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Abstract—Directed fuzzing is a dynamic testing technique that
focuses exploration on specific, pre-targeted program locations.
Like other types of fuzzers, directed fuzzers are most effective
when maximizing testing speed and precision. To this end, recent
directed fuzzers have begun leveraging path pruning: preventing
the wasteful testing of program paths deemed irrelevant to
reaching a desired target location. Yet, despite code pruning’s
substantial speedup, current approaches are imprecise—failing
to capture indirect control flow—requiring additional dynamic
analyses that diminish directed fuzzers’ speeds. Thus, without
code pruning that is both fast and precise, directed fuzzers’
effectiveness will continue to remain limited.

This paper aims to tackle the challenge of upholding both
speed and precision in pruning-based directed fuzzing. We show
that existing pruning approaches fail to recover common-case
indirect control flow; and identify opportunities to enhance
them with lightweight heuristics—namely, function signature
matching—enabling them to maximize precision without the bur-
den of dynamic analysis. We implement our enhanced pruning
as a prototype, TOPr (Target Oriented Pruning), and evaluate it
against the leading pruning-based and pruning-agnostic directed
fuzzers SieveFuzz and AFLGo. We show that TOPr’s enhanced
pruning outperforms these fuzzers in (1) speed (achieving 222%
and 73% higher test case throughput, respectively); (2) reach-
ability (achieving 149% and 9% more target-relevant coverage,
respectively); and (3) bug discovery time (triggering bugs faster
85% and 8%, respectively). Furthermore, TOPr’s balance of
speed and precision enables it to find 24 new bugs in 5 open-
source applications, with 18 confirmed by developers, 12 bugs
labelled as “Priority - 1. High”, and 12 bugs fixed — underscoring
the effectiveness of our framework.

Index Terms—Patch Testing, Regression Testing, Target Reach-
ability, Directed Testing, Static Analysis, Code Rewriting, Fuzzing

I. INTRODUCTION

Directed fuzzing is a dynamic testing technique well-suited
to testing scenarios like patch testing, bug reproduction, test
case augmentation and regression testing w.r.t. specific targets
in code [18], [53]. Unlike conventional fuzzing, which aims
to explore a program in its entirety, directed fuzzing instead
focuses testing only on a pre-targeted set of program locations,

e.g., the source code line(s) affected by a patch. To date, a
variety of directed fuzzing techniques have emerged, including
AFLGo [18], Beacon [32], Hawkeye [23], and SieveFuzz [59].

Like general-purpose fuzzers [26], [56], directed fuzzers
must be both fast and precise. Maintaining high speed is crit-
ical to finding software defects quickly (e.g., for timely patch
fixing) [45], while precision is key to avoiding false positives
and negatives (e.g., missed or spurious bugs) [33]. While many
advancements have made general-purpose fuzzing fast [43],
[45], [33], most directed fuzzers unfortunately remain far
slower. The most popular approach for “directing” fuzzing
to specific target locations is distance minimization [19],
which iteratively selects test cases with the smallest distances
relative to the target sites. Yet, the runtime expense of distance
minimization—extra program instrumentation to measure and
track distances per test case—is shown to deteriorate fuzzing
speed by upwards of 92% [59].

To overcome the performance bottleneck of distance
minimization, recent directed fuzzers are instead adopting
code pruning (e.g., SieveFuzz [59], ParmeSan [47]). At a
high level, code pruning performs static control-flow analysis
to identify and eliminate program paths deemed irrelevant to
reaching a given target location. By preventing execution from
being wasted on fruitless paths, directed fuzzers are shown to
achieve upwards of 100% higher test case throughput [59].

