
You Can’t Always Check What You Wanted:
Selective Checking and Trusted Execution to Prevent

False Actuations in Real-Time Internet-of-Things

Monowar Hasan
School of Electrical Engineering and Computer Science

Washington State University, Pullman, WA, USA
Email: monowar.hasan@wsu.edu

Sibin Mohan
Department of Computer Science

The George Washington University, Washington, DC, USA
Email: sibin.mohan@gwu.edu

Abstract—Modern Internet-of-Things devices are vulnerable to
attacks targeting outgoing actuation commands that modify their
physical behaviors. We present a “selective checking” mechanism
that uses game-theoretic modeling to identify the suitable subset
of commands to be checked in order to deter an adversary. This
mechanism is coupled with a “delay-aware” trusted execution
environment to ensure that only verified actuation commands
are ever sent to the physical system, thus maintaining the safety
and integrity of the system. Our proposed selective checking and
trusted execution (SCATE) framework is implemented on an off-
the-shelf ARM platform running embedded Linux and tested on
four realistic IoT-specific cyber-physical systems (a ground rover, a
flight controller, a robotic arm and an automated syringe pump).

I. INTRODUCTION

Many critical Internet-of-Things (IoT) systems (e.g., au-
tonomous and self-driving cars, avionics, drones, power grids,
medical devices, etc.) require tight conjoining of and coordination
between computational and physical resources. These devices
are being increasingly interconnected, often via the Internet,
giving rise to the Real-Time Internet-of-things (RT-IoT) [1].
RT-IoT systems often have limited resources (processor, memory,
battery life) and must meet stringent timing constraints. For
instance, an industrial robot on a manufacturing line must
carry out its operation (e.g., placing an object on a conveyor)
in 50–100 ms [2]. Failure to do so could disrupt the entire
manufacturing operation and even put the safety of the plant
and human operators at risk! Modern IoT systems with such
“real-time” requirements are increasingly becoming targets for
cyber-attacks. The traditional approaches of air-gapping such
systems or using proprietary protocols and hardware have been
found wanting in the face of recent high-profile attacks [3]–[5].

In critical RT-IoT systems, adversaries usually focus on
destabilizing the system [6], [7], oftentimes using the falsification
of actuation commands — i.e., commands that control the state of
the physical system are either modified or replaced while in transit
to the physical component. In this work, we intend to check ac-
tuation commands before they can affect the state of the physical
system. To prevent tampering, we implement the checking mecha-
nism in a trusted execution environment (TEE) that is available on
modern commodity processors, viz., the ARM TrustZone [8]. In

The material in this paper is based upon work supported in part by the U.S.
National Science Foundation (NSF) under grant NSF 2246937. Any findings,
opinions, recommendations or conclusions expressed in the paper are those of
the authors and do not necessarily reflect the views of sponsors.

an ideal scenario, every outgoing actuation command should be
checked. A serious hurdle that prevents such a strategy is that, as
mentioned earlier, RT-IoT systems have stringent timing require-
ments — very often the actuation command, once sent out, must
be received by the physical system in a short, fixed, amount of
time. This limits the amount of time delays that can be introduced
during the checking process. In addition, the control software has
its own timing constraints, e.g., it must complete execution before
a certain “deadline”; failure to do so can also cause instability
in the system. Hence, we cannot check (and thus, delay) every
command since each check compounds the delays faced by the
system. Besides, TEEs introduce additional delays due to context-
switch overheads, further (negatively) affecting the deadlines.

There is a need to carefully consider how many and which
actuation commands are to be checked — to ensure that (a) the
system safety/timing requirements are met and (b) also deter
attackers. To this end, we develop a mechanism to validate a
(non-deterministic) subset of commands, varying at run-time that
significantly increases the difficulty for would-be attackers. We
use a game-theoretic formulation of a two-player normal-form
game [9]–[11] for the “selective checking” of the actuation
commands (Sec. V). The combined framework is called the
selective checking and trusted environment (SCATE) system. In
this paper, we made the following contributions:
• We present a framework, SCATE, that protects IoT-specific

real-time cyber-physical systems1 from attacks that falsify
actuation commands [Sec. III].

• We use a combination of game-theoretic analysis and a
trusted environment to deter attackers, significantly reduce
checking overheads, and still guarantee the safety and
integrity of the RT-IoT systems [Sec. V].

• Our open-sourced implementation is available in a public
repository [12].

II. BACKGROUND

We now provide a background the TEE technology (ARM
TrustZone [8]) and the game-theoretic modeling [10]) used in
our work.

1) ARM TrustZone: Trusted environments are set of hardware
and software-based security extensions where the processors
maintain a separated subsystem in addition to the traditional
OS (also called rich OS) components. TEE technology has

1In this paper we use the terms “real-time IoT (RT-IoT)” and “cyber-physical
systems (CPS)” interchangeably.979-8-3503-3902-4/23/$31.00 ©2023 IEEE

been implemented on commercial hardware such as ARM
TrustZone [8] and Intel SGX [13]. In this work, we consider
TrustZone as the building block of our model due to the wide
usage of ARM processors in IoT applications. We note that
although we use the TrustZone functionality for demonstration
purposes, our ideas are rather general and can be adapted to
other TEE technology without loss of generality.

TrustZone contains two different privilege blocks: (a) regular
(non-secure) execution environment, called “Normal World”
(NW) and (b) a trusted environment, referred to as “Secure
World” (SW). The NW is the untrusted environment that runs
a commodity untrusted OS (called rich OS) whereas SW is a
protected computing block that only runs privileged instructions.
TrustZone hardware ensures that the resources in the SW can not
be accessed from the NW. These two worlds are bridged via a
software module, the secure monitor. The context switch between
the NW and SW is performed via a secure monitor call (SMC).

2) Normal-Form Games: The overheads for the TEE context
switch are costly (Sec. IV). If a task cannot verify all the
actuation commands, we propose to select only a subset of
commands in each job for checking. For this, we leverage the
tools from game theory [14] to ensure that the chosen subsets are
non-deterministic, at least from the adversary’s point of view (see
Sec. V for details). In multi-agent systems, if the optimal action
for one agent depends on the actions that the other agents take,
game theory is used to analyze how an agent should behave
in such settings. In a normal-form game [10], every player
j∈{1,2,···,J} has a set of strategies (or actions) σj and a utility
function uj :σ1×σ2×···×σJ→R that maps every outcome (a
vector consisting of a strategy for every player) to a real number.
As we shall see in Sec. V-A we formulate our problem as a two-
player game (e.g., system designer and adversary). The output
of the game finds the probability distribution over the player’s
strategies (i.e., fraction of time a given strategy is selected
in the game) that leads to an optimal outcome. While game-
theoretic analysis has been used in other modeling problems (e.g.,
patrolling [11], network routing [15], transportation systems [16])
as well as general-purpose control systems/CPS [17]–[20], they
are not real-time aware and do not consider the problem of
protecting physical actuators.

III. MOTIVATION AND OVERVIEW

A. The Requirement for Actuation Checks

Without explicit control and verification over the actuation
process, it is possible to send arbitrary signals to the actuators
and an adversary can drive the system in undesirable ways.
For instance, consider ground rovers that can be used in
multiple cyber-physical applications such as remote surveillance,
agriculture and manufacturing [21]. For demonstration purposes,
we use a COTS ground rover running an embedded variant of
Linux on an ARM Cortex-A53 platform (Raspberry Pi [22]).

We carried out a line-following mission where the rover
steered from an initial location to a target location (Fig. 1a).
A controller task runs the standard, pre-packaged, propor-
tional–integral–derivative (PID) closed-loop control [23]. A 5-
byte value is sent to the actuator (via memory-mapped registers)

Source
Destination

Line following mission
(expected rover path)

Control spoofing attack:
attacker turns off the motor
and the rover stalls

(a)

0 5000 10000 15000 20000 25000 30000
Time (ms)

0

100

200

To
ta

l D
is

ta
nc

e
Tr

av
el

ed
 (c

m
)

Control Spoofing
(motor turned off)

Spoofing
Starts

Expected

(b)

Fig. 1. Illustration of control spoofing attack: (a) schematic of our experiment
setup; (b) readings from encoders under attack.

to control the wheel motors via the I2C interface [24]. The
x-axis of Fig. 1 shows the time and the y-axis is the total
distance traveled by the rover (i.e., readings from the wheel
motors). Since the vendor implementation of the controller does
not verify control commands, we were able to inject a logic
bomb and send spoofed commands to turn off the motor (at the
location marked in the figure). As a result, the rover deviates
from its mission. The dashed line (after t=17 seconds) shows
the expected behavior (viz., without any attack) as a reference
(obtained by running a linear regression test). As the shaded
region shows, the encoder readings remain the same and the
rover was not following the line after the attack.

B. System Model
We consider a set of priority-driven, periodic real-time tasks,

Γ, running on a multicore IoT platform Π. The set of tasks
Γp⊂Γ running on a given core πp∈Π is fixed and given by the
designers. Each task τi issues Ni number of actuation requests.2

We assume that there is a designer-given quality-of-service (QoS)
requirement that Nmin

i ≤Ni actuation requests must be checked
for each invocation of a task. We further assume that each
actuation command aji is associated with a designer-provided
weight ωji representing the importance/preference of checking
the corresponding command over another. A higher weight
implies that the actuation request is more critical, and designers
want to examine it more often [25], [26].

