
attack — i.e., there is no knowledge required about the internal
details of the state estimator — the only requirement is that the
state estimation function be “learnable” (explained in §VII-A)
from observation of the inputs and outputs5. Hence, it is not
specific to any particular estimation algorithm or even any
specific sensor! The final result of a REQUIEM-based attack
is a deviation of the physical system’s trajectory while the
system itself doesn’t notice anything untoward (and believes
that it is following the original mission parameters).

REQUIEM, at a high level, includes two components: (a)
“surrogate” models and (b) a “spoofer”. “Surrogate” models
(often more than one as detailed in §V-A) try to emulate the
target functions (i.e., state estimators and anomaly detectors)6

based on the observed I/O behavior. A surrogate model is a
deep neural network (DNN) [19] that can capture both, the
operational capabilities as well as the vulnerabilities of the
target model; hence, the vulnerabilities that are in the target
can be transferred to the surrogate. The use of DNNs allows
us to use generative adversarial networks (GANs) [20] based
training methods to develop a “spoofer”. The spoofer carefully
crafts values for data injections in a deliberate manner (i.e.,
not random spraying) to influence the movement of the UAV,
while evading detection. Note: we are not trying to take
direct control of the vehicle, rather influence it to stray away
from the mission parameters in a specific manner. Hence, our
contributions are:

1) A novel, stealthy attack approach aimed at UAVs.
2) REQUIEM, a framework to implement said approach.
3) Demonstration of the attacks on a widely used, real-world

flight controller, viz. PX4 using a software-in-the-loop
(SITL) simulation framework.

4) Insights gathered from developing REQUIEM.

The REQUIEM code has been opensourced and is available
online7. We will first discuss our system model, assumptions
as well as some required background material next.
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Fig. 3: Process of UAV deployment.

II. BACKGROUND AND SYSTEM MODEL

This section provides an overview of the process of de-
ploying Unmanned Aerial Vehicles (UAVs) and describes the
system model. It is followed by the description of Extended
Kalman Filter (EKF) [7] (the de facto state estimation al-
gorithm in autonomous vehicles) along with a sequence-of-
events, to provide context on where such a state estimator fits
in the operation of UAVs.

A. UAV Deployment Scenario

The operation of a UAV involves an operator, a Ground
Control Station (GCS) and a UAV as shown in Figure 3. The
vehicle is not always in the line-of-sight of the operator after
the take-off.

At 1 the GCS sends the mission parameters to the UAV,
after which 2a 2b and 2c occur simultaneously. At 2a
the UAV sends telemetry information back to the GCS, after
which, at 3 , the operator uses the telemetry information to
‘observe’ the reported position and ensure that the vehicle
follows its mission. At 2b an Anomaly Detector (AD) runs
on the UAV to make sure that the sensor readings are within
acceptable tolerance limits. If the sensor readings trigger an
alarm, then the AD rejects the sensor data and notifies the
GCS. At 2c the UAV internally logs detailed information
about itself such as control response, state estimation status,
actuation response etc., so that at 4 the post-flight analysis is
done to evaluate its performance at the end of the mission.

B. Our System Model and Assumptions

The Software architecture of the system is depicted in
Figure 4, which illustrates how the information from the sensor
disseminates across various tasks via middleware. Autonomous
systems commonly utilize middleware as a software system ar-
chitecture due to the benefit of being able to add a new compo-
nents to the system without affecting the existing functionality
(i.e., essentially scalability). This is popular in robotics (e.g.,
Robot Operating System (ROS) [21]) and in flight controllers
(e.g., PX4 [22]) where a collection of flight control tasks
coordinate to execute the mission. The middleware often has
a publish-subscribe architecture that allows each component
of the system to publish its output and for other components

5As we see later, this is a very lightweight requirement and doesn’t need
anything beyond a simple user-level access on the system or communication
with a middleware.

6Note: we use “target function” and “state estimator” interchangeably in
this paper.

7https://projrequiem.github.io

to subscribe to that output. The software tasks on the system
are activated when the input message is available for use. We
assume that the two stages of the state estimation, predict and
update, are two separate tasks (elaborated in §II-C).

We assume a more restrictive system8 than traditional flight
controllers — the latter assumes that all tasks share the same
user space environment. In this paper, we assume that the tasks
required for operating the UAV are isolated from each other
in user space, communicating via a middleware. Additionally,
the integrity of certain calculations that are crucial for the
operation of the vehicle (e.g., anomaly detection and control)
are protected using techniques such as triple redundancy
modules[23] or trusted execution environment such as Arm
TrustZone[24], Intel SGX[25] or SecureCore[26]. This results
in an attacker being unable to tamper with the protected
functions. For instance, the state estimation calculations are
integral to the operation of UAVs. Therefore, in this paper, we
assume that the state estimation update function is protected.

Sensors. The system has an Inertial Measurement Unit (IMU),
the Global Positioning System (GPS), magnetometer, and
barometer that are provided by autopilot hardware such as
Pixhawk [27] or Navio2 [28] . Although camera can be
used to track movement (i.e., optical flow[29]), we consider
scenarios where there is low visibility (e.g., fog, smoke) or
at night, making the camera useless. IMU is used during the
prediction stage to predict the altitude, velocity and position.
GPS provides information regarding the position and velocity.
Magnetometer provides information regarding the orientation
of the vehicle w.r.t. the environment. Barometer measures the
relative altitude of the vehicle. Under our system model, the
sensors are used when the update task receives them.

C. Extended Kalman Filter

A state estimator never knows the true state of such systems
— it can only estimate the state based on observed evidence
(i.e., from sensors). The Extended Kalman Filter (EKF) [7] can
handle the estimation of nonlinear dynamics, such as drone
movement, via linearization (i.e., linear approximation) and is
the de facto standard in UAVs.

EKF has two stages: predict and update. The predict
stage provides a meaningful state estimation based on the
actuation command in between sensor updates. The update
stage adjusts the state estimation based on sensors. Due to the
space constraints, we explain the general process of the update
and the remaining details are elaborated in the Appendix D.

Predict. EKF uses the previous actuation command to predict
its current state. For example, if the previous command was to
move the vehicle north by a meter, the current position should
be a meter north from the previous one.

Update. When new sensor data becomes available, the estima-
tor calculates the expected sensor value based on the predicted
state using an observation function and compares the observed
value with the expected value. The disparity between the two is
known as the residual, and determines how much the predicted
state needs to adjust. Additionally, the residual is used to gauge
the degree of abnormality in sensor measurements.

8It is more restrictive for the attacker, therefore, harder for our objectives.
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controllers. (Bottom) Sequence of events during the operation
of a UAV.

rt = yt − h ( x̂t|t−1 ) (1)

residual sensor

observation function predicted state

x̂t = x̂t|t−1 +Ktrt (2)

updated state

Formally, when the sensor, yt, is available, the residual is
calculated based on Equation 1 using the observation function
h, which happens to be non-linear. Therefore, linearization
is performed to construct Kalman gain K that is used to
update the state, x̂, as shown in Equation 2. K adjusts how
much influence the residual r should have on the update.
EKF implementations often use χ2 anomaly detector as default
(explained in §II-D).

D. Anomaly Detector

χ2 [30] is a statistical anomaly detection (AD) method
often deployed in CPS [31], [8]. EKF implementations in
autopilots also use χ2 as shown in Equation 3:

rTt C−1 rt = zt ≥ η → zt
η

≥ 1 (3)

inverse residual covariance

normalized residual χ2 threshold

zt is the normalized residual assumed to be in χ2 distribution
and η is the user specified threshold in standard deviations.
This paper refers to zt

η as χ2 score. In this paper, we show
that REQUIEM can easily bypass the implemented χ2, with
the (autopilot provided) default value of η = 5. Therefore, we
use a more stringent AD, τ (described in §II-D), and show
that REQUIEM can bypass that as well.

Therefore, in addition to χ2, we also use threshold based
AD as shown on Equation 4 where if the residual is outside
the acceptable range τmin and τmax, the observed sensor is
considered to be an anomaly, i.e.,;

r ≤ τmin ||r ≥ τmax (4)

anomaly thresholdresidual

The thresholds are determined by the distribution of resid-
ual observed during the normal mission. We will refer to it as
τ -AD.

E. Sequence-of-Events

A state estimator goes through the following sequence
of events as shown in Figure 4. 1 The kinematics of the

EKF Predict

EKF Update

Middleware

Sensor

(a) Normal data flow

EKF Predict

EKF Update

Middleware

Sensor

MitM

(b) Topic Hijacking

EKF PredictSensor

Sensor Predicted

Protected Update Call
EKF Update

Middleware

(c) Input corruption

Fig. 5: Examples of adversary entry vectors. (a) shows the
nominal flow. (b) is an example of malicious module in the
system hijacking the sensor topic. (c) is an example of the
attacker exploiting vulnerability in the task to corrupt the input
but the integrity of the target function is protected.

vehicle are captured by sensors. 2 Based on the previous
actuation, the state estimation predicts the current state. 3 The
sensor values are observed by the state estimator that is used
to compare against the predicted observation. The residuals
calculated during the update are sent to the anomaly detector
and the updated state is sent to the control. 4a If the residual
is too high, then the sensor value is rejected and an alarm is
triggered. 4b With the newly updated state, the control module
calculates the actuation command needed to keep the vehicle
within the mission parameters. 5 The actuation command is
then translated to a pulse-width modulation (PWM) signal and
sent to the motors, resulting in the mission trajectory shown in
blue. The motors affect the kinematics and the cycle continues.