Unfortunately, pruning-based directed fuzzers are limited
in precision. Current approaches universally rely on static
analysis to generate control-flow graphs and enumerate rel-
evant paths. Yet, recovering indirect control flow statically
is infeasible, preventing these fuzzers from exploring many
critical paths (e.g., indirect call targets). To improve precision,
static analysis is often supplemented with additional dynamic
analysis to reanalyze control flow. However, the frequency of
indirect edges (often tens of thousands per program) demands
constant control-flow reanalysis, diminishing the otherwise
high speeds of pruning-based directed fuzzers. Thus, achiev-
ing a high directed fuzzing performance—without sacrificing
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precision—remains a compelling challenge.
This paper introduces the idea of enhanced code pruning—

a layering of conventional static-based code pruning with
lightweight analysis heuristics to recover the overwhelming
majority of indirect control flow: indirect function calls.
We demonstrate how enhanced code pruning facilitates fully
static control-flow analysis for pruning-based directed fuzzing,
forgoing the high runtime overhead faced by conventional
static/dynamic hybrid approaches [59], [47]. We implement
our approach as a directed fuzzing prototype, TOPr (Target
Oriented Pruning), and evaluate it alongside the leading
pruning-based and pruning-agnostic directed fuzzers Sieve-
Fuzz [59] and AFLGo [18].

We show that TOPr’s fast and precise pruning achieves
superior directed fuzzing effectiveness—and speed—across 24
real-world software benchmarks: on average, TOPr achieves
222% and 73% higher test case throughput and achieves
149% and 9% more target-relevant coverage than SieveFuzz
and AFLGo, respectively. We further demonstrate how TOPr’s
efficient indirect edge recovery enables more expeditious di-
rected fuzzing: on average, TOPr is the fastest to discover
bugs—outperforming SieveFuzz and AFLGo by 85% and 8%,
respectively. In an additional bug-finding case study on the
latest versions of 9 real-world programs, TOPr discovers 24
new bugs—with 18 confirmed and 12 fixed by developers and
12 bugs labelled as “Priority - 1. High”.

In summary, this paper makes the following contributions:
• We detail the challenges of pruning-based directed

fuzzing. We show that existing code pruning approaches
are fundamentally unable to balance performance with
precision, leading to cascading effects that impede di-
rected fuzzing effectiveness.

• We introduce the idea of enhanced code pruning: a tech-
nique by which conventional static analysis is augmented
with additional, lightweight heuristics to capture the vast
majority of problematic indirect edges.

• We implement enhanced code pruning as a prototype
directed fuzzer, TOPr, and evaluate it alongside the
leading pruning-based directed fuzzer SieveFuzz [59] and
pruning-agnostic directed fuzzer AFLGo [18].

• We evaluate TOPr on 24 real-world software benchmarks,
and show that its enhanced code pruning enables faster,
more effective directed fuzzing.

II. BACKGROUND & MOTIVATION

Below, we briefly introduce the high-level concepts behind
fuzzing and directed fuzzing. We discuss the challenges of
upholding performance and precision in directed fuzzing, and
weigh current directed fuzzers’ fundamental trade-offs.

A. Fuzzing

Fuzzing (short for “fuzz testing”) represents one of the
most popular and successful dynamic testing approaches in
use today. At a high level, fuzzing operates by:

1) Mutating test cases at random [70] or via well-defined
input dictionaries [52] or grammars [13], [16];

2) Executing each test case on the program under test; and
3) Preserving—and subsequently re-mutating—only those

test cases that trigger interesting behavior (e.g., new code
coverage or crashes), while discarding all others.

A variety of tools and techniques have emerged over the
last three decades advancing many of fuzzing’s core aspects:
increasing speed [43], enhancing test case generation [14] and
mutation [40], and streamlining analysis of fuzzer-discovered
bugs [68]. As fuzzing continues to gain recognition for dis-
covering numerous critical program defects, many efforts are
exploring tailoring fuzzing to specific use cases: emergent
classes of bugs [46], and new software, environments [33], and
architectures [44]. More recently, a fuzzing technique called
directed fuzzing substitutes conventional fuzzing’s whole-
program exploration with one targeting specific program re-
gions: patched code [18], reported crashing lines [59], and
regressions [73].