C. Adversary Model
We assume that an adversary can tamper with the existing con-

trol logic to manipulate actuation commands, thus modifying the
behavior of a system in undesirable ways (i.e., threaten the safety
of the system). We only consider the cases where an adversary’s
actions result in modifying actuation commands. Other classes
of attacks such as scheduler side-channel attacks [27], [28],
timing anomalies [29], [30] and network-level man-in-the-middle
attacks [26], [31] are not within the scope of this work. We do
not make any assumptions about how an adversary compromises
tasks or actuation commands. For instance, bad software
engineering practices leave vulnerabilities in the systems [32].
We note that embedded real-time CPS have fewer resources and
lesser security protections, making some attacks easier for the
adversary [7], [27], [29], [33]. We do not consider the adversarial
cases that require physical access, i.e., the attacker can not
physically control/turn off/damage the actuators or the system.

2Note: RT-IoT systems are deterministic due to their stringent timing/safety
requirements. Hence, actuation command sequences are predefined at the design
time. These commands are well known, carefully characterized, and do not
change at runtime.

/* other computation */
...

/* actuation request */
set_speed(val)

...

/* other computation */
...

Real-Time Task

Normal Execution Mode

Switch to
Secure Mode

/* check request */

if val is within
threshold:
/* allow request */

/* return */

Set the
Motor Speed

Trusted Execution Mode

Return to
Normal Mode

Fig. 2. Flow of operation in SCATE.

/* other computation */
...
actuation_request_1()
...
actuation_request_2()
...
actuation_request_3()
/* other computation */
...

check_actuation_2()

check_actuation_3()

Normal Execution Mode Trusted Execution Mode

/* other computation */
...
actuation_request_1()
...
actuation_request_2()
...
actuation_request_3()
/* other computation */
...

check_actuation_1()

check_actuation_3()

Normal Execution Mode Trusted Execution Mode

….

Task Instance 1 Task Instance 2

Fig. 3. Non-deterministic selection of actuation commands.

D. Problem Overview and Our Approach

Actuation commands that are malicious can jeopardize the
safety and integrity of cyber-physical applications. In this
research, we propose techniques to protect systems from control
spoofing attacks by examining actuation commands before they
are issued to physical peripherals. We name our mechanism,
SCATE (selective checking and trusted execution) where we
consider cyber-physical applications consisting of software tasks
that can have two different types of execution sections: (a)
regular (potentially untrusted) execution section where normal
executions are carried out and (b) trusted sections where critical
information (i.e., actuation events) are examined.

Note: One may wonder why we cannot execute all parts of
the real-time tasks (i.e., regular execution and actuation checks)
within secure enclaves. This can be problematic since, (a) it will
increase the size of the trusted computing base (TCB), (b) secure
enclaves may become exposed to potentially insecure, external
interfaces (e.g., networks), (c) any vulnerabilities that exist in the
real-time codebase will be carried into the TEE and (d) the TEEs
may not have required library support and will require significant
engineering effort to execute real-time tasks, thus increasing the
possibility of introducing further vulnerabilities and bugs. In
general, since the real-time control software requires access to
external interfaces (I/O, network, etc.) for correct operation it
exposes more attack surfaces. Moving the checking mechanism
to the TEE and keeping it as small as possible ensures that
while adversaries can compromise the main software and control
system, they will be unable to bypass SCATE— thus ensuring
that the main system is protected from malicious behavior.
This is similar to the methods employed in SGX (and similar
mechanisms) [34]–[36] where the entire application (or even the
operating system) does not execute inside the secure enclaves;
only security-critical code (and data) executes inside the enclaves.

The high-level schematic of SCATE is depicted in Fig. 2. When
a task issues an actuation command, SCATE transfers the control

action1 action2 action3 action4

state1 state2 state3 ...

...

System States

Actions
(Valid Actuation Commands)

(a)

a1 a2 a3

s1 s2 s3
States (Rover Positions):
s1: right of the line
s2: left of the line
s3: on top of line

Actuation Commands:
a1: move right
a2: move left
a3: drive forward

(b)

Fig. 4. (a) State→Action mapping used in SCATE. (b) Example states and
valid actuation commands for a line-following rover.

to the secure mode using the TrustZone SMC instructions.3 In
the secure mode, a designer-provided trusted entity checks the
actuation commands. The context switch overhead for switching
between normal and trusted modes is negligible. For example,
consider the rover used in our experiments (Sec. VI). The execu-
tion frequency of the controller task is 5 Hz (200 ms), and it gen-
erates four actuation commands (to set the speeds and direction
of attached motors). The controller task must complete execution
before its periodic invocation interval (200 ms). If we check the
speed and direction values of each of the four commands the
controller task fails to comply with its timing requirements (since
it requires 261 ms to finish). For such situations SCATE selec-
tively checks a subset of the actuation events (Sec. V). Figure 3
shows an illustrative case where a task generates three actuation
requests and we can check at most two requests to comply with
timing/safety requirements. In this case SCATE randomly checks
two commands each time. From the earlier rover example, by
reducing the number of checks by half (e.g., randomly checking
two commands in each task instance instead of all four), the
controller task in SCATE manages to finish before 200 ms
without significantly degrading security as explained in Sec. VI.

IV. CHECKING ACTUATION COMMANDS

In SCATE, a “checking module” executes inside the trusted
environment. The checking module observes system states and
decides whether a given actuation command is legitimate or
malicious. Our scheme is similar to the broad class of “rule-based
checking” mechanisms that are used for intrusion detection in
a wide variety of domains, e.g., Linux security modules [38],
network routers [39], software security auditing [40], cloud
environments [41], to name a few.

For a given RT-IoT platform we assume that there exists a
CheckAct(τi, a

j
i , t) function4 that examines a given actuation

command aji (where 1 ≤ j ≤ Ni, Ni is the total number of
commands the task issues) generated by a task τi at a given time t.
As shown in Fig. 4a, the checking module uses policy abstraction
rules [42], viz., State→Action pairs where the State predicate
represents a given system state and Action denotes correspond-
ing valid actuation command(s). In particular, we assume that
when τi executes an actuation command, function CheckAct(τi,

3Our current implementation uses OP-TEE TEEC_InvokeCommand()
API [37] to perform the switching (see Sec. VI).

4The exact function depends on the specific CPS and application requirements.

aji , t) first observes the system state S(t) and then decides
whether the actuation command aji is valid for the current state
S(t). Consider the line-following rover presented earlier. The
directions for the wheels of the rover (i.e., forward, left and right;
controlled by the attached motors) are the actuation commands.
At any given point in time, the rover can be in one of three states:
S={ON_LINE,LEFT_OF_LINE,RIGHT_OF_LINE} that
denotes whether the rover is on top of the line or shifted left/right
of the line, respectively.

The rover controller task performs the following actuation
operations (i.e., actions): move_left()/move_right() (move
the rover left/right, respectively) and move_forward() (drive
the rover forward). This rover’s corresponding State→Action
mapping is illustrated in Fig. 4b. If the rover is on the left
side of the line (i.e., State = LEFT_OF_LINE), the valid
command should be move_right() (i.e., shift the rover back so
that it stays on the line) and if the rover is on top the line (i.e.,
State=ON_LINE), the controller task should drive it forward
(i.e., issue move_forward() command).

We note that the ideas presented here are agnostic to the
specific checking method and SCATE is compatible with existing
techniques (e.g., defining rules at design times [43], [44], deriving
from specifications [45] and based on statistical analysis [46]).

A. Requirements for Coarse-Grain Checking

In order to check actuation commands we must ensure that
SCATE should not cause inordinate delays and the timing
requirements of real-time tasks are satisfied (i.e., they complete
execution before their respective deadlines). Hence we develop
design-time tests (see Appendix A) that ensure tasks meet their
timing requirements (deadlines). Researchers [47]–[49] show that
although TEEs are implemented on hardware, they can still cause
significant overheads — this is particularly acute in real-time
applications. For instance, consider the Linux-based TrustZone
port, OP-TEE [37] supported on many embedded platforms. Our
experiments show that the overhead of switching between normal
to trusted mode is around 66 ms for OP-TEE on a Raspberry
Pi platform. For completeness, we also performed experiments
on an ARMv8-M Cortex-M33 architecture using ARM FVP
libraries [50] where the regular applications were running on
FreeRTOS [51] and trusted mode codes were executed on bare-
metal. We find that the mode switching delays in this setup are
2 ms. The delays are higher in the Linux environment due to
extra overheads (i.e., execution of a sequence of API calls [47])
imposed by the Linux kernel and OP-TEE secure OS. Although
the overheads of secure calls (SMC) for switching between
regular and trusted modes are platform-specific, it may still not
be feasible to check multiple commands while meeting real-time
guarantees. For example, if a task operates at 50 Hz (i.e., it is
required to finish before 20 ms) [27] and regular computation
takes 10 ms, the FreeRTOS-based setup allows at most 5 checks
in order to comply with timing requirements. Likewise, for the
applications running on a Linux and OP-TEE-based Raspberry Pi
platform (Sec. VI-B), we can check at most 3 commands per in-
stance if the controller task operates at 5 Hz. We, therefore, need
smart techniques, say where only a subset of commands are vetted

while maintaining security guarantees, to support both security
and performance for real-time applications. We now present our
methods to achieve this based on game-theoretic analysis.