However under the false data injection (FDI) spoofing
attack, an adversary can observe the predicted state and ma-
nipulate a sensor values before 3 . With REQUIEM, the attack
results in trajectory shown in red while the vehicle thinks that
it is following the original mission trajectory shown in blue
dotted line. We discuss the threat model in the next section
elaborating further about an attacker’s capability to achieve
such results.

III. THREAT MODEL

The main objective of an attacker (i.e., our system) is
to cause changes in vehicle movements while the mission
operation seems normal without the anomaly detector raising
any alarms. Hence, it is in the attacker’s best interest not to
crash the vehicle or be detected too soon.

Our threat model is similar to that of ARES [17] 9. We as-
sume realistic attack vectors (e.g., firmware bug exploitation of
a particular version, malicious component in the middleware,
etc.) with the means to collect the target’s input/output values
and to inject values during deployment. However we broaden
the threat model even further: the target function/module is a
blackbox (i.e., attacker can only view the input and the output
of the target, not the internal logic). Due to the typical multi-
vendor model-based development of avionics systems (even for
unmanned systems) [32], [33], [34], there is a good chance that
(a) not all vendors who developed the system have followed
good software security practices [35], [36], [37], (b) there

9They use reinforcement learning with knowledge of the implementation
details whereas we use treat the system as a blackbox. Also we are more
focused on stealth.
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could be many latent, undiscovered bugs in the system and
(c) the entire system could have been developed by a combi-
nation of commodity/open-source components and proprietary
software (e.g., the flight controller). We also assume that the
target function/module does not need root access; REQUIEM
(realistically) assumes that the vehicle relies on the target
function/module for its operation.

As a result, our threat model is more general compared to
prior work [38], [39], [40] since (i) attackers have additional
avenues of exploiting the middleware security vulnerabili-
ties, as shown on Figure 5, (e.g., message man-in-the-middle
(MitM) attack[41], [42], [43]) on top of firmware exploitation
(e.g., memory corruption[44], [45], buffer overflow[46]); (ii)
the blackboxing enables the targeting of protected (§II-B)
functions (Figure 5c) and the lack of necessity for reverse en-
gineering efforts of the target. (iii) if the attacker is not aware
when the target executes, there are existing methods [47], [48]
to calculate, and then predict, the timing behavior of the target
functions. (iv) the certification process [49], [50] for such
systems involves integration testing, often using simulations;
hence it is possible to estimate the I/O behavior as well as
expectations and configuration information for the system.

Note: Physical attacks such as GPS signal spoofing (e.g.,
[51], [52], [53], [54], etc.) or using sound to spoof IMUs
[55], [56], [57] have significantly different requirements such
as additional hardware, shaping of the physical properties
of the attacker/target, precise timing requirements as well as
physical proximity to the target. These are very different threat
models and, hence, physical attacks are out-of-scope and not
considered in this paper.

IV. REQUIEM

State estimators must account for the errors in sensor
values due to (a) noise from the environment, (b) hard-
ware variations in sensor design, (c) placement of sensors,
(d) calibration errors, (e) incomplete modeling of non-linear
vehicular dynamics, etc. The main idea of stealthy attacks
is to exploit such errors to cause deviations from mission
parameters that are not easily detectable. Our stealthy attack
framework REQUIEM leverages the space (or the margin) due
to such errors. Challenges exist in using these errors to our
advantage viz., different vehicles may deploy with different
sensors, estimation parameters or estimation algorithms. Hence
the challenges are: (a) understanding the estimation algorithm
behavior, (b) finding spoofing values to induce deviations
without being detected and (c) evaluating the effectiveness of
such attacks.

REQUIEM handles challenges through the blackbox ap-
proach by constructing deep models that emulate particular
aspects of the state estimation algorithm (i.e., by creation of
"surrogate models"10 §V-A). Using such "surrogates" as a
proxy, a "spoofer" (§V-B) is trained to stealthily accumulate
the error, over time, in the estimator. Note that REQUIEM is ag-
nostic to the state estimation algorithm used as REQUIEM only
cares about how the sensor values impact the state estimation,
thereby removing the burden of manually reverse engineering
the algorithm. As a result, the attack on the surrogate transfers
to the estimation algorithm to induce deviated trajectories like

10A deep neural network that mimics the state estimation algorithm

Figure 1 where the vehicle thinks it is following the mission
path while deviating, without triggering the on-board AD.

Furthermore, depending on the mission, certain trajectory
deviations can be more desirable for the attacker. REQUIEM
allows customization of deviations and, for this paper, presents
two types of stealthy spoofing attacks, as shown in Table I: (i)
“No correction” (NC) causes the vehicle to behave as if sensors
do not exist; it navigates only by its heading and the distance
traveled from the initial position i.e., dead-reckoning while (ii)
“Direction bias” (DB) results in deviations towards a direction
of the attack’s choosing.

TABLE I: REQUIEM stealthy attacks
Name Description
No Correction
(NC)

Removes the effect of sensors on state estimation,
resulting in a dead-reckoning like behavior.

Direction Bias
(DB)

The vehicle deviates towards a particular direction

TABLE II: Naïve attacks types where the attack strategy does
not change based on the state of the vehicle.

Name Description
Position
Constant Offset
(PCO)

Inject a constant value to the GPS north position

Position
Random Offset
(PRO)

Random value is injected to the GPS north posi-
tion

Position Boiling
Frog (PBF)

Gradually increase the value injected into the GPS
north position

Velocity
Constant Offset
(VCO)

Add a constant value to the GPS north velocity

Velocity
Random Offset
(VRO)

Add a random value to the GPS north velocity

Velocity Boiling
Frog (VBF)

Gradually increase the value added into the GPS
north velocity

The REQUIEM framework is composed of three stages as
shown in Figure 6: data collection (§IV-C), surrogate training
(§V-A) and spoofer training (§V-B). First, we describe the
overall design of REQUIEM.

A. Setup

REQUIEM uses flight simulations to train the surrogate and
the spoofer models. Specifically, the simulation is tuned to best
represent the real-world counterpart so that the trained spoofer
can transfer to the vehicle in deployment. The first step is to
extract the information required to set up the simulation. Then
the simulation is played out so that the adversary can collect
the input/output of the target function (i.e., data collection
stage). The collected data is then used to train the surrogate
model where the latter will learn to emulate the target. This
model will then be used to adversarially train the spoofer. The
spoofer learns to exploit the target function through repeated
interactions with the surrogate model; resulting in a successful
stealthy deviation during deployment. In the following subsec-
tions, we provide detailed descriptions for each of the stages,
starting with the information required to use REQUIEM.

5



Fig. 6: REQUIEM Pipeline. 1 Simulation is configured to best reflect the deployment scenario. 2 data is collected over multiple
simulation runs. 3 generate more data similar to collected. 4 generated data is sent to the target function to 5 get the label.
The input-output pairs are used to 6 train the surrogate model. 7 spoofer model is then trained to optimize against the
surrogate where the loss function 8 provides feedback to the spoofer, shaping its attack behavior.

B. Prerequisite: Configuration Setup

Different types of vehicles, missions and flight controllers
incorporate sensors into state estimation algorithms in different
ways; and the same is true for estimation of error bounds.
The first step in our process (“config setup” in Figure 6) is
to gather information from a system that is equivalent to the
victim UAV. We leverage the fact that flight controllers go
through simulation testing for certification [49], [50], hence,
include an interface to run simulations. Even commercial,
proprietary flight controllers provide hardware-in-the-loop sim-
ulation functionality [58], [59], [60]. Although simulation is
strictly not needed to collect data since the information can be
obtained during the physical operation of the UAV, it makes the
data collection process more convenient. As a result, we use
the available information about the UAV (§III) to configure
the flight simulator to generate and collect data to train the
surrogate and the spoof generator.

C. Data Collection

The mission information and vehicle parameters determine
the distribution of a vehicle’s state and sensor values in the
training set; this set will be used to train the surrogate and
spoofer. Simulation setup is tuned in Figure 6: 1 using
the configuration setup stage. The data collection components
focus on collecting the data pertaining to the target sensor
chosen by the adversary.

Algorithm 1 Data Collection Procedure
1: s← Snapshot() /* Collect input */
2: EKF_update_state() /* Update State */
3: sh ← Snapshot() /* Collect output */

2 While simulating a mission, the inputs and outputs
of the state estimation function are collected as shown in
Algorithm 1. The collection starts when the mission begins
(at takeoff) only when the target sensor is available. Lines 1
and 3 capture snapshots of the variables before and after the

state update. The Snapshot after the state update collects the
response when the state update is queried.

The adversary analyzes the snapshot data to determine
which parts pertain to the target sensor by comparing the
snapshots before and after state estimation. Narrowing down
the relevant data assists the surrogate model to converge
accurately during training since it narrows down the “search
space” for the model to optimize.