Tool Year Directedness
Indirect Control Flow
Recovery Correctness

AFLGo [19] 2017 Minimization None ✗

Hawkeye [23] 2018 Minimization Static ✗

ParmeSan [47] 2020 Minimzation Dynamic ✓

WindRanger [25] 2022 Pruning Static ✗

RLTG [30] 2023 Pruning Dynamic ✓

SieveFuzz [59] 2023 Pruning Dynamic ✓

TOPr 2023 Pruning Static ✓

TABLE I: Popular directed fuzzers and their design trade-offs.

B. Directed Fuzzing

Directed fuzzing differs from conventional fuzzing in that it
focuses testing only on specific program locations. Generally,
locations to be targeted are determined either manually (e.g.,
a line changed by a patch), or automatically via static analysis
tools (e.g., a location believed to contain a bug). In the
following, we compare and contrast the key design decisions
of directed fuzzers: how to achieve directedness and how to
recover control flow from the program under test.

1) Achieving Directedness: Unlike general-purpose fuzzers
(e.g., AFL [70], libFuzzer [57]) that aim to fully explore the
target program as a whole, directed fuzzers instead focus on
testing a specific set of program locations. Existing directed
fuzzers are generally implemented atop undirected ones, but
incorporate a mechanism for directedness: steering exploration
to the pre-determined target location(s). Historically, many
directed fuzzers achieved directedness via distance minimiza-
tion [18].

At a high level, minimization operates by first constructing
a gradient of the program with respect to all pre-determined
target locations. For all generated test cases, distances are

2



computed at the basic-block-level relative to the target sites.
Lastly, the fuzzer prioritizes those test cases observed to
have smaller and smaller relative distances—leveraging this
as a proxy for steering testing toward the intended locations.
Yet while distance minimization intuitively models program
exploration as an optimization problem, it unfortunately cannot
prevent exploration of execution paths that are irrelevant to
reaching target sites. In such cases, minimization-directed
fuzzers risk getting stuck in the gradient’s local minima,
forcing the fuzzer to randomly select other test cases in hopes
of finding the correct path to the global minimum [18], [23].

To overcome minimization’s wasteful exploration, emerging
directed fuzzers are adopting path pruning [59], [47]: selec-
tively restricting program control flow from being explored
based on its relevancy to the intended target location(s). Typi-
cally, pruning performs analysis to recover all program paths,
generally via backwards-slicing from the intended region of
interest (e.g., a reported buggy line of code). Path restriction
is achieved by either discarding non-reaching test cases before
they are executed; or during execution by terminating once a
non-reaching path is observed taken. In most implementations,
pruning is coupled with minimization to further steer testing
toward the pre-targeted program locations [47].

2) Control Flow Recovery: To correctly guide testing to-
ward target locations, directed fuzzers must precisely recover
the program’s execution paths. Existing approaches universally
rely on static analysis to recover program control flow. How-
ever, statically recovering indirect branches (e.g., indirect call
targets) remains undecidable in practice, leaving purely-static
approaches unsound—missing or over-approximating the set
of outgoing edges from an indirect call site. To overcome
this challenge, a number of directed fuzzers are employing
hybrid analysis: performing a best-guess static analysis (e.g.,
points-to alias anlaysis [23]), followed by dynamic analysis
to incorporate and re-analyze control flow for any concrete
indirect edges seen during fuzzing’s many test case executions.

C. Weaknesses of Existing Directed Fuzzers

In seeking to build an ideal directed fuzzer, we identify two
key challenges that affect current directed fuzzers: (1) the high
cost of directedness, and (2) the imprecision of indirect flow
analysis. We weigh existing directed fuzzers with respect to
these challenges (shown in Table I); and elicit a criteria for a
directed fuzzer to uphold both performance and precision.

1) The Cost of Directedness: Directed fuzzers employing
distance minimization suffer the risk of wasteful execution:
spending time in execution paths that will not reach the
desired target locations. This risk is compounded by the high
cost of distance minimization’s instrumentation, which adds
significant runtime overhead per test case execution—shown
to reduce test case throughput by upwards of 90% [59] relative
to non-directed fuzzing.

Figure 1 shows an example memory corruption bug in
the latest version of the popular library NetCDF-C. We
observe that AFLGo [18]—the leading distance-minimization-
based directed fuzzer—cannot uncover this bug in 1 hour.