V. GAME-THEORETIC ANALYSIS

Let us consider the case when there exists a task τi such that
it cannot perform all the Ni checks before its deadline (denoted
by Di). One option to reduce the number of checks is to verify
only a subset of commands so that the task can finish before its
deadline.5 That is, check a subset of commands, Ki, (Nmin

i ≤
Ki <Ni) such that RTEEi ≤Di,∀τi ∈ Γ where RTEEi is the
response time (i.e., the time between task arrival to completion,
used to verify that the task meets its deadline [53]). The maximum
time for checking Ki commands is known at design time. The
challenge then is to decide which subset of Ki (among Ni) actu-
ation requests should be selected for checking in each task τi. In
addition, if we use a “deterministic selective checking” approach
and examine only a fixed set of Ki commands and an adversary
jeopardizes some or all of the remaining Ni−Ki requests, then
the attack will succeed and remain undetected. To balance the se-
curity and real-time requirements, SCATE selects different subsets
of requests for checking each time the task executes. In particular,
during each task execution, we pick a set of Ki commands with
pre-computed probability distributions. While we pick a subset
of commands, it should look like (to the adversary) that SCATE
is checking all commands. We formulate this problem as a two-
player game [10] and develop Algorithm 1 to determine the feasi-
ble number of Ki inspection points that provide a similar level of
security when compared to the case that checks all Ni requests
(see Sec. V-A). Our game model considers all possible adversar-
ial actions and ensures that all commands are eventually checked
within a time window. This is different than arbitrarily random
selection, where some commands may not be checked at all.

Intuition and Example. Let us consider a ground rover.
The rover controller task (τc) generates the following actuation
requests (Nc=3): (a) setEncL(val) and setEncR(val) that set
the speed of the left and right motor encoders, respectively
(denoted by a1

c and a2
c); (b) setNav(cmd) that issues a

navigation command where each cmd specifies values to the
peripheral registers for navigating the rover forward, backward,
left or right directions (denoted by a3

c). The weights given by:
Ωc = {ω1

c ,ω
2
c ,ω

3
c}. The weights are used to determine which

commands should be checked more often. For example, if ω3
c =2

and ω1
c = ω2

c = 1, then SCATE tends to check setNav(cmd)
twice as often as the other two commands. The checking for a1

c

and a2
c is whether the speed value is within a given bound (e.g.,

val∈ [v−,v+]) and for a3
c the checking module verifies if the

cmd value is consistent so that the rover is on the line and is
correctly following the mission.

We now consider the case when checking all three requests
does not comply with the timing requirement of task τc and
we can only verify at most Ki = 2 requests. Therefore, the

5Another alternative could be to check all (or some) commands at longer
time scales. However, this approach is vulnerable to TOCTTOU (time of check
to time of use) attacks [52] and may result in delayed detection. Hence we do
not consider this alternative in our model.

!!", !!# !!", !!$!!", !!# !!$, !!#
v-th

instance
Time

…
(v+1)-th
instance …

All three commands are checked by 2 instances

Fig. 5. Non-deterministic checking: all commands are eventually checked.

possible combinations for checking are as follows: Xc =
{{a1

c ,a
2
c},{a2

c ,a
3
c},{a1

c ,a
3
c}}. In SCATE, for each instance of the

task τc we need to select any j-th element from the set Xc with
probability xjc that provides better “monitoring coverage.” Hence,
we generate a random number between (0,1), check if it is less
than xjc, and pick the corresponding element from Xc. Eventually,
we cycle through all of the elements of Xc, thus ensuring, (a)
an attacker cannot rely on a predetermined set of checks and (b)
all the commands are eventually checked in a fixed time window.
For example, let x1

c = x2
c = 0.25 and x3

c = 0.5. Then, for any
given instance of τc the possibility of verifying both a1

c and a2
c

is 25%, verifying both a2
c and a3

c is 25%, where the possibility
of verifying a1

c and a3
c is 50% (recall that by assumption we can

check only 2 commands per job). Figure 5 presents an instance of
such execution. SCATE ensures that although we pick a subset of
commands each time, eventually all the commands are checked.
For example, in Fig. 5 SCATE requires two instances to check all
three commands. In the following section, we present our ideas
to compute these probabilities using game-theoretic analysis.

A. Generating Non-Deterministic Schedules

We model the selection of a subset of commands (for
checking) as a two-player normal-form game [9]–[11]. This
is non-deterministic since the subset of commands checked
by SCATE is not known a priori. Each instance of the task
checks a different subset of commands and all the commands
are ultimately checked (see Fig. 5).

1) Game Setup: We consider two players: the leader (i.e.,
system designers) and the follower (i.e., adversary). Let Xi

denote the set of all combinations of choosing Ki subset of
commands from total Ni number of possibilities, i.e., the size of
set |Xi|=

(
Ni

Ki

)
= Ni!
Ki!(Ni−Ki)!

. In game-theoretic terminology,
Xi represents the set of leader’s “strategies.” Let us now introduce
the variable Qi that represents the attacker’s set of actions (i.e.,
follower’s strategies). The set Qi represents the possible combi-
nations of actuation requests invoked by task τi that can be com-
promised by an adversary. Recall from the rover example where
the controller task τc invokes Nc=3 actuation requests, hence,
the adversary can pick one of the following eight combinations:
Qc = {{a1

c},{a2
c},{a3

c},{a1
c ,a

2
c},{a2

c ,a
3
c},{a1

c ,a
3
c},{a1

c ,a
2
c ,a

3
c},

{∅}}. For example, the first element in the set denotes the
adversary chooses to compromise only invocation a1

c , the fifth
element implies both a2

c and a3
c are compromised while the last

element implies there is no attack during this instance of the
task. The size of the attacker’s strategy set Qi is 2Ni .

Recall that each actuation command aji is associated with a
designer-given weight ωji . A higher weight implies that designers
want to check the corresponding command more often. For

System Reward:

λj,li =

∑
w∈ Ψ(Xj

i)

w

∑
w∈ Ψ(Xj

i)∪Ψ(Qli)

w
, (1)

weights in designer’s j-th strategy

summing up weights

normalization factor: union of designer’s and adversary’s strategies

summing up weights

System Cost:

ζj,li =

∑
w∈ Ψ(Qli)

w

∑
w∈ Ψ(Xj

i)∪Ψ(Qli)

w
, (2)

weights in adversary’s l-th strategy

summing up weights

normalization factor: union of designer’s and adversary’s strategies

summing up weights

Fig. 6. Reward and cost functions.

instance, from the rover example, designers may want to check
navigation commands (a3

c) more frequently than the ones that set
the wheel speeds (a1

c , a2
c) and may set higher weight for ω3

c . Let
Λ(Xj

i) denote the set of commands used for vetting, and Ψ(Xj
i)

is the set of corresponding weights in the j-th element of the
strategy set Xi. Likewise, Λ(Qli) denotes the set of commands,
and Ψ(Qli) is the corresponding set of weights compromised
by the attacker in its l-th strategy. In the rover example, if we
select j=2 and l=4 (i.e., second and fourth elements of the
designers and adversary’s strategy set) then Λ(X2

c)={a2
c ,a

3
c},

Ψ(X2
c)={ω2

c ,ω
3
c} and Λ(Q4

c)={a1
c ,a

2
c}, Ψ(Q4

c)={ω1
c ,ω

2
c}.

We now introduce two variables, viz., system reward (λ) and
system cost (ζ). A higher system reward and lower cost are good
for the designers and bad for the attackers. Likewise, higher
system costs and lower rewards are favorable from the adversary’s
point of view (and bad for the designers). If a task τi selects
the j-th element from the set of strategies Xi and the attacker
selects the l-th strategy from Qi for attack then the system
reward is λj,li and the cost is ζj,li . If the task selects a subset of
commands for vetting in its j-th strategy and the adversary also
attacks those invocations in its l-th strategy, i.e., Λ(Xj

i)=Λ(Qli),
it implies that the attack is detected. Hence, we set λj,li to a
large positive value (i.e., high system reward, since the attack
is detected) and ζj,li a large negative value (i.e., no system cost).
In contrast, if Λ(Xj

i)∩Λ(Qli)=∅ for any pair (j,l), i.e., Λ(Xj
i)

does not contain any commands in attackers l-th strategy Λ(Qli),
that implies the compromised commands are not vetted (i.e., the
spoofed command is not checked). In this case, we set λj,li a
large negative value (i.e., no reward) and ζj,li a large positive
value (i.e., high system cost). When the above two conditions do
not hold (i.e., only a subset of the compromised commands are
checked) and therefore ∃(j,l) such that Λ(Xj

i)∩Λ(Qli) 6=∅, we
then obtain the system reward/cost by normalizing the weights
of both adversary and designer’s strategies. For this, we define
the reward and cost functions in Eq. (1) and Eq. (2), respectively

Algorithm 1 SCATE: Parameter Selection
Input: Input taskset parameters Γ
Output: For each task τi, the size of the feasible set K∗i ≥ Nmin

i and selection
probability xj

i ,j=1,···,|X∗i | for each of the combinations in the strategy set X∗i ;
Infeasible otherwise.