Implementation. We target real-world flight controllers.
Therefore, we implemented the data collection in the PX4
autopilot, an open-source flight controller [22].

In PX4, we targeted the ekf2 module that use the EKF
library class to perform the predict and update steps. The
collection procedure is implemented by taking the snapshots
of the EKF object, i.e., collecting variables used as input
for the update stage, during a simulation of a mission run.
Snapshots can be taken by parsing the variables in memory
and exfiltrating it as a JSON file. A full snapshot consists of
2020 variables of the EKF object that is sufficient to run the
PX4’s implementation of EKF offline. However, the snapshot
size for training REQUIEM is narrowed down to those variables
presented in Table V - obtained by analyzing how a change in
inputs influences the outputs during the course of a mission.

To capture all types of kinematics for a potential mission,
we utilize the random walk mission where the mission posi-
tions are chosen randomly (according the Brownian motion)
where, at each position, the vehicle faces a random direction.
Due to the space constraints, the details of the mission im-
plementation of this data collection phase are elaborated in
appendix B.

Overall, we ran 20 separate missions for data collection.
Twelve of that are used for training and 8 for testing. resulting
in 2275 examples. Training a deep model, however, require
more examples. Therefore we use input exploration to generate
more meaningful examples in the next stage to train a surrogate
model.

6



V. SURROGATE VS SPOOFER: ADVERSARIAL DEEP
MODELS

The construction of a surrogate and its role (Figure 6)
in training the spoofer is crucial. The surrogate model is
optimized to emulate the target function where as the spoofer is
optimized to induce a particular behavior from the surrogate
(for instance, deviation). We implement both as deep neural
network (DNN) models that recursively adjust their parameters
(i.e., via back-propagation) based on how each of the mod-
els’ parameters contribute to its output (i.e., gradient). Both
models’ usage of gradients in back-propagation is crucial as
generative adversarial networks (GANs)11 allow the spoofer to
be cast as an antagonist to the surrogates. First we describe
the construction of the surrogate model.

A. Surrogate Model

Our surrogate is a DNN that is trained to emulate the
behavior of a target function (EKF in this case). However, the
target function may either be too complex or the attacker may
care only about a subset of the functionality. Therefore, mul-
tiple smaller DNNs are used where each captures a particular
aspect of the target function (i.e., a slice of the target function).
This section elaborates on the creation of the surrogate models
and our implementation.

Overview. DNNs requires large training sets. To ensure there
are sufficient training examples, as shown in Figure 6, we use
3 input exploration where new examples are generated by

adding noise to the input and 4 query the target function to
retrieve corresponding labels. 5 The expanded I/O pairs are
used to 6 train a surrogate model to prevent overfitting (i.e.,
regularizer; see below for details).

Objective. The objective is to generate a function that demon-
strates behavior close to, if not the same, the target function.
Formally, let Q : X → Y be the target function that maps
the input set X (i.e., input to the EKF state update) to the
output set Y (i.e., output of the EKF state update). Capturing
the exact mapping requires having access to all input output
pairs which is not feasible. Instead, we look into a subset of
the input S ⊂ X collected in the data collection stage that
captures the input distribution during a mission. Therefore the
objective function for constructing the surrogate model, D, is:

∀ s ∈S, ω ∼ U (ωl, ωu)

min
D

[
E
[
|| D(s+ ω) − Q(s+ ω) ||

2

]] (5)

noise uniform dist.snapshot

surrogate output target output

The noise ω serves as a regularizer to prevent the model from
overfitting and is sampled uniformly between (ωl, ωu) for each
input s. Hence, the mean difference between surrogate and
target is minimized. The surrogate training procedure is in
Appendix E.

Slices. Remaining stealthy while causing trajectory deviation
is the end goal of REQUIEM. Therefore we create surrogate
models for each of residual, velocity and position estimation
updates as “slices” of the target function:

11Details of GAN are in Appendix C
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Fig. 7: Spoofer training process. Spoofer adds its output to the
collected snapshot. The n surrogate models are fine tuned to
the injected input by querying the target function. The outputs
of the surrogate models are consolidated for loss calculation.
The m loss components each quantize a facet of the surrogates’
behavior. The loss components are consolidated to provide
feedback to the spoofer via backpropagation.

D1 : Residual surrogate (Equation 1)
D2 : Velocity update surrogate (Equation 2)
D3 : Position update surrogate (Equation 2)

Equation 2 is used for both velocity and position update in
EKF.

Implementation. Target function can be queried by topic
hijacking the input and subscribing to the target function’s
output (§III). To avoid running other components of the flight
controller, we achieved the same effect by isolating the code
for the target function and created a query server that takes
snapshot as input and outputs the resulting snapshot. The
isolated code was validated using the snapshot collected in
the previous process.

The two surrogate models were implemented using Py-
Torch. All surrogates (i.e., D1, D2 and D3) are trained
using the Algorithm 3. The training parameters are specified
in Table VII in Appendix E. Overall, the final output of the
surrogate models is defined as Equation 6 that shows it to be
a concatenation of the other surrogates:

D(s) : D1(s) || D2(D1(s), s) || D3(D1(s), s) (6)

ResSurModel output

VelSurModel output

PosSurModel output

B. Spoofer

The Spoofer model optimizes against the surrogate model
to cause deviations during deployment. Using DNNs as surro-
gate models allows us to calculate how each parameter of the
spoofer affected the “spoofed” result of the state estimation
process. The adversary may want to bias the state estimation
a particular way (e.g., moving north). Therefore, we control
the effects of the spoofer via loss components that score the
results on the surrogate (and on the target function by proxy).

Overview. The spoofer is trained by simulating its effect on
the resulting state estimation for each collected snapshot. As a
result, the final loss, L, is a function of both the spoofer and the
surrogates (as shown in Figure 7). From Figure 6, we see that
the spoof generator is 7 trained against the surrogate model
using a GAN framework. 8 the attack performance score, i.e.,
loss, from the output of the surrogate model provides feedback
to the spoofer. This allows the generator to find adversarial
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examples to induce the desired behavior from the surrogate
model (e.g., prevent the anomaly response. . . ) that can be
transferred to the target function.

Objective. The spoofer must induce a specific behavior (i.e.,
deviation) from the target function via surrogate models with-
out triggering the anomaly alarms. Therefore, the behavior
of the spoofer is shaped by its loss function. We create the
following attacks (Table I):

• No Correction (NC) attack where the residual being
minimized results in a dead-reckoning trajectory (i.e., as
if the sensors do not exist)

• Direction Bias (DB) attack where deviation is biased
towards a particular direction

We formalize the loss function for each of the attack.

Designing the No Correction (NC) Attack. To achieve a
dead-reckoning trajectory, the sensor values should not induce
any correction to the predicted state. Since the residual serves
as the anomaly loss in Equation 7, minimizing the anomaly
level (Equation 8) generates an NC attack and also evades
detection.

La = A ( D(G(s))) (7)
anomaly function

surrogate output

min
G

[
(La)

2
]

(8)

In this case, function A filters out the output of the residual
surrogate model, D1, from the final output of D (Equation 6).
Therefore, surrogates D2 and D3 are not used.

Designing the Direction Bias (DB) Attack. To cause a
specific bias in deviations without triggering the anomaly
detector, the spoofer must consider(a) the direction of deviation
as well as (b) alarm triggers. The two facets are formulated
as deviation loss (Equation 9) and budget loss (Equation 10)
respectively. We construct the loss functions such that the
deviation must taken into account only when the detector
doesn’t raise any alarms (Equation 11).

Ld = ReLU( s[pos] − D(s+G(s)) ) (9)

predicted state position updated state resulting from spoof

Lb = ReLU( T − |La|) (10)

anomaly threshold

Deviation bias loss (Ld; Equation 9) measures the differ-
ence between the estimated state and the true state. ReLU [61]
is used to ensure that the loss increases only if the spoofed
values cause the state to update in favor of a desired direction.
This loss function encourages the spoofer to trade off some
residual for more deviation.

Budget loss (Lb; Equation 10) is the slack between the
current anomaly level and the anomaly threshold, T . T should
be set below the target anomaly detector’s threshold to account
for the noise. Therefore, the maximization of Ld · Lb results
in maximizing deviation per anomaly level. We still need to
incorporate La to remain stealthy; hence, we end up with the
following objective function:

min
G

[
(La)

2 − Lb · Ld

]
(11)

Notice that Ld only has an effect if Lb is greater than zero
(i.e., if the slack exists). Therefore, Lb acts as a "budget". It
ensures that the spoofer does not tradeoff between gaining for
more deviation at the cost of triggering the alarm since (La

is the only loss left when the alarm is triggered). Therefore,
optimizing for Equation 11 allows the spoofer to trade off
between deviating more and the cost of increasing the anomaly
level when the alarm isn’t triggered.