Fig. 1: Simplified version of a memory corruption found by
TOPr but not by AFLGo in NetCDF-C v4.9.1 (latest version).

Fig. 2: Simplified version of a memory leak found by TOPr
but not by SieveFuzz in giflib v5.2.1 (latest version).

In examining the source code manually, we see a significant
percentage of code paths that are not relevant to the target bug
(e.g., the code containing call to function do_ncdumpx). As
AFLGo cannot filter-out such paths from being tested, much of
its exploration will be spent exploring fruitless execution paths
that will not reveal the program’s bug. Thus, we conclude that
path pruning achieves the best performance as it prevents
fuzzing from steering exploration down irrelevant paths.

2) The Imprecision of Indirect Edge Recovery: While most
fuzzers aim to maximize exploration of the entire program, the
goal of directed fuzzing is to instead focus only on specific
program regions (e.g., the lines affected by a program patch).
To this end, accurately modeling control flow is critical to
knowing which paths to explore and which others to ignore.
Hawkeye [23] and WindRanger [25] attempt to resolve indirect
control flow statically, which yields better performance as it
requires just a one-time, pre-fuzzing analysis cost. However,
we observe that these tools rely on imprecise static analysis
frameworks (e.g., SVF [61]) that produce a significant over-
approximation of possible paths, making them unusable for
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general-purpose directed fuzzing.
Other directed fuzzers instead resolve indirect edges dynam-

ically (e.g., SieveFuzz [59], ParmeSan [47], and RLTG [30]),
which yields higher precision as their reachability analysis is
expanded to include concrete edges. However, the reachability
is dependent on the set of seed inputs. Hence, we see that
even these approaches miss critical paths that are not covered
by the seed inputs. Figure 2 shows a memory leak bug in
the latest version of giflib missed by the leading pruning-
directed fuzzer SieveFuzz. We observe that hybrid directed
fuzzers will only incorporate indirect edges covered by set
of seed inputs, leaving paths that contain uncovered indirect
edges missing. Moreover, as edges are observed, these tools’
reachability analyses need to be re-performed—deteriorating
their performance further on programs where indirect edges
are common.

In weighing the trade-offs of handling indirect edges, we
conclude that the least-invasive option with respect to perfor-
mance is performing recovery statically. However, achieving
precision demands that no indirect edges are missed.

Motivation: Attaining fast and precise directed
fuzzing demands (1) pruning-based directedness and
(2) fully-static indirect edge recovery. To date, we see
no existing directed fuzzer meeting these criteria.

D. Attempt at Overcoming these Limitations
Our tool, TOPr, attempts to address the above mentioned

weaknesses of existing directed fuzzers:
1) The Cost of Directedness: TOPr identifies and prunes off

all irrelevant code segments w.r.t. target (e.g., a code segment
marked in blue in Figure 1), including entire functions (e.g.,
do_ncdumpx). As a result, TOPr was able to effectively
explore the program space after the target location and uncover
the memory corruption bug shown in Figure 1 in 1 hour. On the
other hand, the leading distance-minimization-based directed
fuzzer, AFLGo was not able to find this bug in 1 hour due
to its expensive exploration of irrelevant code segments w.r.t.
target.

2) The Imprecision of Indirect Edge Recovery: TOPr’s
lightweight static analysis uses function signature matching
to resolve indirect edges. As a result, TOPr recovered the 2
indirect edges marked in blue in Figure 2 on the paths to
the target location. TOPr was thus able to reach the target
location and uncover the memory leak bug shown in Figure 2
in 1 hour. Whereas, the leading pruning-based directed fuzzer,
SieveFuzz was unable to reach the target and consequently
did not find the memory leak bug in 1 hour. This is due to
the fact that SieveFuzz resolves indirect edges dynamically by
completely relying on the set of seed inputs. On examining
the logs generated by SieveFuzz, we learned that it failed to
dynamically recover both of these indirect edges.