1: /* Check minimum feasibility requirements */
2: for each τi∈Γ do
3: Set Ki =Nmin

i and calculate response time RTEE
i (see Appendix A)

4: end for
5: if ∃τi such that RTEE

i >Di then
6: return Infeasible /* Unable to integrate SCATE for given QoS requirements */
7: end if
8: for each task τi (from higher to lower priority order) do
9: Find maximum K∗i ∈ [Nmin

i ,Ni] using logarithmic search such that all
low-priority tasks τl meet their timing requirements (i.e., RTEE

l ≤Dl)
10: /* Obtain parameters for non-deterministic checking */
11: if K∗i <Ni then
12: Determine the strategy set X∗i for K∗i where |X∗i |=

(Ni
K∗

i

)
and obtain

probabilities xj
i by solving the game formulation

13: end if
14: Update response time RTEE

l for each τl that executes with a priority lower
than τi with the updated size K∗i

15: end for
16: return the size of the feasible set K∗i and probability xj

i of selecting j-th strategy
(j=1,2,···,|X∗i |) from X∗i for each task τi∈Γ

(see Fig. 6). Let us revisit the rover example with j = 2 and
l = 4. In this case λ2,4

c =
ω2

c+ω3
c

ω1
c+ω2

c+ω3
c

and ζ2,4
c =

ω1
c+ω2

c

ω1
c+ω2

c+ω3
c

.
These reward and cost functions give us one way to measure the
security of the system in terms of how many significant actuation
commands we can monitor given an attacker’s strategy. A higher
system reward (and lower cost) implies that SCATE performs
more checking with respect to a given adversarial action.

2) Formulation as an Optimization Problem: Let us now
denote xji as the probability of selecting the j-th element from
Xi (represents the proportion of times in which a strategy j is
used by the task τi in the game). The output of the game will
provide the probability distribution of (non-deterministically)
selecting a subset of Ki commands from the set possible choices
(i.e., Xi) for the different execution instances of a given task
τi. For a given adversarial strategy l, summing over all the
strategy sets Xi (i.e.,

∑|Xi|
j=1x

j
iλ
j,l
i and

∑|Xi|
j=1x

j
i ζ
j,l
i) gives us

the total system reward and cost, respectively. We can obtain
probability distributions of selecting elements from Xi for a
given attacker strategy l (that maximizes the system reward) by
forming a linear optimization program. For each of the attacker’s
l-th strategy (1≤ l≤|Qi|), we compute a strategy for the task τi
such that (i) playing l-th strategy is the best response from the
adversary’s point of view (i.e., more system cost) and (ii) under
this constraint, the strategy maximizes the reward for τi (i.e.,
checks critical commands more often). Appendix B presents the
details of our linear programming formulation.

B. Calculating Feasible Command Set

The game formulation from the previous sections assumes that
we know the size of the set Ki and calculate the probabilities
accordingly. However, in a system with multiple real-time tasks,
finding the size of feasible set Ki for each task τi∈Γ while also
meeting the real-time requirements (deadlines) is a non-trivial
problem. Hence, we develop an iterative solution for finding the
size of this set (see Algorithm 1). In Lines 1–4, we first assign
Ki=Nmin

i ,∀τi and check whether all tasks meet their timing
requirements (i.e., finish before their deadlines). If there exists a

TABLE I
SUMMARY OF OUR IMPLEMENTATION PLATFORM

Artifact Configuration
Platform Broadcom BCM2837 (Raspberry Pi 3)
Hardware 1.2 GHz 64-bit Cortex-A53, 1 GB memory
Operating system Linux (rich OS), OP-TEE (TEE)
Kernel version Linux kernel 4.16.56, OP-TEE core 3.4
Interface I2C
Boot parameters dtparam=i2c_arm=on,

dtparam=spi=on, force_turbo=1,
arm_freq=1200, arm_freq_min=1200,
arm_freq_max=1200

task that fails to meet its timing requirements, we report that it is
“infeasible” to integrate SCATE in the target system while still
satisfying designer-specified QoS requirements (Line 7). This in-
feasibility result provides hints to the designers to either update or
modify system parameters to enable the ability to check actuation
commands in the system. Otherwise, we optimize the number of
commands a task can verify in an iterative manner (Lines 9–16).
To be specific, for a given task τs we perform a logarithmic search
(see Algorithm 2 in Appendix C) and find the maximum number
of commands K∗i . If the selected parameter K∗i is less than the
total commands Ni, we then use game theoretical analysis from
Sec. V-A and obtain probabilities of selecting different sequences
(Line 13). The above process is repeated for all the tasks.

VI. EVALUATION

A. Implementation

We implemented SCATE on Raspberry Pi 3 Model B [22].
We used the Adafruit motor shield [54] (an I/O extension board)
that allowed us to control multiple actuators using the I2C
interface. We used an open-source motor driver [55] and servo
controllers [56]. We implemented the trusted execution modes
using the OP-TEE [37] software stack. We used an Ubuntu 18.04
filesystem with a 64-bit Linux kernel (version 4.16.56) as the rich
OS and executed our CheckAct() functions in the OP-TEE secure
kernel (version 3.4). We note that our implementation using Rasp-
berry Pi, Linux and OP-TEE serves as a good proof-of-concept
and can be extended with other OS, hardware platforms and
TEE architectures without loss of generality. Our implementation
code is available in a public repository [12]. Table I summarizes
the system configurations and implementation details.
B. Experiments with Cyber-Physical Platforms

We chose four realistic real-time cyber-physical platforms as
case-studies to evaluate the efficacy of SCATE: (a) ground rover,
(b) UAV flight controller, (c) robotic arm and (d) syringe/infusion
pump that are used in many cyber-physical applications. These
are off-the-shelf platforms and we did not modify them. Table II
summarizes the properties of each of these systems and
attack/detection techniques used in our experiments. Unlike
generic applications, there are few publicly available open-source
real-time platforms due to their proprietary nature. In addition,
there is a significant amount of effort involved in setting up a
TEE-supported real-time cyber-physical platform and generating
evaluation traces from it. We, therefore, limit ourselves to four

TABLE II
REAL-TIME IOT PLATFORMS USED IN OUR EXPERIMENTS

Platform Application Real-Time
Requirements

Actuation Commands Attack Demonstration Checks inside Enclave

Ground Rover The rover performs a line
following mission. The
controller task sets the speed
of the rover and steers the
wheels (based on its position
on the line) by executing a
PID control loop

Set the speed and
direction of the
motors for the wheel
movements within
sampling interval (i.e.,
control loop frequency,
set at 5 Hz)

• Set the speed of the
wheels
• Set wheel directions
(left, right, forward and
backward)

DoS attack [44]:
arbitrarily sets high
speed for one of the
wheel motors

The speed of motors can
only be within predefined
limit

Flight Controller Executes a PID control loop
and issues PWM signals to
four motors connected to the
four propellers of a quad-
copter

Issue the PWM signal
within sampling
frequency interval (5
Hz in our setup) to
ensure the quad-copter
is stable

• Set PWM frequency
• Set PWM pulse
duration (four, one for
each of the propellers)

Parameter corruption
attack [7]: modify PID
control coefficients and
send incorrect PWM
pulse to the front right
motor

Check PID control
coefficients (i.e., pulse
duration values) before
issuing PWM signals to the
motos

Robotic Arm The robot arm performs the
following operations in a
sequence: pick an object
(close it claws), move the
arm to destination position,
drop the object (open claws)
and reset the arm back to
initial position

Complete movement of
the object before arrival
of the next object;
inter-arrival duration of
the objects was set at
250 ms

Set rotation angle for
each of the four servos

Synchronization
attack [57]: sends
incorrect angle value
to the servo channel
and prevents the arm
from resetting back to
its initial position

Check the consistency of
each (channel, angle)
pair (i.e., the angle value
for a given servo channel
can not be more than the
designer provided bounds)
before issuing pulses to the
servo motors

Syringe Pump The pump pushes certain
amount of fluid and then
pulls the trigger to reset the
syringe to its initial position

Perform the push/pull
operations within
designer specified time
limit (set at 300 ms)

• Set motor rotation
frequency
• Drive the motor
forward/backward to
push the fluids and reset
the motor position

Bolus tampering
attack [57], [58]: the
attacker injects more
fluid than the permitted
volume

Checks the amount of
fluid the motors can pump
(i.e., monitor the number
of PUSH/PULL events the
controller task invokes)

real-time platforms in this paper — albeit they cover a wide range
of application domains and should suffice to demonstrate the fea-
sibility of our approach. We assume equal weights for actuation
commands. We use fault injection [57], [59] to mimic malicious
behavior and trigger attacks that are known to the checking
module (i.e., CheckAct() function). Note that this is a standard
technique used by the researchers to evaluate security solutions
in cyber-physical applications [7], [21], [44], [57], [60], [61].