Implementation. The spoofer was implemented using Py-
Torch. Due to the space constraints, the details are elaborated
in the Appendix E

VI. EVALUATION AND RESULTS

A successful stealthy attack must show that the vehicle
is operating in a seemingly normal state while causing the
actual trajectory to deviate. We outline our evaluation methods
and results in this section to show that REQUIEM successfully
carries out the stealthy attack. Evaluating the effectiveness of
REQUIEM raises the following set of research questions (RQ):

RQ1 (§VI-C) Did REQUIEM succeed in the stealthy attack?
RQ2 (§VI-D) What determines an attack to be stealthy?
RQ3 (§VI-E) What determines an attack to be "meaningful"?
RQ4 (§VI-F) How do we measure how well the surrogate

model "learns" a target function?
RQ5 (§VI-G) How do environmental factors affect the attack?

We define the evaluation metrics, experiment parameters and
processes to answer each of these research questions.

A. Metrics

To evaluate an attack, there are four trajectories to consider:
(i) planned, (ii) normal, (iii) attack and (iv) system point-of-
view (POV). Planned trajectory is the ideal path the vehicle
should take on a mission. Normal trajectory is the resulting
path of a mission without any attacks. Attack trajectory is the
true trajectory of the vehicle during an attack while the system
POV trajectory is the path the vehicle (and potentially, a remote
the operator) observes during the attack. Larger the difference
between the attack trajectory and the system POV trajectory,
larger the deviation.

We must also consider stealthiness when evaluating these
attacks where the attack’s success depends on achieving (a)
seemingly normal operations of the vehicle (i.e., RQ2) and
(b) significant deviation (i.e., RQ3) simultaneously. Therefore,
we provide metrics for the attack w.r.t. the anomaly detector
response and deviations.

As mentioned in §II-D, two types of anomaly detectors
are considered: (i) onboard AD (i.e., χ2 §II-C) and the more
stringent (ii) threshold AD (i.e., τ , §II-D). The threshold of τ -
AD was set to two standard deviations from the mean 12 based
on the nominal residual distribution for each mission as shown
in the appendix Figure VI. A stealthy attack mainly cares
about whether the anomaly detector raises an alarm during
a mission and the deviations achieved without triggering.

12Conservative bound since the bounds need to be more lax to achieve
zero false positives under a normal mission – i.e., we used a tighter (more
restrictive) bound for our system since the default values were too easy to
spoof
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Table IVa describes the corresponding metrics, viz.: M1 and
M3 check the alarm response; i.e., when the detector raises
alarms, the attack is considered to be overt. An attack is
considered partially successful if the attack becomes overt at
a much later stage in the attack. However if an attack becomes
overt within a second of the attack, it is considered a failure
w.r.t. the chosen anomaly detector. Stealthy attacks should not
trigger any of the anomaly detectors.

M2 and M4 measure the maximum stealthy deviation
achieved in meters (i.e., maximum distance between the attack
and system POV trajectory without becoming overt) w.r.t. the
two anomaly detectors. In a partially successful attack, the
maximum stealthy deviation is the largest deviation until the
attack becomes overt. An effective attack should have as much
stealthy deviation as possible within the given mission.

The adversary may care more about changing the shape
(or path) of the trajectory while retaining the appearance that
the UAV is following the planned path in missions (e.g., where
UAVs are used to survey an area). Therefore, we must quantify
the trajectory shape difference between the planned path and
the system POV trajectory, respectively both compared to the
‘normal’ paths. To do that, we use total Bregman divergence
(TBD) [62] that compares the gaussian mixture model (GMM)
[63] of one shape to another. Due to inherent randomness of
GMM, we generate the TBD value 10 times and graph the
distribution as box plots. A good stealthy attack should have a
high TBD value for the attack trajectory and a low TBD value
for the system POV.

The metrics will show that REQUIEM induces significant
deviations while remaining stealthy across various mission
scenarios. The justification of the metrics w.r.t. capturing the
stealthiness and the significance of the attack are answered
by RQ2 (§VI-D) and RQ3 (§VI-E) respectively. Learnability
of EKF is answered by RQ4 (§VI-F). The next subsection
specifies the experiment parameters and the process to show
that REQUIEM is necessary for stealthy attacks.

B. Experiment Parameters

We design the experiments to show the effectiveness of
REQUIEM as an stealthy attack under various mission scenar-
ios. This subsection establishes the baseline attacks that we
will compare REQUIEM against as well as the missions. To
demonstrate the feasibility of REQUIEM, we test our approach
in simulation with an open-source flight controller PX4 [22]
with gazebo [64] physics simulation.

Baseline Attacks. To show that REQUIEM is necessary, we
establish baseline attacks as naïve attacks where the attack
strategy is agnostic to the input of target function. We consider
six naïve attacks specified in Table II where either the position
or the velocity values are manipulated with one of three naïve
strategies: constant offset, random offset, and boiling frog.

Constant offset attack adds a constant value of 1 to the
GPS position (i.e., PCO) or the velocity (i.e., VCO) values
respectively. Random offset adds random values (uniform be-
tween -1 and 1) to the position (i.e., PRO) or the velocity (i.e.,
VRO) values every GPS update. Boiling-frog attack gradually
adds values to position (i.e., PBF) or velocity (i.e., VBF) such
that value 1 in injected over a minute. Boiling-frog attack is

designed to show that even minuscule injection can cause the
attack to be overt.

Missions. Attack performance is affected by the kinematics of
a mission since different mission implies different input dis-
tribution of the state estimator. To test the attack’s robustness
against various vehicular kinematics, we specify the following
missions with different trajectories as described in Table III:
circle, linear and hold.

TABLE III: Mission scenarios with an example mission trajec-
tory and average estimation error over 10 trials, E[ϵ]. Due to
space constraints, exact parameters of the mission are defined
in the Appendix B

Name Description Trajectory E[ϵ]

Circle
Vehicle moves forward with fixed
yaw-rate for a specified time. The
resulting trajectory forms multiple cir-
cles in north and east plane.

0.06147

Linear Set-points are set along the lateral
plane. The resulting trajectory forms
a triangle

0.0418

Hold Maintain a specified altitude above the
starting point for a specified time. 0.0159

Each mission have different challenges for the attacker.
Circle mission represent movement where the vehicle rotates
while moving. The attack becomes complex as the effect
of vehicle attitude and angular velocity must be considered.
Linear mission represent the standard mission of going from
point A to point B without rotation. Attacker must ensure that
the vehicle thinks that it converged to the mission setpoints.
Hold mission represent scenarios where there is no little to
no movement making it harder for the attacker to exploit
estimation error due to the movement.

AD Parameter. We compare the attack performance on both
default onboard AD, χ2 and the threshold based AD, τ , with
mission tuned threshold to show that bypassing τ has stricter
requirement. It highlights the significance of REQUIEM by
demonstrating that only REQUIEM can bypass τ whereas naïve
methods cannot.

χ2 AD has default threshold of η = 5. However for τ
AD, the threshold range, τmin and τmax, were chosen based
on the nominal distribution of the residual values for each
mission. Specifically, the standard deviation of the distribution
was calculated and removed outliers outside two standard
deviations. Then the 2.5% and 97.5% percentile were selected
as τmin and τmax respectively (due to space constraints, the
details are in the appendix).

Experiment Setup. Experiments ran in PX4 autopilot’s
software-in-the-loop (SITL) simulation with Gazebo[64] plu-
gin with the default environment (i.e., no environmental haz-
ards such as wind). The simulation ran on quad-core intel
i5, Ubuntu 22.04, 16GB RAM, AMD Radeon Vega 20 GPU.
During the course of simulation, the autopilot’s state estima-
tion module exfiltrates the snapshot with the implementation
specified in Table V whenever the sensor value is ready to
update the state. The module receives the spoof value after the
exfiltration and injects the value into the GPS sensor.

9



Process. We examine each of the attack approaches (6 naïve
and 2 REQUIEM) against the three missions (i.e., hold, linear,
circle) each representing different mission kinematics. Each
experiment is repeated 10 times and evaluated using the
previously mentioned metric. Results of the experiments are
organized in Table IV which shows the average performance
of the attacks for each mission measured using the previously
mentioned metrics.

C. RQ1: Did REQUIEM succeed in Stealthy Attacks?

The objective of a stealthy attack is to avoid tripping any
anomaly detectors and causing the system POV trajectory
to seem nominal w.r.t. the planned mission while the true
trajectory due to the attack significantly deviates from the mis-
sion parameters (i.e., a meaningful deviation). Justification and
definitions of ‘stealthiness’ and ‘meaningfulness’ are discussed
in the subsequent section §VI-D and §VI-E respectively. On
both fronts, REQUIEM successfully achieved stealth since it
caused significant deviation without triggering anomaly detec-
tors especially for the circle and linear missions. For the hold
mission, REQUIEM was successful until an average of 17.72m
of deviation was achieved after which it was no longer stealthy.
The reason for the break in stealth is that the hold mission
has a very limited movement errors for REQUIEM to exploit.
However all of the naïve attacks (Table II) also failed to be
a stealthy for all missions, displaying the non-triviality of the
problem. In the rest of this section, we discuss the attack w.r.t.
the circle mission while the details and results from the other
missions are in appendix H due to the space constraints.