III. TOPR: ENHANCING STATIC PATH PRUNING

Figure 3 details our high-level approach. We perform back-
ward slicing to isolate target locations—and their reaching

Fig. 3: High-level overview of our enhanced static code
pruning for directed fuzzing.

paths—in the program. Our approach leverages a control-flow-
based static analysis to identify basic blocks that can reach
the target locations at the basic block level. Following this
analysis, we prune all irrelevant basic blocks, and perform
directed fuzzing on the pruned program slice. We discuss the
rest of our components and workflow below.

A. Finding Relevant Control Flow

Our first phase identifies relevant basic blocks in program
paths leading to desired target locations. Given a set of
target locations, we perform a whole-program analysis as
shown in Algorithm 1. Our approach leverages a conventional
reachability analysis at the call and control-flow graphs to
recover all basic blocks that reach target sites. Below we detail
our efforts to recover all direct and indirect control flow in a
without resorting to hybrid static/dynamic analysis.

1) Recovering Direct Edges: Using the default analyses
provided by compilers (e.g., LLVM), we obtain all direct
transfers at both the intra- (e.g., jmp .label) and inter-
procedural level (e.g., call foo). As this analysis is sound
as-is, we need not incorporate additional heuristics to further
strengthen its precision.

2) Statically Recovering Indirect Edges: While off-the-
shelf control-flow analyses capture all direct edges, they are in-
sufficient for recovering the frequent indirect edges ubiquitous
among today’s complex, real-world software. To overcome this
challenge, we perform function signature matching to handle
indirect calls to functions in the whole-program module. We
build on the basic approach in type-based pointer analysis and
call-graph construction (e.g., [38], [1]).

In case of call instructions that contain function pointers
instead of names, we use signature matching to identify
all functions in the whole-program module whose function
signature matches with the function signature seen in the
call instruction. getMatchedSignFnNames on line 29
of algorithm Algorithm 1 accomplishes this task. This is a
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conservative mechanism which ensures that no relevant part
of the program gets pruned out. We construct the call graph
for the entire program module and store it as a map whose key
is a function and value is the set of functions that call the said
function (i.e., caller functions). This is a graph whose nodes
are functions and there is an edge from function f1 to function
f2 if f2 can call f1. Effectively, it stores an inverse of the
traditional call graph. Moreover, to identify call sites more
precisely, we store function call sites (i.e., call instructions)
along with function names as nodes instead of having only
functions.

For each target, we traverse the call graph bottom-up
beginning from its parent function to identify all possible
predecessor functions up to the program entry point. For
each function in this set, starting from the basic block of the
target instruction or a function call instruction, we perform an
iterative search to identify the relevant basic blocks (shown
using inverseDFS on line 16). All relevant blocks are
marked using a call to a custom marker function (which we
call the marker instruction). These marker instructions are
inserted after the function call instructions that can reach
targets (line 20). Apart from these, all blocks in function calls
appearing before the target in relevant basic blocks are also
marked as relevant (lines 29 and 37). Finally, we output the
instrumented bitcode containing all basic block markers.

B. Pruning Irrelevant Control Flow

With our marked bitcode of target-relevant control flow in
hand, our second phase aims to prevent wasteful fuzzing by
restricting all irrelevant program paths. We terminate quickly
during the execution. This pass outputs the pruned LLVM
bitcode. As shown in Algorithm 2, we first identify locations
of marker instructions in every basic block (lines 5–16); if no
marker instruction is found, then the entire basic block will
be pruned (line 6); and if a marker instruction is present as
the last non-terminating instruction, then we skip the basic
block (line 10). We insert a call to exit() before all marker
instructions (line 18). As AFLGo treats non-zero exit codes as
erroneous program crashes, we intentionally use exit(0) to
signal a normal termination.

IV. IMPLEMENTATION

Below we detail our implementation of enhanced static code
pruning: TOPr (Target Oriented Pruning).