• Case-Study #1 (Ground Rover): Our first case-study platform
is the ground rover introduced earlier. We used an open-source
implementation of the rover controller (written in Python) [62]
and ported it to C for compatibility with OP-TEE APIs. The
rover performed a line-following mission where it moved from
a source to a target way-point by following a line. Each instance
of the controller task first set the speed of the motor for the
wheel movements and then steered (e.g., forward, left or right)
based on its position on the line.
Actuation: The rover has four actuation commands: two for
setting the speed of both of the wheels and two for issuing
navigation commands to the two motors attached to the wheel.
Attack and Consequences: We injected a DoS attack [44] that
arbitrarily sets a high speed for one of the motors (to destabilize
the rover and move it away from the line). This attack can
deviate the rover from its way-points (or even crash it) due to
the imbalance in the wheel speeds.
Detection: In our setup, the CheckAct() functions validate
whether the rover speed is within designer-given predefined
thresholds [63] and also verify whether the navigation commands
were consistent with the rover position. We detected the DoS
attack by checking the bounds on the speed (i.e., 70–100 decimal
values [63]) issued by the controller task.

• Case-Study #2 (Flight Controller): Our second case-study is

a flight-controller for a quad-copter [64]. The original controller
code is developed for Arduino platforms. Since Arduino boards
do not support TrustZone, we ported it to the Raspberry Pi and
OP-TEE-enabled environments. In this setup the controller exe-
cutes a PID control loop using the Ziegler–Nichols method [65]
and sends pulse width modulation (PWM) signals to spin each
of four motors (i.e., actuators) connected to the propellers.
Actuation: There are five actuation commands: one for setting
the PWM frequency and the other four are for sending PWM
pulse durations for each of the motors to rotate the copter
propellers. The CheckAct() functions validate whether the PWM
frequency and pulse durations sent to each of the motors were
within a certain range (obtained from PID control logic).
Attack and Consequences: For this case study we considered
a parameter corruption attack [7] that modifies the control
parameters (e.g., the PID control coefficients) at runtime and
sends incorrect pulse values to the front-right motors. This attack
can suddenly turn off/freeze the propellers. As a result, the
copter will instantly fall/crash.
Detection: This attack is detected since we verify the PID
parameters and corresponding PWM pulse durations.

• Case-Study #3 (Robotic Arm): Our next case-study platform
is a robotic arm used in manufacturing systems. The movement
of the robotic arm is controlled by four servos (actuators in our
context). Each servo is connected to a specific “channel” (I/O
port) in the Adafruit motor shield. We use an open-source Python-
based robot controller [66] and adapted the implementation for
our C-based setup.
Actuation: Our robot performed an assembly line sequence
with the following four actuation operations: PICK(), MOVE(),
DROP() and RESET() that (i) picks an object from the first
position, (ii) moves the arm to a final position, (iii) drops the

object and, finally, (iv) resets the arm to initial position (to pick
up another object). Each operation takes a (channel, angle)
pair that controls the rotation of the corresponding servo to the
desired angle (45◦ in our setup [66]).
Attack and Consequences: We used a synchronization at-
tack [57] that destabilizes the assembly line by preventing
the robot from resetting its arm back to the initial position. To
demonstrate this, we injected a logic bomb that sets an incorrect
angle value in the RESET() operation (e.g., servo channel 3).
This attack can collapse the whole assembly line since the arm
is not returned to the initial position and hence is unable to pick
up objects queued in the line.
Detection: CheckAct() detects this attack since it asserts that
each servo can only move up to a certain designer-provided
angle (45◦) for each of the operations.

• Case-Study #4 (Syringe Pump): Our final case-study
platform is a syringe/infusion pump [67]. In our experiments,
we considered a bolus delivery use-case [58], [68] where the
syringe pump first pushes a certain amount of fluid (PUSH
event) and then pulls the trigger back (PULL event). The syringe
movement is controlled by a stepper motor. Since the original
implementation is for Ardiuno platforms (and does not support
TrustZone), we modified the codes to make it compatible with
Raspberry Pi and its motor driver library.
Actuation: For a given fluid amount, the syringe pump
implementation selects the number of steps where the PUSH
and PULL events should be called. We considered each of
the PUSH/PULL events as actuation requests since they set the
direction of motor rotation. In our setup, there were seven
actuation requests: one for setting the motor rotation frequency
and six for PUSH and PULL events (three each). PULL events
were called after all three PUSH operations were completed.
Attack and Consequences: We implemented a bolus tampering
attack [57], [58] where the adversary injects more fluid than
is required (i.e., more than three PUSH events). The attack has
serious safety consequences and is a health hazard since it can
inject more fluids/medications into the patient body than the
permitted amount.
Detection: CheckAct() verifies the motor frequency and how
many times each of the PUSH/PULL events are called. When
more than three events are triggered for a given run, we flag
this as an attack.

1) Experience and Findings: We compare SCATE against
a naive scheme [44] that checks all the actuation commands;
we refer to that technique as the “fine-grain” checking scheme.
The goal of our evaluation was to study the trade-offs between
security and real-time requirements. We, therefore, considered
the subset of commands selected for checking was no more
than 50% of the total number of commands (i.e., K=b0.5Nc)
so that tasks can finish before their timing requirements.6 Our
experiments address the following research questions (RQs):
• RQ1. How quickly an intrusion can be detected by SCATE

when compared to the fine-grain scheme [44]?

6We also carried out additional experiments to show the effect of varying
this parameter (see Sec. VI-C).

1 250 500 750 1000

2
4
6
8

10
12
14
16

Platform: Ground Rover

1 250 500 750 1000

2
4
6
8

10
12
14
16

Platform: Flight Controller

1 250 500 750 1000

2
4
6
8

10
12
14
16

Platform: Robotic Arm

1 250 500 750 1000

2
4
6
8

10
12
14
16

Platform: Syringe Pump

0.0 0.2 0.4 0.6 0.8 1.0
Experiment ID

0.0

0.2

0.4

0.6

0.8

1.0

D
el

ay
 in

 D
et

ec
tio

n
(N

um
be

r o
f T

as
k

In
st

an
ce

s)

Fig. 7. Delay (viz., number of instances) in detecting an intrusion.

Unsecured Fine-grain SCATE
0

200

400

600

2 ms

261 ms

132 ms

Platform: Ground Rover

Unsecured Fine-grain SCATE
0

200

400

600

1 ms

325 ms

131 ms

Platform: Flight Controller

Unsecured Fine-grain SCATE
0

200

400

600

44 ms

303 ms

174 ms

Platform: Robotic Arm

Unsecured Fine-grain SCATE
0

200

400

600

3 ms

515 ms

223 ms

Platform: Syringe Pump

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

E
xe

cu
tio

n
Ti

m
e

(m
s)

Fig. 8. Execution time of the controller task.

• RQ2. What are the performance impacts and runtime
overheads of these schemes?

Security Analysis. We use “detection delay” as a security
metric. In the first set of experiments (Fig. 7) we analyze the delay
in detecting the attacks: a comparison between SCATE and the
fine-grain scheme. For a given platform and for each of our exper-
iments (x-axis of Fig. 7) we triggered the attack randomly during
the execution of the victim task and measured the time delay (in
terms of the number of task instances7, y-axis in Fig. 7) In the
fine-grain scheme, the time to detect an attack is upper bounded
by the sampling interval (period), Ti (i.e., requires at most one
task instance). From our experiments, with 1000 individual trials
for each of the four platforms, we found that the mean and 99th-
percentile detection delay were 1–3 and 3–12 sampling intervals,
respectively (refer to Table III for exact values). We note that
this delay in detection results in improved response time and
reduced resource usage (see more in the following experiments).

SCATE can provide similar levels of security when compared
to fine-grained checking since, on average, it requires only
1–3 additional task instances to detect the attacks.

Timeliness and Overhead Analysis. We also compare with
traces from vanilla execution scenarios when there is no
verification of actuation commands (i.e., tasks are always
running in the rich OS). We refer to this vanilla execution

7If the detection delay is ŷ instances, it implies that SCATE requires ŷTc

additional time units to detect the attack compared to the fine-grained checking
where Tc is the period.

0 5 10 15 20
0.0
0.2
0.4
0.6
0.8
1.0

Platform: Ground Rover

Unsecured SCATE Fine-grain

0 5 10 15 20
0.0
0.2
0.4
0.6
0.8
1.0

Platform: Flight Controller

0 5 10 15 20
0.0
0.2
0.4
0.6
0.8
1.0

Platform: Robotic Arm

0 5 10 15 20
0.0
0.2
0.4
0.6
0.8
1.0

Platform: Syringe Pump

0.0 0.2 0.4 0.6 0.8 1.0
CPU Load (%)

0.0

0.2

0.4

0.6

0.8

1.0

E
m

pi
ric

al
 C

D
F

Fig. 9. Empirical CDF of the load. SCATE uses 30.48%–47.32% less CPU.

as “unsecured” since it does not protect the system from
any adversarial actions. Figure 8 (y-axis) shows the execution
times (captured using the Linux clock_gettime() function
and the CLOCK_PROCESS_CPUTIME_ID clock). The horizontal
line represents the deadlines, i.e., if the response time of the
task is above the margin, the task misses its deadline and
the physical system will become unstable (and hence unsafe).
Both the fine-grained checking and SCATE increase response
times when compared to the unsecured scheme since there is
no context switch between Linux and OP-TEE in the latter.
Note that the increase in computing resources due to the
integration of additional security checking/protection techniques
(e.g., cryptographic operations, intrusion detection) is an expected
side-effect to improve security [7], [33], [47], [69]–[71]. The
fine-grained scheme expends more time since it verifies all N
actuation commands, i.e., there are more context switches (from
rich OS to secure enclave) and runtime checking overheads. As
a result, the controller task easily misses its deadline and drives
the system into an unsafe state for all of our case-studies. In
contrast, SCATE allows the tasks to finish within deadlines.