REQUIEM was indeed stealthy since it did not trigger any
alarms –for both anomaly detectors –for the duration of the
mission and the system POV was nominal13. The performance
of REQUIEM’s direction bias (DB) attack in Figure 8c shows
that the residual stayed within the threshold range for the du-
ration of the mission. Notice that in Figure 8a, the system POV
trajectory is near exact to the normal trajectory. Consequently
in Figure 10, the total Bregman divergence (TBD) value of the
system POV trajectory is within the normal trajectory range.

Insight. The stealthy attack performance is bounded by
the training set distribution as well as the allowable error
for a mission. When the spoofer encounters sensor values
or estimated state values that are outside of the training
set distribution, the performance worsens. Therefore, it is
important for the data collection stage (§IV-C) to collect
snapshots representative of the deployment mission.

We can see that although the attack residual remained stealthy
for DB attack illustrated in Figure 8c, the residual is slowly
reaching the lower threshold as the deviation increases. The
effect is due to the larger discrepancy between the estimated
state and the true sensor value when compared to the ones
captured in the during the data collection stage (i.e., training
set). The effect is more prominent in REQUIEM’s NC attack
as shown in Figure 9 where the attack exploits the downward
momentum, causing faster deviation at the cost of becoming
overt (around 70m of deviation). For DB, had the vehicle kept
deviating away from the planned trajectory for a longer time,
the attack would eventually become overt. However, the fact

13we use ‘nominal’ and ‘expected’ interchangeably

that spoofer still remained stealty even after about 25m of
deviation, far exceeding the scenario captured in the training
set, indicates that the model generalized well.

REQUIEM achieved a 23m northward deviation for a helic-
tical trajectory, significantly different from the intended circle
as shown in Figure 8a. As a result, the TBD value of the
attack trajectory (in Figure 10) is significantly higher than
the system POV. In contrast, naïve position boiling-frog attack
(PBF), the only naïve attack method that had partial success
(shown in Figure 11) achieved maximum of about 0.111m
stealthy deviation, twice the average nominal error as shown
in Table III. This is not comparable to REQUIEM which is
two orders of magnitude higher. Even at the cost of becoming
overt and reaching about 1m of deviation, the naïve PBF’s
overt attack trajectory is similar to the nominal trajectory, thus
not causing any real deviations.

The effect of the loss function on the spoofer is noticeable
as the Direction Bias successfully caused the trajectory to shift
northward. Notice at the start of the circle mission, there is
a counter clockwise momentum causing the vehicle to head
south (visible in Figure 11a). Therefore, the REQUIEM’s NC
attack causes the trajectory to go downward since it prevents
the sensor value from correcting the momentum. The dom-
inating southward momentum increases even more for each
southward motion in the nominal mission and decreases for
each northward movement but not enough to counter the initial
build up. In contrast, Direction Bias counters the southward
momentum early on and steadily builds northward momentum.

D. RQ2: What is a “Stealthy” Attack?

Recall from Figure 3 where the deployment process in-
cludes an operator, anomaly detector and post-flight analysis.
By the time of post-flight analysis, detecting the attack is too
late. However, if the mission ran seemingly normal, post-flight
analysis may not be warranted. Therefore, stealthiness means
that the attack should seem nominal w.r.t. the anomaly detector
and the operator (i.e., system POV trajectory):

C1 Attack does not trigger the anomaly detector
C2 From the operator’s perspective, the trajectory reported

by the UAV must not be distinguishable from the normal
trajectory.

Demonstrating C1 requires recording the anomaly detection
response using the previously mentioned Table IVa which
describes the metrics. The table measures the AD responses
of χ2 and τ (i.e., M1 and M3 respectively). Because τ is
more stringent anomaly detector, we consider the attack to be
stealthy if τ -AD does not alarm.

To show that the attack satisfies C2, the system POV traje-
cotry resulting from the attack is visually compared against
the planned trajectory. The trajectory shape comparison is
then quantified using total Bregman divergence (elaborated in
Appendix F). The nominal value for the TBD is calculated by
comparing trajectory between two sets of nominal run of the
mission. Therefore, TBD value for the system POV trajectory
staying within the nominal value indicates that the reported
trajectory is seemingly normal.
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MID Name Description
M1 Stealth

χ2
Determines if the attack trig-
gered the alarm under the
default AD (i.e., χ2) (Equa-
tion 3).

M2 χ2

Max
Stealthy
ϵ

Maximum stealthy deviation
achieved under χ2 AD in
meters.

M3 Stealth
τ

Checks if τ -AD (Equation 4)
raised an alarm.

M4 τ Max
Stealthy
ϵ

Maximum stealthy deviation
achieved under τ -AD in me-
ters

(a) Evaluation metrics

Naïve REQUIEM
Mis. MID PCO PRO PBF VCO VRO VBF NC DB

M1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
M2 1.097 0.365 1.122 2.730 0.934 2.756 110.62 23.78
M3 ✗ ✗ (✓/✗) ✗ ✗ ✗ (✓/✗) ✓
M4 ✗ ✗ 0.111 ✗ ✗ ✗ 77.09 23.78
M1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
M2 1.030 0.300 0.356 2.745 0.891 0.893 3.56 11.10
M3 ✗ ✗ (✓/✗) ✗ ✗ ✗ ✓ ✓
M4 ✗ ✗ 0.0936 ✗ ✗ ✗ 3.56 11.10
M1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
M2 1.018 0.357 1.135 2.756 0.925 2.497 50.62 289.26
M3 ✗ ✗ ✗ ✗ ✗ ✗ (✓/✗) (✓/✗)
M4 ✗ ✗ ✗ ✗ ✗ ✗ 17.72 9.47

(b) Attack evaluation for each mission (Mis.)

TABLE IV: Attack evaluation on the three mission scenarios: circle ( ), linear ( ) and hold ( ). The attack that resulted with
the most deviation given a metric is shaded with purple. ✓indicates that the attack remained stealthy throughout the mission in
all trials, (✓/✗) indicates that attacked start out stealthy for all trials but became overt for at least one of the trials, and ✗indicates
that the attack was not stealthy to begin with for at-least one of the trials.
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Fig. 8: REQUIEM’s directional bias (DB) attack on circle mission. (a) shows that system POV trajectory (green) is not
distinguishable from the normal where as the attack trajectory, colored in red, deviated far away. During the attack, GPS
velocity and position readings are seemingly normal as shown in (b) where the difference is minuscule. (c) Resulting residual
stayed within the τ threshold, avoiding the activation of the alarm. Onboard detector’s inefficacy is demonstrated in (d) where
χ2 score remained near-zero throughout.
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(b) NC Residual

Fig. 9: REQUIEM’s no correction (NC) attack on circle mission.
(a) shows the UAV deviating a significant amount but became
overt near the end. (b) shows the point of the stealth loss. The
loss is due to receiving large position values (i.e., >77m) as
input which is far outside of the training distribution.
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Fig. 10: Total Bregman Divergence (TBD) between the
planned to the attack and the system POV trajectories. Larger
difference between the green and the pink box indicates larger
deviation. The plot shows that REQUIEM attacks achieve
significant deviation whereas naïve attacks fails to do so.
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(b) PBF Residual

Fig. 11: Naïve position boiling frog (PBF) attack on circle
mission. (a) shows negligible effect of PBF on the trajectory
but becomes overt after traveling half circle. (b) shows the
position residual gradually straying away from the nominal
residual resulting in an alarm.

E. RQ3: What is a “Meaningful” Attack?

We have seen in the evaluation Table IV that the naïve
PBF achieves around 1m maximum overt deviation. However,
the resulting attack trajectory is similar compared to the system
POV as well as the planned in Figure 11a. In contrast, an attack
can have the same maximum deviation but result in a trajectory
similar to Figure 1 where attack trajectory is an offset of the
system POV. Such offset can be critical for missions such
as surveillance or reconnaissance. Therefore, we consider an
attack to be “meaningful” when the attack trajectory has a
“different” shape compared to the planned trajectory.

Insight. It implies that only comparing the maximum ϵ
between the system POV and the attack trajectories does not
tell the full story since the attack trajectory can be similar
to the planned while having a "significant" deviation.

To demonstrate that the shapes are different, we use total
Bregman divergence (elaborated in Appendix F) for shape
comparison; comparing the attack to the planned trajectory to
indicate that the two shapes are significantly different.

F. RQ4 : How do we measure how well the surrogate model
"learn" the target function?

A standard process in machine learning for evaluating a
model’s performance is by testing the model against a set of
data that were not in the training set. For this paper, the test
set is the 8 separate mission runs addressed in §IV-C and the
performance measurement is the mean squared error loss.

Due to the space constraints, the results are explained in
Appendix G. It provides the following insight:

Insight. The surrogate models managed to learn the target
function since important functions in safety critical systems,
such as state estimator, are designed to be predictable,
especially w.r.t. the correlation between their ins and outs.

We continue the discussion of "learnability" of the state
estimation algorithm in §VII-A, reinforcing why surrogate
models can "learn" for a large number of safety critical
systems including autonomous vehicles.
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Fig. 12: Notice that the normal trajectory (blue) from a system
with wind (a) does not seem out of place when compared to
the System POV (green) without wind in (b). The latter is what
the operator sees and it is hard to distinguish it from an attack,
in the presence of wind or otherwise.
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Fig. 13: Comparison of wind direction affecting the DB attack
shows that direction of deviation is opposite to the wind in both
cases (a) and (b) but achieves greater deviation under southern
wind. [NORTH WIND] On average over 10 trials, DB achieves
48.63m of stealthy deviation and 173.13m of overt deviation.
[SOUTH WIND] On average, DB achieves 38.73m of stealthy
deviation and 286.84m of overt deviation.