A. Overview

We use gllvm [6], an LLVM [9] framework based toolchain
for static analysis and rewriting (i.e., pruning) of code. gllvm
is wrapper around LLVM based compilers that provides tools
to build whole-program (or whole-library) LLVM bitcode files.
gclang generates a whole-program executable. Next, the
get-bc tool is used to extract LLVM bitcode from this
binary. The modular LLVM optimizer and analyzer, opt is
then used to analyze and transform the bitcode. We integrated
TOPr atop a recent version of the directed greybox fuzzer,

Algorithm 1 Basic Block Finder Pass

1: Input: Whole-program LLVM bitcode
2: Output: LLVM bitcode with basic block markers
3: requiredFns ← ∅
4: targetInstructionSet ← findAllTargets()
5: for targetInstruction ∈ targetInstructionSet do
6: targetFn ← targetInstruction.getParentFn()
7: targReachFnSet ← {targetFn}
8: while targReachFnSet ̸= ∅ do
9: targReachFn ← targReachFnSet.getNext()

10: callerList ← callGraph[targReachFn]
11: while callerList ̸= ∅ do
12: callerFn ← callerList.getNext()
13: targReachFnSet ← targReachFnSet ∪ {callerFn}
14: callerFnIns ← callerFn.ins
15: callerFnBbl ← callerFnIns.getParentBbl()
16: predBblSet ← inverseDFS(callerFnBbl)
17: for basicBlock ∈ predBblSet do
18: for ins ∈ basicBlock do
19: if ins = callerFnIns then
20: insertMarkerFnCall()
21: break
22: else
23: if ins.isCall() then
24: fn ← ins.getCalledFnName()
25: if fn ̸= ”” then
26: requiredFns ← requiredFns ∪ {fn}
27: else
28: fnSign ← ins.getCallSign()
29: requiredFns ← requiredFns ∪

getMatchedSignFnNames(fnSign)
30: end if
31: end if
32: end if
33: end for
34: end for
35: end while
36: end while
37: markFns(requiredFns)
38: end for

AFLGo [19], which is commit b170fad that uses LLVM
version 11.0.

Figure 3 provides the workflow of our framework. The user
specifies the target locations in the source code of the program.
AFLGo takes as input the source code and these targets to
generate an instrumented binary for fuzzing. We wrap gllvm
around the AFLGo compiler in order to extract the LLVM
bitcode from whole-program (or whole-library) instrumented
binary that it generates. This instrumented bitcode is then
pruned by TOPr before being used for fuzzing. We run our
transformation passes for pruning using the LLVM optimizer,
opt. The pruned bitcode is finally compiled to a pruned binary
using gclang and then used to perform directed fuzzing.
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Algorithm 2 Basic Block Pruner Pass

1: Input: LLVM bitcode with basic block markers
2: Output: Pruned LLVM bitcode
3: for fn ∈ wholeProgram do
4: for bbl ∈ fn do
5: toPrune ← True
6: pruneStartIns ← bbl.begin()
7: for ins ∈ bbl do
8: if ins.isMarkerFnCall() then
9: if ins.isLast() then

10: toPrune ← False
11: else
12: pruneStartIns ← ins
13: break
14: end if
15: end if
16: end for
17: if toPrune then
18: pruneStartIns.insertExitCallBefore()
19: end if
20: end for
21: end for

B. Backward Slicing

Many of the advanced analyses that are part of the LLVM
project, such as alias analyses and memory SSA, are only
intra-procedural and therefore insufficient: LLVMSlicer [10]
is obsolete, while others (e.g., [5], [15], [12], [72]) are limited
in their capabilities. As we are not aware of an existing,
fully-functional LLVM pass that performs backward slicing,
we manually implement backward slicing atop our LLVM
analyses.

C. Fuzzing Component

TOPr’s enhanced static path pruning is implemented
atop the AFLGo directed fuzzer. We leverage the fuzzer’s
lightweight instrumentation to obtain code coverage infor-
mation (e.g., control-flow edges and hit count frequencies),
alongside target-relative distances, for every generated input.

V. EVALUATION

We evaluate TOPr against the following two tools:
1) the leading distance-minimization-based directed fuzzer,

AFLGo [19].
2) the state-of-the-art pruning-based directed fuzzer Sieve-

Fuzz [59].
Our evaluation addresses the following research questions:

1) Research Question 1. How many unique bugs are found
by the tools?