Fine-grained checking increases execution times and controller
tasks fail to comply with their timing requirements. SCATE,
by design, manages to complete execution before deadlines.

Figure 9 shows the resource usage. For this, (a) we executed
the controller tasks independently for 60 seconds, (b) observed
the CPU load using the /proc/stat interface and (c) report the
results from 1000 individual trials. The x-axes of Fig. 9 show
the CPU load and y-axes show the corresponding cumulative
distribution function (CDF). From our experiments we found
that SCATE increases CPU usage by 1.5–3.2 times when
compared to an unsecured scheme — this is expected since
vanilla execution does not provide any security guarantees
(and there is no additional context switch overhead). We also
note that SCATE reduces CPU load by 30.48%–47.32% when
compared to the fine-grain scheme; this could be useful for
many applications (say for battery-operated systems to improve
thermal efficiency). Table III summarizes our findings.

In comparsion with fine-grained checking, on average, SCATE
uses 30.48%–47.32% less CPU for its operations.

TABLE III
COMPARISON WITH FINE-GRAIN CHECKING: SUMMARY

Platform Performance Metrics: SCATE vs Fine-grain
Ex. Time
Reduction

CPU Use
Reduction

Delay (Task
Instances)

(%) (%) Mean 99th-p
Ground Rover 49.69 37.58 1 3
Flight Controller 59.81 47.32 2 8
Robotic Arm 42.80 30.48 3 12
Syringe Pump 56.81 42.87 2 8

C. Simulation-based Evaluation

We also developed a simulator [12] and conducted experiments
with randomly generated workloads for a broader design-space
exploration. In Fig. 10 we present the trade-off between real-time
and security guarantees. For this, we introduce a metric called
“coverage ratio” (CR). The CR metric shows us how many
actuation commands (out of the total number of commands) we
can check without violating timing constraints. We define CR as
follows: CR= 1

|Γ|
∑
τi∈Γ

Ki

Ni
, where 1

|Γ|
∑
τi∈Γ

Nmin
i

Ni
≤CR≤1,

|Γ| is the total number of tasks and the parameter Ki is obtained
from Algorithm 1. We further use the “schedulability” metric —
a useful mathematical tool developed by the real-time community
to analyze whether all activities of a given system can meet
their timing constraints even in the worst-case behavior of the
system [72]. A given taskset is considered as schedulable if
all the tasks in the taskset meet their timing requirements (i.e.,
response time is less than or equal to the deadline).

20 30 40 50 60 70 80
Coverage Ratio (%)

1
3
5
7
9

11
13
15

D
et

ec
tio

n
Ti

m
e

(N
um

be
r o

f I
ns

ta
nc

es
)

Fine-grain
SCATE

20 30 40 50 60 70 80
Coverage Ratio (%)

0
10
20
30
40
50

S
C

A
TE

 v
s

Fi
ne

-g
ra

in
In

cr
ea

se
 in

 S
ch

ed
ul

ab
ili

ty
 (%

)

20 30 40 50 60 70 80
Coverage Ratio (%)

1
3
5
7
9

11
13
15

D
et

ec
tio

n
Ti

m
e

(N
um

be
r o

f I
ns

ta
nc

es
)

Fine-grain
SCATE

20 30 40 50 60 70 80
Coverage Ratio (%)

0
10
20
30
40
50

S
C

A
TE

 v
s

Fi
ne

-g
ra

in
In

cr
ea

se
 in

 S
ch

ed
ul

ab
ili

ty
 (%

)

Fig. 10. Real-time vs security trade-offs: low coverage ratio, while increasing
the acceptance ratio (left), can lead to an increase in detection time (right).

The x-axis of Fig. 10 shows the coverage ratio. The y-axis
in the left figure shows the increase in schedulability in SCATE
when compared to the fine-grain scheme while the right figure
shows the detection time. Figure 10 shows that there is a trade-off
between real-time and security requirements: a lower coverage
ratio increases the schedulability (since there are lower checking
overheads) but increases the detection times. This is because if
the coverage ratio is low, only a few commands are selected for
checking during each instance and a vulnerable/compromised
command will only be verified infrequently; thus resulting in
longer detection times.

If we perform fewer checks in each task instance, we can
accommodate more tasks in the system (i.e., higher acceptance
ratio). However, this may result in delayed detections (e.g., on
average, requires eight additional task instances).

Summary. Our experiments reveal interesting trade-offs
between real-time and security requirements. Fine-grain checking
— while providing better security guarantees (i.e., lower detection
time) — can negatively affect schedulability and, hence, the
safety and integrity of the system. SCATE, in contrast, provides
better schedulability guarantees but may result in slower detection
times. By using our approach, designers of the systems can
now customize their platforms and selectively verify actuation
commands based on application requirements.

VII. DISCUSSION

In this work, we do not consider the aftereffects of detecting
an intrusion. Our current implementation blocks malicious
commands. Other strategies could involve the raising of alarms
and/or sending out buffered (or even predetermined) alternate
commands. SCATE transfers the control to the secure enclave
for a (non-deterministic) subset of actuation requests. Although
this does not jeopardize the safety of the physical system (see
more in the following paragraph), an adversary can still send
spoofed signals in lieu of unchecked commands (perhaps in
a brute-force manner). Alternative design choices (to further
improve security and minimize overhead) could be: (i) pass
all the actuation requests through the trusted enclave but checks
only a few commands or (ii) buffer multiple commands together
and then transfer control once to the enclave for checking (i.e.,
check them in a batch). However, this may cause additional
delays in serving actuation requests. We intend to incorporate
these features and study trade-offs in future work.

SCATE can protect against cases where an adversary injects
new commands or blocks existing commands (i.e., DoS attacks)
by checking whether the number of commands generated during
each execution window matches the design-time specifications.
While SCATE adds delays in detection (e.g., on average 1–3
task instances when compared to the scheme that checks all the
actuation commands, see Table III), we can still retain the safety
and normal operations of the plant due to physical inertia.

In this paper we assume the existence of “perfect” checking
modules provided by the system engineers (i.e., an attack is
always correctly detected). Depending on the implementation,
CheckAct() functions may result in false-positive/false-negative
errors. Our model can also handle such cases by incorporating the
detection-inefficiency factors in calculating reward/cost metrics.
For example, if the detection accuracy of CheckAct() is 95%,
one way to express reward and cost functions is as follows:
λImperfect =(1−.05)λ and ζImperfect =(1+.05)ζ , respectively.

VIII. RELATED WORK

Our earlier research [44] introduced a naive version of
checking actuation commands; that preliminary (workshop)
paper does not provide any analytical guarantees and checks
all actuation commands. In contrast, we propose a novel game-
theoretical analysis and “selectively” (and non-deterministically)
check a subset of commands that guarantees that all system
requirements (e.g., timing constraints) are met. We compare
SCATE with prior work (referred to as fine-grain scheme)
and find that naively checking all commands results in missed

deadlines (see Sec. VI-B). As we see in our experiments,
checking all commands results in high overheads and tasks
fail to comply with their timing requirements. In contrast, the
novel game-theoretical model used in SCATE retains real-time
guarantees while providing a similar level of security. In addition,
we have implemented the solution on an actual ARM+Linux
platform and evaluated it against multiple realistic CPS platforms.

Perhaps the closest line of work to ours is PROTC [36] uses a
monitor in the enclave enforces secure access control policy for
some peripherals of the drone and ensures that only authorized
applications can access certain peripherals. Unlike our scheme,
PROTC [36] is limited for specific applications (i.e., aerial robotic
vehicles), requires a centralized control center to validate/enforce
security policies, and does not consider any load balancing
issues. In other work [73]–[76], we proposed mechanisms to
secure legacy systems by integrating additional, independent,
periodic monitoring tasks. They are pure software-based solutions
and do not guarantee the integrity of security checks like
SCATE. In contrast, we now consider a TEE-based system where
security checks (i.e., actuation command verification using a
trusted enclave) are interleaved within real-time tasks. There
exists other work (Crystal [77] and M2Mon [78]) that address
actuators attacks. Unlike SCATE, they are (a) limited for aerial
systems and (b) do not consider temporal constraints. There exist
various hardware/software-based mechanisms and architectural
frameworks [6], [60], [79]–[83]. However, they are not designed
to protect against control-specific attacks and may not be suitable
for systems developed with COTS components. Existing CPS
anomaly detection approaches [7], [21], [84]–[86] also do not
consider real-time aspects. Researchers use game-theoretical
analysis for (a) control systems [17], [19], (b) decision making
problems [18] and (c) preventing physical intrusions in CPS [20].
These schemes are not designed to protect the systems against
false actuation commands. In addition, they are not timing-aware
(i.e., real-time requirements are not considered). There also exists
a large number of research for generic IoT/cyber-physical systems
(see related surveys [8], [87]–[90]) — however, the consideration
of actuation-specific security scheduling and overload manage-
ment aspects of real-time applications distinguish our work from
other research. To the best of our knowledge, this is the first
comprehensive work that introduces the notion of randomized
coarse-grain checking for overloaded systems in order to validate
actuation commands in a TEE-enabled real-time CPS.