G. RQ5 How do environmental factors affect the attack?

Environment factors (such as wind and other weather
conditions) can cause the UAV to stray slightly away from
its planned path as shown in Figure 12. However, it can
also be unpredictable and affect the mission performance of
the UAV. To test the robustness of REQUIEM, we tested the
spoofer, that was trained under the default environment (i.e.,
no wind), under a windy weather going steadily at 4m/s north.
We expected REQUIEM to exploit the wind due to the natural
momentum it provides to the UAV and deviate along the
direction of the wind. However, the opposite was true:

Insight. REQUIEM exploits the control system’s response
to the wind, resulting in a stealthy deviation in a direction
opposite to the wind direction (i.e., along the direction of
the control’s response).
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Fig. 14: Wind also makes NC attack to cause deviation
opposite to the wind as shown in (a) and (b). [NORTH WIND]
On average over 10 trials, NC achieves 82.44m of stealthy
deviation and 183.67m of overt deviation. [SOUTH WIND] On
average, NC under southern wind achieves 73.85m of stealthy
deviation and 140.04m of overt deviation.

The result makes sense because the control already ac-
counts for the wind during the takeoff (i.e., before the mission
start and the attack). The NC attack’s prevention of the sensor
from correcting the state estimation results in the control
system overcompensation, thus causing deviations as shown
in Figure 14.

Comparing among the DB and NC attacks, the latter
fared better since it remains stealthy for a longer time than
DB. However, DB achieves a larger deviation, at the cost of
stealthiness: we can see the effect of the DB’s bias effort
in Figure 13a where the UAV deviates less towards south
and Figure 13b where it deviates more towards north. Both
methods of REQUIEM still resulted in a significant stealthy
deviation prior to becoming overt.

VII. DISCUSSION

We discuss the conditions required for REQUIEM to work
(i.e., learnability of the target function), potential defenses
against REQUIEM and limitation of our methods.

A. Learnability

For a target function to be learnable, it must be dif-
ferentiable or have bounded continuity: current ML theory
assumes k-lipshitz continuity that places upper bounds on
how fast a function output can change w.r.t. the input [1],
[2], [3]. Differentiabliliy and the bounded continuity also
apply for state estimator analysis to provide guarantees about
its behavior [65], [66], [67], [68]. Safety critical systems
(e.g., autonomous vehicles or avionics) require predictability
guarantees. Hence, our approach exploits the analyzability of
the estimation algorithms.

Furthermore, our approach is slightly more relaxed: the
continuity constraint is only a subset of the input domain
reflective of the vehicle’s mission (i.e., locally Lipschitz). This
is because the state estimator will only observe regions of
the input domain corresponding to the deployment mission
throughout the attack.

B. Defending against REQUIEM

Because we exploit errors that naturally exist in vehicular
systems, defending against REQUIEM is very tricky. Even
analyzing the history of sensor values will be insufficient as the
spoofed values look like they are drawing from the same distri-
bution as the original sensor values. One could try to prevent
the payload from reaching the target system, i.e.,; making it
difficult to ‘learn’ the target function with surrogate models or
increasing sensor redundancy where multiple sensors provide
similar overlapping information. Another potential solution
is via randomization [69], [70] since it makes the mapping
between the input and the output seem more disjoint. Though
in autonomous vehicle domains, applying randomization to
state estimation may be difficult since the vehicular motion
is bounded by the standard model of physics.

C. Limitations

Our approach is stealthy only with-in the sensor perspec-
tive: it will be stealthy against any anomaly detector that
detects problems based only on sensors. If there are redundant
sensors (e.g., at least two of a same kind), then the spoofer
must spoof all, which makes the attack harder; though we can
handle this by using multiple surrogates and spoofers. We do
not address stealthiness outside of that scope. In the threat
model, we assume that the adversary is aware of the state of
the module. We acknowledge that it is difficult to map every
variable. However, it can be alleviated in some cases: identi-
fying regions of memory corresponding to module parameters
can be achieved by setting unique parameter values with
MAVLink [71] commands and searching for them. Regions of
memory for sensors can be discovered by manipulating sensor
messages that reach the estimation module. We do not consider
stealthiness under post-flight analysis where a full detailed log
of the vehicle is used to diagnose any potential issues with the
vehicle.

VIII. RELATED WORK

We now explore some relevant contemporary strategies for
creating Adversarial Examples (AEs) and their deployment in
autonomous systems, focusing especially on stealthy spoofing
attacks, and note how REQUIEM differs from and/or is better
than comparable work.

Spoofing Attacks. Recent studies[72], [73], [74], [75], [76],
[77] involving adaptive adversarial attack approaches etc. high-
light the inherent brittleness of Deep Neural Networks (DNNs),
and consequently the susceptibility of anomaly detectors in
various autonomous systems including UAV Autopilot sys-
tems. The Adversarial Examples (AEs) produced by REQUIEM
are adaptable and broadly applicable across a variety of
systems since they do not depend on specific system states
or sensors.

Detection and Defense Against Spoofing Attacks. More
recent anomaly detectors, such as SAVIOR [18], use EKF-
based state estimation to detect anomalies using the residual.
The essence of their EKF is similar to that used in PX4.
Hence, we can apply our methods to generate another spoofer
for this EKF and tune the loss functions to evade detection
by such methods. Most of the current methods to detect[78],
[79], [80] and defend against spoofing attacks such as sensor
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watermarking[81], [82] etc. work best with fixed spoofing
strategies (i.e., naïve attacks and replay attacks). REQUIEM
makes such defenses moot since our spoof generation is a
function of the actuation command and we demonstrated that
a single model is capable of minimizing the residual under
various kinematics.

GANs in Crafting Adversarial Examples. The advent of
Generative Adversarial Networks (GANs)[83], [84] has paved
the way for their application in Adversarial Example (AE)
generation including AEs for vision and perception-based
Deep Neural Networks (DNNs)[85], [86], [87], [88], [89], [90].
AdvGAN[89] is perhaps the first to demonstrate AE crafting,
and AC-GAN[91] builds on AdvGAN to generate AEs that
bias the victim model toward a specific classification. However,
the use of GANs in autonomous vehicles presents unique
challenges, especially with non-vision sensors such as IMU
or GPS that are typically governed by non-DNN, regression-
based models. This is a departure from the traditional focus of
GANs on vision models that are more susceptible due to their
deep learning nature. REQUIEM differs from AdvGAN and
AC-GAN in several key aspects: (i) we target the modeling
errors in the target function, whereas AdvGAN focuses on
the generalizability issues of the deep target model. (ii) The
target function in AdvGAN is categorical, while in REQUIEM,
it is a regression function. (iii) REQUIEM introduces surrogate
models to learn specific ’slices’ of the target function, aiming
at particular subsets of this function.
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APPENDIX

This appendix includes the referenced details in the main
content of this paper.

A. Implementation Specifications

This subsection describes the implementation detail to run
the experiments from §VI. We use PX4 Software-In-The-Loop
(SITL) with Gazebo for physics simulation. The simulation
uses default world with the default quadrotor model in PX4.
We use MAVSDK-python[92] to send commands to the UAV.
We use a combination of TCP and mmap for exfiltration of
the snapshots from the PX4 to the attack server. where TCP
packets were used to signal that data is ready for in the mmap.
The specification is elaborated in more detail on the website??.

B. Referenced Missions

This section describes the exact procedure for each of the
referenced missions from §IV-C and §VI-B: brownian motion,
circle, linear, and hold. The exact implementation of each are
specified on the website.
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Brownian Motion. Brownian Motion is the motion resulting
from a random walk. It is used to capture as much diverse
movement as possible to ensure that the collected data can be
used to train the model meaningfully. We get the setpoints for
Brownian Motion by using a random walk algorithm on a 2D
plane where the next setpoint is the current setpoint moved by
a value sampled from 2D Gaussian with zero mean and unit
variance as shown in Equation 12:

p0 = (0, 0); pt+1 = pt + ϵt+1; ϵt+1 ∼ N ((0, 0), I) (12)

p0 is the origin position with 0m east and 0m north
respectively. Identity matrix I is the covariance matrix (i.e.,
no covariance between east and north). To add rotational
kinematics into the dataset, we randomize the heading for each
setpoint. The UAV is considered converged to the setpoint if
the vehicle is within 0.3m and 1◦ of the setpoint. Example
trajectories for a Brownian Motion Mission are shown in
Figure 15. Notice that the upper and lower trajectories cover
different areas with different trajectory shape.

Fig. 15: Two example trajectories of Brownian motion mission
used in the data collection stage (§IV-C).

Circle. Circle Mission simulates a surveillance mission where
a UAV circles a designated area with a part of the UAV con-
stantly facing toward the center. Specifically, the UAV moves
forward at 5m/s while rotating 30◦ counter-clockwise result-
ing in a circle with 9.549m radius centered at (−8.25m, 0.9m)
east-north coordinate.