IX. CONCLUSION

In this paper we present a framework, SCATE, to enhance the
security and safety of the time-critical IoT systems. We use a
combination of trusted hardware and the intrinsic real-time nature
of such systems and propose techniques to selectively verify a
subset of commands that provides a trade-offs between real-time
and security guarantees. We believe that our technique can be
incorporated into multiple IoT-specific application domains such
as avionics, automobiles, industrial systems, medical devices,
unmanned and autonomous vehicles.

REFERENCES

[1] C.-Y. Chen et al. Securing real-time Internet-of-things. Sensors, 18(12),
2018.

[2] K. Castelli et al. Development of a practical tool for designing multi-robot
systems in pick-and-place applications. MDPI Robotics, 8(3), 2019.

[3] N. Falliere et al. W32. stuxnet dossier. White paper, Symantec Corp,
5:6, 2011.

[4] S. S. Clark and K. Fu. Recent results in computer security for medical
devices. In MobiHealth, pp. 111–118, 2011.

[5] S. Checkoway et al. Comprehensive experimental analyses of automotive
attack surfaces. In USENIX Sec. Symp., 2011.

[6] F. Abdi et al. Preserving physical safety under cyber attacks. IEEE IoT
J., 6(4):6285–6300, 2018.

[7] H. Choi et al. Detecting attacks against robotic vehicles: A control
invariant approach. In ACM CCS, pp. 801–816, 2018.

[8] S. Pinto and N. Santos. Demystifying ARM TrustZone: A comprehensive
survey. ACM CSUR, 51(6):130, 2019.

[9] J. C. Harsanyi and R. Selten. A generalized nash solution for two-person
bargaining games with incomplete information. INFORMS Man. Sci.,
18(5-part-2):80–106, 1972.

[10] V. Conitzer and T. Sandholm. Computing the optimal strategy to commit
to. In ACM EC, pp. 82–90, 2006.

[11] P. Paruchuri et al. An efficient heuristic approach for security against
multiple adversaries. In IFAAMAS AAMAS, pp. 1–8, 2007.

[12] SCATE implementation. https://github.com/mnwrhsn/scate_implementation.
[13] V. Costan and S. Devadas. Intel SGX Explained. IACR Crypt. ePrint

Arch., (086):1–118, 2016.
[14] T. Roughgarden. Algorithmic game theory. Comm. of the ACM,

53(7):78–86, 2010.
[15] Y. A. Korilis et al. Achieving network optima using Stackelberg routing

strategies. IEEE/ACM TON, 5(1):161–173, 1997.
[16] J. Cardinal et al. Pricing of geometric transportation networks. In CCCG,

pp. 92–96, 2005.
[17] S. Moothedath et al. A game-theoretic approach for dynamic information

flow tracking to detect multi-stage advanced persistent threats. IEEE
TACON, 2020.

[18] G. Yang et al. Adaptive learning in two-player stackelberg games with
continuous action sets. In IEEE CDC, pp. 6905–6911, 2019.

[19] J. Chen and Q. Zhu. A game-theoretic framework for resilient and
distributed generation control of renewable energies in microgrids. IEEE
Trans. on Smart Grid, 8(1):285–295, 2016.

[20] S. Rass et al. Physical intrusion games—optimizing surveillance by
simulation and game theory. IEEE Access, 5:8394–8407, 2017.

[21] P. Guo et al. RoboADS: Anomaly detection against sensor and actuator
misbehaviors in mobile robots. In IEEE/IFIP DSN, pp. 574–585, 2018.

[22] Raspberry Pi. https://tinyurl.com/rpi3modelb.
[23] Dexter Industries Sensors. https://github.com/DexterInd/DI_Sensors.
[24] I2C manual, 2003.
[25] S. Di Leonardi et al. Maximizing the security level of real-time software

while preserving temporal constraints. IEEE Access, 2023.
[26] V. Lesi et al. Security-aware scheduling of embedded control tasks. ACM

TECS, 16:188:1–188:21, 2017.
[27] C.-Y. Chen et al. A novel side-channel in real-time schedulers. In IEEE

RTAS, pp. 90–102, 2019.
[28] S. Liu et al. Leaking your engine speed by spectrum analysis of real-time

scheduling sequences. J. of Sys. Arch., 97:455–466, 2019.
[29] R. Mahfouzi et al. Butterfly attack: Adversarial manipulation of temporal

properties of cyber-physical systems. In IEEE RTSS, pp. 93–106, 2019.
[30] M. Bechtel and H. Yun. Denial-of-service attacks on shared cache in

multicore: Analysis and prevention. In IEEE RTAS, pp. 357–367, 2019.
[31] V. Lesi et al. Network scheduling for secure cyber-physical systems. In

IEEE RTSS, pp. 45–55, 2017.
[32] F. Loi et al. Systematically evaluating security and privacy for consumer

IoT devices. In ACM IoTS&P, pp. 1–6, 2017.
[33] C. H. Kim et al. Securing real-time microcontroller systems through

customized memory view switching. In NDSS, 2018.
[34] J. Wang et al. S-Blocks: Lightweight and trusted virtual security function

with SGX. IEEE Trans. on Cloud Comp., pp. 1–1, 2020.
[35] D. Goltzsche et al. Endbox: Scalable middlebox functions using client-side

trusted execution. In IEEE/IFIP DSN, pp. 386–397, 2018.
[36] R. Liu and M. Srivastava. PROTC: PROTeCting drone’s peripherals

through ARM trustzone. In ACM DroNet, pp. 1–6, 2017.
[37] Open Portable Trusted Execution Environment. https://www.op-tee.org/.

[38] B. Sarna-Starosta and S. D. Stoller. Policy analysis for security-enhanced
linux. In ACM/IFIP WITS, pp. 1–12, 2004.

[39] L. Popa et al. Building extensible networks with rule-based forwarding.
In USENIX OSDI, pp. 379–392, 2010.

[40] C. Jang et al. Rule-based auditing system for software security assurance.
In IEEE ICUFN, pp. 198–202, 2009.

[41] R. Rajendran et al. Detection of dos attacks in cloud networks using
intelligent rule based classification system. Springer Cluster Comp.,
22(1):423–434, 2019.

[42] T. Yu et al. Handling a trillion (unfixable) flaws on a billion devices:
Rethinking network security for the Internet-of-things. In ACM HotNets,
pp. 1–7, 2015.

[43] S. Adepu and A. Mathur. From design to invariants: Detecting attacks
on cyber physical systems. In IEEE QRS-C, pp. 533–540, 2017.

[44] M. Hasan and S. Mohan. Protecting actuators in safety critical IoT
systems from control spoofing attacks. In ACM IoT S&P, pp. 8–14, 2019.

[45] R. Berthier and W. H. Sanders. Specification-based intrusion detection for
advanced metering infrastructures. In IEEE PRDC, pp. 184–193. IEEE,
2011.

[46] V. Chandola et al. Anomaly detection: A survey. ACM CSUR, 41(3):15,
2009.

[47] A. Mukherjee et al. Optimized trusted execution for hard real-time
applications on cots processors. In ACM RTNS, pp. 50–60, 2019.

[48] J. Amacher and V. Schiavoni. On the performance of arm trustzone. In
IFIP DAIS, pp. 133–151, 2019.

[49] Y. Liu et al. RT-trust: Automated refactoring for trusted execution under
real-time constraints. In ACM GPCE, pp. 175–187, 2018.

[50] ARM Fixed Virtual Platforms. https://developer.arm.com/
tools-and-software/simulation-models/fixed-virtual-platforms.

[51] FreeRTOS. http://www.freertos.org.
[52] J. Wei and C. Pu. Tocttou vulnerabilities in unix-style file systems: An

anatomical study. In USENIX FAST, volume 5, pp. 12–12, 2005.
[53] N. Audsley et al. Applying new scheduling theory to static priority

pre-emptive scheduling. SE Journal, 8(5):284–292, 1993.
[54] Adafruit motor shield. https://learn.adafruit.com/adafruit-motor-shield.
[55] Adafruit driver. https://github.com/threebrooks/AdafruitStepperMotorHAT_

CPP.
[56] PCA9685 I2C PWM driver. https://github.com/TeraHz/PCA9685.
[57] M. R. Aliabadi et al. Artinali: dynamic invariant detection for

cyber-physical system security. In ACM ESEC/FSE, pp. 349–361, 2017.
[58] L. Cheng et al. Orpheus: Enforcing cyber-physical execution semantics to

defend against data-oriented attacks. In ACM ACSAC, pp. 315–326, 2017.
[59] F. M. Tabrizi and K. Pattabiraman. Flexible intrusion detection systems for

memory-constrained embedded systems. In IEEE EDCC, pp. 1–12, 2015.
[60] M.-K. Yoon et al. SecureCore: A multicore-based intrusion detection archi-

tecture for real-time embedded systems. In IEEE RTAS, pp. 21–32, 2013.
[61] F. Abdi et al. Guaranteed physical security with restart-based design for

cyber-physical systems. In ACM/IEEE ICCPS, pp. 10–21, 2018.
[62] Raspberry Pi rover. https://github.com/Veilkrand/simplePiRover.
[63] GoPiGo. https://github.com/DexterInd/GoPiGo.
[64] Drone controller. https://github.com/lobodol/drone-flight-controller.
[65] K. J. Åström and T. Hägglund. Revisiting the Ziegler–Nichols step response

method for PID control. Elsevier J. of proc. con., 14(6):635–650, 2004.
[66] Robot arm control. https://github.com/tutRPi/6DOF-Robot-Arm.
[67] C-FLAT implementation. https://github.com/control-flow-attestation/c-flat.
[68] T. Abera et al. C-FLAT: control-flow attestation for embedded systems

software. In ACM CCS, pp. 743–754, 2016.
[69] T. Xie and X. Qin. Improving security for periodic tasks in embedded

systems through scheduling. ACM TECS, 6(3):20, 2007.
[70] S. Mohan et al. Real-time systems security through scheduler constraints.

In Euromicro ECRTS, pp. 129–140, 2014.
[71] R. Pellizzoni et al. A generalized model for preventing information

leakage in hard real-time systems. In IEEE RTAS, pp. 271–282, 2015.
[72] R. I. Davis and A. Burns. A survey of hard real-time scheduling for

multiprocessor systems. ACM CSUR, 43(4):35:1–35:44, 2011.
[73] M. Hasan et al. Contego: An adaptive framework for integrating security

tasks in real-time systems. In Euromicro ECRTS, pp. 23:1–23:22, 2017.
[74] M. Hasan et al. Exploring opportunistic execution for integrating security

into legacy hard real-time systems. In IEEE RTSS, pp. 123–134, 2016.
[75] M. Hasan et al. A design-space exploration for allocating security tasks

in multicore real-time systems. In DATE, pp. 225–230, 2018.
[76] M. Hasan et al. Period adaptation for continuous security monitoring

in multicore systems. In DATE, 2020.

[77] S. Etigowni et al. Crystal (ball) i look at physics and predict control flow!
just-ahead-of-time controller recovery. In ACM ACSAC, pp. 553–565, 2018.

[78] A. Khan et al. {M2MON}: Building an {MMIO-based} security reference
monitor for unmanned vehicles. In USENIX Security, pp. 285–302, 2021.

[79] S. Mohan et al. S3A: Secure system simplex architecture for enhanced
security and robustness of cyber-physical systems. In ACM HiCoNS, pp.
65–74. ACM, 2013.

[80] M.-K. Yoon et al. Memory heat map: anomaly detection in real-time
embedded systems using memory behavior. In ACM/EDAC/IEEE DAC,
pp. 1–6, 2015.

[81] M.-K. Yoon et al. Learning execution contexts from system call distribution
for anomaly detection in smart embedded system. In ACM/IEEE IoTDI,
pp. 191–196, 2017.

[82] F. Abdi et al. ReSecure: A restart-based security protocol for tightly
actuated hard real-time systems. In IEEE CERTS, pp. 47–54, 2016.

[83] D. Lo et al. Slack-aware opportunistic monitoring for real-time systems.
In IEEE RTAS, pp. 203–214, 2014.

[84] F. Fei et al. Cross-layer retrofitting of UAVs against cyber-physical attacks.
In IEEE ICRA, pp. 550–557, 2018.

[85] S. McLaughlin. CPS: stateful policy enforcement for control system
device usage. In ACM ACSAC, pp. 109–118, 2013.

[86] R. Lanotte et al. Runtime enforcement for control system security. In
IEEE CSF, pp. 246–261, 2020.

[87] A. Humayed et al. Cyber-physical systems security – A survey. IEEE
IoT J., 4(6):1802–1831, 2017.

[88] Y. Yang et al. A survey on security and privacy issues in Internet-of-Things.
IEEE IoT J., 4(5):1250–1258, 2017.

[89] M. Ammar et al. Internet of Things: A survey on the security of IoT
frameworks. Elsevier J. of Inf. Sec. & App., 38:8–27, 2018.

[90] W. Li et al. Research on ARM TrustZone. ACM GetMobile, 22(3):17–22,
2019.

[91] J. Chen. Partitioned multiprocessor fixed-priority scheduling of sporadic
real-time tasks. In Euromicro ECRTS, pp. 251–261, 2016.

APPENDIX

A. Feasibility Conditions

Let Ni be the number of actuation requests generated by task
τi that require vetting, Ti is the inter-arrival time (i.e., period).
Further, let Coi be an upper bound of additional computing time
required due to (a) context switching (from normal execution to
secure enclave and returning the context back to normal mode)
and (b) performing the checks inside the enclave. Then, the
execution time of τi can be represented as CTEEi =Ci+NiC

o
i .

The task τi is “schedulable” if the worst-case response time
(WCRT), RTEEi , is less than deadline, i.e., RTEEi ≤ Di.
We can calculate an upper bound of RTEEi using traditional
response-time analysis [91] as follows: RTEEi = CTEEi +∑
τh∈hp(τi,πp)

(
1+Di

Th

)
CTEEh , where hp(τi,πp)∈Γp denotes the

set of tasks that are higher-priority than τi running on core πp. For
a feasible system, all tasks must be schedulable, viz., RTEEi ≤
Di,∀τi ∈ Γ. Let Ri = Ci +

∑
τh∈hp(τi,πp)

(
1+Di

Th

)
Ch denote the

vanilla response time (i.e., when there is no checking). Notice that
the task τi will miss its deadline if RTEEi >Di. We can deduce
that τi will miss its deadline if the following condition holds:
Oi>Di−Ri, where Oi=NiC

o
i +

∑
τh∈hp(τi,πp)

(
1+Di

Th

)
NiC

o
h is the

total overhead for checking the actuation commands including
context switching in/out of the secure enclave.

B. Linear Programming Formulation for solving the Game

We can obtain the probability distributions for selecting the
elements from Xi (i.e., the set of all combinations of choosing

Algorithm 2 Calculation of Maximum Feasible Checks
1: Define Kl

i :=Nmin
i , Kr

i :=Ni, K
c
i :=0

2: Set K̂i :={Nmin
i } /* Initialize a variable to store feasible values */

3: while Kl
i≤K

r
i do

4: Update Kc
i :=bK

l
i+Kr

i
2 c

5: if ∃τl∈ lp(τi,πp) such that τl is not schedulable with Ki =Kc
i then

6: /* Decrease verification load to make the taskset schedulable */
7: Update Kr

i :=Kc
i −1

8: else
9: /* Taskset is schedulable with Kc

i */
10: K̂i :=K̂i∪{Kc

i } /* Add Kc
i to the feasible list */

11: /* Check schedulability with larger Ki for next iteration */
12: Update Kl

i :=Kc
i +1

13: end if
14: end while
15: return max

(
K̂i

)
/* return the maximum from the set of feasible values */

Ki requests from total Ni actuation commands) for a given
attacker strategy l (that maximizes the system reward) by forming
the following linear program:

max
xji

∑|Xi|

j=1
xjiλ

j,l
i (3a)

s.t. ∀l′∈ [1,|Qi|],
∑|Xi|

j=1
xji ζ

j,l
i ≥

∑|Xi|

j=1
xji ζ

j,l′

i (3b)∑|Xi|

j=1
xji =1 (3c)

xji >0, ∀j∈ [1,|Xi|] (3d)

The objective function in Eq. (3a) maximizes the total system
reward. The constraint in Eq. (3b) ensures that the current (e.g., l-
th) strategy results in higher cost for the attacker when compared
to other adversarial strategies. The constraint in Eq. (3c) ensures
the sum of probability distributions equal to unity and the last con-
straint in Eq. (3d) ensures non-zero probabilities so that all com-
binations of the actuation commands from Xi can be selected.

Let [xji]j=1:|Xi|(l) denote the solution obtained from the linear
programming formulation for the l-th adversarial strategy. Then,
from all feasible strategies l (where 1≤ l≤ |Qi|) we choose
the one (say l∗) that maximizes the objective value in Eq. (3a),
i.e., l∗ = argmax

1≤l≤|Qi|

∑|Xi|
j=1 x

j
iλ
j,l
i . The variables [xji]j=1:|Xi|(l

∗)

obtained by solving the corresponding linear program gives us
the probability distributions of selecting Ki subset of commands
from a total of Ni commands. The game-theoretical analysis
shows that the probability distributions obtained by solving
the l∗-th linear program will be optimal for the task τi (i.e.,
maximizes system reward) [10], [11].

For a given strategy l, the above linear programming formula-
tion can be solved in polynomial time. Since the strategy set Qi is
finite by definition, we can calculate the optimal probability distri-
butions (e.g., [xji]j=1:|Xi|(l

∗)) in a finite amount of time since the
time is polynomial in the total number of adversarial strategies.

C. Calculation of Maximum Feasible Number of Commands

The pseudocode for calculating the maximum number of
commands (Ki) that can be checked per job while guaranteeing
feasibility is presented in Algorithm 2.