Linear. Linear Mission represents a mission involving logistics
such as delivery (e.g., Amazon Air) where the UAV reaches
each of the check points in a straight line. Three setpoints are
used to cover the movement solely along north axis, east axis
and both axes. At altitude of 10m, the UAV moves from the
origin to (10m east, 0m north), then to (10m east, 10m north),
and returning back to the origin (0m east, 0m north).

Hold. In all types of missions, the UAV may need to briefly
hold its position. The Hold Mission is accomplished by only
sending a single setpoint: 0m north, 0m east of the starting
point at 10m altitude.

C. Generative Adversarial Network

This subsection describes Generative Adversarial Network
(GAN) [20] to provide a context into the interaction between
the surrogate and the spoofer models mentioned in §V. GAN
is composed of two models: generator and discriminator. There

are variations and improvements of GAN in various fields
and/or applications. We only present the essence of GAN and
we leave it up to the reader to investigate the variations if
interested.

min
G

max
D

[
Ez

[
1− ln(D(G(z))

]
+ Ex

[
ln(D(x))

]]
(13)

Discriminator. The discriminator is trained against the gen-
erator to distinguish examples generated from the generator
from the examples from the dataset. The model is optimization
function is to adjust its parameters to maximize Equation 13
where x is a real example from the dataset and z is a noise.

Generator. This model is responsible for generating an exam-
ple such that it causes the discriminator to misclassify the gen-
erated example as “real”. Therefore, the generator optimizes
Equation 13 opposite to the discriminator (i.e., adjusting its
parameter to maximize Ez

[
1− ln(D(G(z))

]
).

Adversarial GAN. Following the same paradigm, the dis-
criminator in an Adversarial GAN is the victim model and
the generator is the spoofer that adds negligible artifacts to
an image such that the a deep model classifies an image
differently from a human.

Take Away. GAN training is used to build a deep model
(generator) that can cause a target deep-model (discriminator)
to misclassify. We use the same paradigm as GAN but targeted
towards non-deep-model functions where the discriminator is
the proxy for the target function (i.e., surrogate model), and
the generator is the spoofer.

D. Extended Kalman Filter Detail

This subsection provides supplemental details about Ex-
tended Kalman Filter (EKF) from §II-C.

Predict. This stage utilizes the previous actuation command to
provide the latest state estimation. For example, if the actuation
command cause a full rotation of the wheels of a car, then
the distance that the vehicle travels should be equal to the
circumference of the wheel. The function that handles such
calculations is the transition function.

Formally, the function f is the State Transition Function
that predicts the State x̂t|t−1 at Time t, based on the Previous
Estimation Update x̂t−1 and actuation command, as shown in
Equation 14.

x̂t|t−1 = f ( x̂t−1 , ut ) (14)
predicted state transition function

previous state update actuation command

The formulation of f differs from vehicle to vehicle based
on the hardware(e.g., motor) and the physical characteris-
tics(e.g., wheel size).

There can be an error in the in the modeling of the
vehicle dynamics due to expensiveness of accurate modeling in
vehicles with complex dynamics (e.g., quadrotor drones) or due
to noise in the system (e.g., due to friction or environmental
factors). To capture how such an error can affect the prediction,
error covariance matrix P is constructed via linearizing the
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TABLE VI: Empirical probability density of the residual distribution represented as a histogram (bins=15) of the residual
distributions over 10 trials of the normal run of the mission. X-axis is the residual and the y-axis is the probability density.
The black line indicates the mean(µ). The red lines indicate the threshold range for τ anomaly detector which are two standard
deviations away from the mean. The true positive rate (TPR) and false positive rate (FPR) resulting from using the τ thresholds
on each of the normal missions are shown below the plot. This shows that the threshold bounds were very conservative: the
thresholds would need to be more lax to achieve zero FPR under normal mission.

transition function by differentiating it w.r.t. the State, forming
the Jacobian Matrix F , and w.r.t. the process noise, forming the
process noise covariance matrix Q. as shown in Equation 15.

Pt = F Pt−1F
T + Qt (15)

error covariance

transition Jacobian

process noise covariance

Due to the linearization process, true error covariance
is approximated as an error covariance matrix. The error
covariance matrix is used to create Kalman Gain in the next
stage, responsible for how the state should update based on
the difference between the predicted and the observed. The
differential between the approximation and the true covariance
matrix as well as the error in the modeling of transition
contributes to creating a space that the attacker can exploit.

Update. Observation function h is differentiated w.r.t. the State
as well as noise to create Residual Covariance Matrix C as
shown in Equation 16.

C = H PtH
T + Rt (16)

residual covariance observation Jacobian

observation noise covariance

The covariance matrices are used to construct Kalman Gain
Kt that weighs how much influence the sensors have on state
update, as shown in Equation 17.

Kt = Pt HC−1 (17)

Kalman gain

error covariance

The next Error Covariance, P is updated according to
Equation 15.
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Algorithm 2 Input Exporation
Input: Target function, dataset, lower bound, upper bound, index
Output: Expanded dataset
1: func EXPLOREINPUT(Q, S, ωl, ωu, I)
2: S′ ← {}
3: for i ∈ I do
4: for s ∈ S do
5: ω ∼ U(ωl, ωu)
6: s′ ← s
7: s′[i]← ω + s[i]
8: S′ ← S′ ∪ {s′}
9: end for

10: end for
11: return S′

12: end func

Pt = (I −KtH)Pt (18)

updated error covariance

Theory vs. Implementation. It is worth noting that the classic
EKF assumes that all sensors are synchronous (i.e.,, all sensors
arrive and used at same time), while in practice, the arrival
of sensors is not synchronous due to heterogeneity of the
hardware. Therefore, there are adjustments to the algorithm
that synchronizes the sensors w.r.t. the fastest sensor (i.e., IMU)
while keeping the core algorithm the same. This means that
after a sensor is read, its values are stored in a buffer until
they are ready to be used. Under our system model, the sensor
value that is popped off the buffer is the value that is input
into the EKF update task.

Flight controllers such as PX4[22] and Ardupilot[93], state
transition function (f ) do not directly map between the actu-
ation command and previous state to predicted state. Instead,
the flight controllers use Inertial Measurement Units (IMUs) as
a proxy to the actuation command since an IMU can measure
the actuation. This approach makes a flight controller com-
patible across various types of vehicle configurations where
the actuators are located at different areas of the vehicle, and
thus obviates the complex modeling of the State Transition
Function f that is specific to each vehicle.

Process Noise Covariance Q is determined by the IMU
driver and the parameters collected during IMU calibration.
Observation Noise Covariance R is determined by the corre-
sponding sensor driver. Notice that the Kalman Gain K, is only
the function of the Covariance Matrices (P , H , and C) that
are functions of predefined parameters and sensor hardware.
This means that, the manipulation of the position and velocity
sensor values do not affect the covariances directly. Therefore,
an advantage of the software attack is that the adversary’s only
concern is to manipulate the Residual rt to control how the
vehicle estimates its State. In contrast, physical spoofing of
GPS will risk affecting the Kalman Gain K, which makes the
manipulation more complex.

E. Surrogate and Spoofer Training Detail

Surrogate. To achieve the objective, we use Algorithm 3 to
train the surrogate model. Because we have access to the
input of the target function, we can always generate new
training data by adding noise to the input and executing the
target function. To ensure that the expanded inputs are varied,

Algorithm 3 Surrogate Training
1: S ← EXPLOREINPUT() /* Static Expansion */
2: range← maxS −minS
3: ωl ← minS − 0.1range
4: ωu ← maxS + 0.1range
5: I ← {{}}
6: for e ∈ Epoch do
7: S′ ← EXPLOREINPUT(Q,S, ωl, ωu, )
8: for s ∈ S do
9: ω ∼ U(ωl, ωu) /* Dynamic input exploration */

10: s̃← sf + ω /* Add noise for better generalization */
11: s̃q ← Q(s̃f ) /* Get corresponding label */
12: ŝd ← D(s̃f ) /* Surrogate’s output */
13: Ls ← ||s̃q − ŝd||2
14: D ← Backprop(Ls)
15: end for
16: end for
17: return D

TABLE VII: Surrogate and spoof generator training parame-
ters.

Trained
Models

D1 D2, D3 G

Model
Description

Surrogate model
for residual cal-
culation

Surrogate model
for velocity and
position calcula-
tion respectively

Spoofer

Input Size 52 52
Input
Description

Table. V Table. V with
output from D1

Table. V

Hidden Size 50 50 50
# of Hidden
Layers

2 10 5

Activation
Func

ReLU ReLU ReLU

Output Size 8 1 2
Output
Description

Velocity and
position residual
and residual
variance during
the state update

State estimation
of north velocity
or north position
resulting from
the state update

Injection
values
for GPS
velocity and
position

# of
parameters

8158 28652 15502

Epochs 50 50 140
Training Time
(Hrs)

16 24 74

% time spent
on Query

99.3 99.1 92.5

we develop two methods to perform input expansion prior
to training (i.e., static expansion) and during training (i.e.,
dynamic expansion) where dynamic expansion expands on top
of already expanded input.

Line 9 in Algorithm 3 samples a uniformly random value
which is the Regularizer ω. The resulting snapshot in line 10
is the input to both the surrogate and the target function. The
loss(line 13) is the mean squared error of the two outputs(line
12 and 11 ). As a result, the surrogate model learns the
mapping for the distribution collected.

Spoofer. We specify the implementation details to trains the
two types of spoofers specified in §V-B: No Correction (NC)
and Direction Bias (DB). For NC, the final loss (L) in line 12
in the spoofer training algorithm is obtained from Equation 8
and for DB from Equation 11. In lines 6-10, the surrogate
model is fined-tuned to ensure that its output (when used to
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Algorithm 4 Spoofer Training
1: for e ∈ Epoch do
2: /* Enumerate over the collected data */
3: for s ∈ S do
4: s̃← s + ω /* Noise added for regularization */
5: /* Ensure that the surrogate model is within δ */
6: while Ls > δ do
7: sq ← Q(s̃)
8: Ls ← sq −D(s̃)
9: Backprop(Ls) /* Update the surrogate model */

10: end while
11: /* Train the spoofer */
12: l← L(D(s̃ + G(s̃))) /* Calculate the spoofer loss */
13: Backprop(l) /* Updates the spoofer */
14: end for
15: end for
16: return G

trained the spoofer) is close to the target function. Parameters
δ = 0.025 for fine-tuning and T = 0.1 for Lb were used for
this process.

F. Total Bregman Divergence

As mentioned in §VI-A, Total Bregman Divergence (TBD)
is used to to show that an attack resulted in deviated trajectory
is significant by comparing the trajectory of the normal mission
to the true trajectory. To quantify the difference, we use
the Total Squared Loss (TSL) of the TBD that is used to
compare shapes [62]. In this paper we compare the shape of
the trajectory.

TSL of the TBD is calculated by comparing the distribution
between the two trajectories. It starts with finding a Gaussian
representation of the trajectory by training Gaussian mixture
model (i.e., a set of n Gaussian distributions), p, for a trajectory
as shown on Equation 19.

p(x) =

n∑
i

aiN (x;µi,Σi) (19)

Each of the Gaussians is defined by mean µ, co-variance
Σ and weight a. Therefore, the TSL of the TBD between two
distributions is calculated as shown in equation Equation 20

tSL(pr, pq) =
dr,r + dq,q − 2dr,q√

q + 4dq,q
(20)

where

dk,h =

n∑
i

aki a
h
i N (0, µk

i − µh
i ,Σ

k
i +Σh

i ) (21)

Furthermore, we calculate the TBD for the reported po-
sition to show that the observed trajectory is similar to the
mission trajectory

G. Surrogate Models Test Performance

The result of the surrogate model evaluation process
(§VI-F) is explained here. The test loss converging close to
zero indicates that the model learned target function. It is
corollary to the case where overfitting to the training set cause
the test loss to gradually increase. Figure 16 shows the test loss
plots for the three models. The right plot is the zoomed plot
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Fig. 16: Average test loss of the surrogate models during
training.

of the left. We see that VelSurModel (D2) and PosSurModel
(D3) converged close to zero significantly after 5 epochs. For
ResSurModel (D1), the test loss at the start already is low.
That indicates the residual calculation can be learned easily.
The reduced fluctuation over each epoch indicates that the
model converged.

H. Results for other missions

This section continues the discussion of REQUIEM on
linear (L) and the hold (H) missions from §VI-C.

1) Attack on Linear Mission Performance: REQUIEM also
succeeds for the linear mission since it remained stealthy
while causing deviation up to approximately 11m. When
examining the Total Bregman Divergence (TBD) for each of
the attacks in Figure 17, REQUIEM’s direction bias attack has
the largest difference between the attack trajectory and the
system POV trajectory. The second largest deviation is naïve
Position Constant Offset (PCO) attack, but PCO is not stealthy
since it triggered both alarms as shown in Table IV.
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Fig. 17: Total Bregman Divergence (TBD) for a Linear
Mission. In this context, only REQUIEM attacks are stealthy
as shown in Table IV. The plot shows that REQUIEM attacks
achieve significant deviation whereas naïve attacks fails to do
so.

The trajectory in Figure 18 shows that REQUIEM’s Di-
rection Bias (DB) did not cause much deviation during the
eastward movement towards the first setpoint but exploited
the northward movement toward the second setpoint. Similar
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Fig. 18: Analysis of REQUIEM’s directional bias (DB) attack on linear mission. (a) shows the observed trajectory converging to
each setpoint. Notice the side effect of slightly faster convergence towards the second setpoint in (b) caused by the system not
noticing the overshoot due to the influence of DB. DB manages to stay within the threshold as shown on (c) but the position is
slowly converging towards the threshold due to the spoofer observing position values far outside the training distribution.

case for REQUIEM’s No Correction (NC) attack in Figure 19
where most of the deviation was induced during the northward
movement but not as much compared to DB. DB and NC
demonstrates REQUIEM’s opportunistic nature. Therefore, if
the vehicle were to only move eastward, perpendicular to
the target axis, deviation would be much slower. In contrast,
Position Boiling Frog (PBF) in Figure 20 tries to cause stealthy
deviation by slowly injecting small values but fails when
the vehicle is converging at the first setpoint. PBF’s failure
illustrates that the physical context of the vehicle at the time
of the attack is important.

Insight. Attacks have a minor side-effect on the duration
of the setpoint convergence.

REQUIEM caused the vehicle to believe it is operating
nominally resulting in faster convergence. Where as the naïve
PBF attack caused the vehicle to take longer to converge, as
shown in Figure 20, since it slowly shifts the GPS position
even when the vehicle tries to converge. Under REQUIEM, the
behavior of the side-effect varies based on the control. For
example, if the control was not tuned correctly and caused the
state prediction to think that the vehicle overshot the setpoint,
it would take longer for the vehicle to think that it converged.
However, the environmental factors in real-world (e.g., wind)
can cause these side effects to seem nominal (hence a minor
side-effect).

2) Attack on Hold Mission Performance: Hold Mission
demonstrates REQUIEM’s capability of stealthily deviating a
stationary vehicle. The mission is more difficult to attack
compared to the other two due to the lack of movement,
hence less exploitable space and very low residual and τ
threshold. Despite the challenges as shown in Figure 21c
and Figure 23b, REQUIEM partially succeeds in hold mission
with max stealthy deviation up to 17.72m average and up to
289m overt deviation. Even when the attack becomes overt,
system POV trajectory still remains well within 1m from the
mission parameter. REQUIEM’s DB attack has less stealthy
deviation but higher overt deviation compared to REQUIEM’s
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Fig. 19: Analysis of REQUIEM’s no correction (NC) attack on
linear mission. (a) shows that NC also cause deviation only
after the first setpoint. NC also caused the system to not notice
the overshoot in the second setpoint, resulting in the side effect
of converging slightly faster towards the second setpoint as
shown on (b).

no correction attack due to trading off some stealthiness for
northern bias deviation.

Mission parameters affect the attack difficulty in stealthy
attack since the nominal noise change based on the movement.
A corollary is that the nominal residual distribution is reflective
of the motion.

Insight. However, building a momentary detection mech-
anism around by correlating motion to the residual is not
feasible since it will result in high false positives.

In such a case, defender is tasked to decide between whether
the latest residual is indeed ‘too good’ to be nominal or
whether it is actually nominal. Correctly making that decision
will take repeated observation since the defender needs to
look at the overall trend (i.e., post-flight analysis) otherwise
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Fig. 20: Analysis of naïve position boiling frog (PBF) on
linear mission. (a) caused very small change in trajectory
between the second and third setpoint where the trajectory is
slightly more south than the mission. (b) also shows that the
side effect is visible even when a very small value is added.

will risk severe false positive alarm. By the time a thorough
decision is made, the vehicle has already deviated from
the mission parameters, and hence the attack has already
been accomplished. Even then, the general approach of
REQUIEM gives the potential to counter such mechanism by
incorporating the correlation profiling into the spoofer’s loss
function (§V-B) as REQUIEM has demonstrated to control the
residual to the value of the attacker’s choosing (i.e., zero).
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Fig. 21: Analysis of REQUIEM’s directional bias (DB) attack on hold mission. The observed trajectory in (a) shows that it
stayed within a 1 m of the planned mission while the overall deviation of greater than 300m was achieved for that run. (b)
stayed similar to the normal mission until the attack became overt. (c) the position residual rapidly increased after the attack
became overt faster than the velocity residual. Another indication of large position value outside of the training distribution of
the spoofer causing the loss of stealth. Despite τ AD triggering, χ2 score in (d) stayed near zero throughout.
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Fig. 22: The plot shows that REQUIEM attacks achieve
significant deviation whereas naïve attacks fails to do so.
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Fig. 23: Analysis of REQUIEM’s no correction (NC) attack
on hold mission. The trajectory (a) shows that although the
attack became overt, the observed trajectory is very similar
to the planned trajectory. (b) managed to keep both residuals
as close to zero as possible. Although the observed position
value at the moment of stealth loss is around 20, the stringent
threshold for hold mission resulted in the alarm.
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