2) Research Question 2. What is the time taken by the
tools to expose the bugs?

3) Research Question 3. How well do the tools perform
w.r.t. target reachability?

4) Research Question 4 How fast are the tools in terms
the test case throughput?

A. Evaluation Projects

Table II and Table III provide details on the 24 real world
benchmarks used in evaluation. Based on the use case for
evaluation, the benchmarks are split into two sets — (i) Patch
testing where the changed lines of code are set as target
locations and (ii) Bug reproduction where previously found
bugs are set as target locations. Moreover, based on the project
versions, these benchmarks are categorized into two sets:

1) Older project versions evaluated by AFLGo and
SieveFuzz. This set consists of 15 of the 24 benchmarks.
The benchmark IDs with suffixes -2,-3,-4 fall into
this category. These have been used previously in the
evaluation of AFLGo [19], [3] and SieveFuzz [59]. Most
of these projects have been updated since they were eval-
uated by AFLGo and SieveFuzz. Hence, finding bugs in
these older versions has no benefit for the current code
versions because the bugs had been already discovered
and mostly fixed. However, these benchmarks are still
useful for comparing TOPr with these tools.

2) Latest project versions. This set consists of the remain-
ing 9 of the 24 benchmarks. The benchmark IDs with
suffix -1 fall into this category. It includes the latest
versions of 7 projects from the first set, i.e., all projects
that changed since prior evaluations (the libming
library has been abandoned for years, motivating the
need to compare techniques on the latest project ver-
sions rather than old versions with known prior bugs).
Furthermore, this set also includes the latest versions
of 2 additional projects—NetCDF-C and HDF5. These
are libraries are extensively used to analyze and process
scientific datasets in geo-science applications [7], [11].
Finding new bugs in the latest versions of these projects
provides more confidence in assessing and establishing
the significance of TOPr.

TABLE II: Patch testing benchmarks (all latest versions except
libxml2-2) used in our evaluation.

Benchmark Commit ID
cxxfilt-1 32778522c7d
giflib-1 adf5a1a
hdf5 0553fb7
jasper-1 402d096
libxml2-1 f507d167
libxml2-2 ef709ce2
lrzip-1 e5e9a61
mjs-1 b1b6eac
netcdf-c 63150df
objdump-1 32778522c7d

B. Metrics

The evaluation metrics measure target specific statistics
to effectively compare the tools against one another. These
metrics are obtained by replaying the inputs generated during
fuzzing on code instrumented using LLVM to compute these
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TABLE III: Bug reproduction benchmarks in our evaluation.

Benchmark Commit ID Error ID Error Type
cxxfilt-2 2c49145 CVE-2016-4487 Heap UAF
giflib-2 72e31ff Bug #74 Double Free
giflib-3 adf5a1a N/A Memory Leak
jasper-2 142245b CVE-2015-5221 Heap UAF
jasper-3 142245b N/A Memory Leak
libming-1 b72cc2f CVE-2018-8807 Heap UAF
libming-2 b72cc2f CVE-2018-8962 Heap UAF
libming-3 b72cc2f N/A Memory Leak
lrzip-2 ed51e14 CVE-2018-11496 Heap UAF
lrzip-3 9de7ccb CVE-2017-8846 Heap UAF
mjs-2 d6c06a6 Issue #57 Int Overflow
mjs-3 9eae0e6 Issue #78 Heap UAF
mjs-4 2827bd0 N/A Floating Point
objdump-2 a6c21d4a553 CVE-2017-8392 Invalid Read

metrics. Note that all the metrics that we use in our evaluation
are target specific, i.e., all these metrics are computed only
with reference to program paths and basic blocks that reach
target locations. Table IV summarizes the following metrics
used in our evaluation:

• Unique Bugs and Unique Traces. We count only the
bugs on program paths that include target locations. Note
that the program path for a given input may not reach
the target location even for TOPr that guides exploration
towards targets. First, the program may crash before
a target is reached, e.g., Segmentation Fault. Such an
input/path would not show any bug in the target itself but
shows that some paths to the target have bugs. Second,
the program path may follow a branch that cannot reach
a target, e.g., the target may be in the else block of an if
statement, while the input follows the then block. (The
key contribution of TOPr is indeed to terminate such
paths as soon as they reach a basic block from which the
target cannot be reached.) We use the ASAN tool to detect
bugs during replay of inputs generated by the fuzzer. Of
the bugs reported by ASAN, we filter out and deduplicate
ASAN reports to count — (i) Unique bugs: based on
primary bug location that accounts for only the primary
source file name and line number where the bug was
triggered and (ii) Unique traces: based on full stack trace
that accounts for all source file names and line numbers
listed in the error stack trace. The number of unique bugs
[Research Question 1] is the most important metric used
to evaluate the efficacy of fuzzing in our evaluation and
thus to compare TOPr against AFLGo and SieveFuzz.

• Time to Bug Exposure. This is a measure of the time
taken by the fuzzer to generate the input that triggers the
first bug in the program [Research Question 2].

• Target Reachability. We measure target-relevant cov-
erage in terms of basic blocks covered in the pruned
code. The other metrics include the number of times
that one or more targets are reached and the number
of inputs that reach at least one of the target locations

during execution. These metrics put together conceptually
show how much the generated inputs “explore” the targets
[Research Question 3]. A tool that reaches the target
more often is likely to have a higher chance to detect
bugs related to targets.

• Test Case Throughput. This is a measure of the total
number of executions during the fuzzing campaign used
to evaluate the speed of fuzzing [Research Question 4].

TABLE IV: Metrics used in evaluation.

No. Metric
1 Unique bugs based on primary location in ASAN trace
2 Unique traces based on full ASAN trace
3 Time taken to exposure of first bug within fuzzing campaign
4 Target-Relevant coverage in terms of basic blocks
5 Number of target reaches
6 Number of target reaching inputs
7 Test case throughput

C. Experimental Setup

We run experiments on a Virtual Machine with Ubuntu
20.04 OS, 66GB Memory, Intel® Xeon(R) CPU E5-2620 @
2.00GHz × 24. The time-to-exploitation is set to 45 minutes
and the timeout is set to 1 hour for the fuzzing campaigns.
The rationale for setting a 1 hour time limit is as follows.
Most use-case scenarios for targeted fuzzing require relatively
faster feedback than traditional fuzzing that explores an entire
program. For example, consider the use scenario of regression
testing [69]—validating whether a recent code commit in
a large code base breaks some functionality [50]. While
traditional fuzzing may explore the entire large code base to
search for potential bugs, targeted fuzzing would focus only
on the changed code to explore whether it itself introduced
a bug. In others words, generating a test input that leads to
a failure in the unchanged code can be considered a kind of
“false alarm” because the developer may be already aware of
those existing bugs. For this reason, targeted fuzzing has a
much smaller time budget than traditional fuzzing (which in
the limit can run continuously “forever” and in research exper-
iments is typically evaluated with 24-hour-long experiments).
A reasonable expectation is that targeted fuzzing finishes in
the same time it takes to run the regression test suite, e.g.,
with targeted fuzzing running in parallel with the traditional
regression test suite. As a result, in our experiments we use
1-hour-long time limit for running targeted fuzzing.

To ensure a fair evaluation, we follow the experimental
setup (to the extent possible) used in prior evaluation of the
tools, AFLGo [19] and SieveFuzz [59]. For evaluation of TOPr
against AFLGo, the fuzzing campaigns make use of 22 out of
the 24 cores. For evaluation of TOPr against SieveFuzz, the
fuzzing campaigns make use of 1 core and 10 trials of fuzzing
campaigns are conducted. In this case, we use the arithmetic
mean to report the summary of results across the 10 trials.
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D. Results
Note: that X in the tables indicates that a tool failed to
generate a value w.r.t. the given metric. SieveFuzz failed to
run on cxxfilt-2 benchmark and therefore all corresponding
values are shown as X in the tables.

1) Unique Bugs and Unique Traces: Tables Table V and
Table VIII show the results for the number of unique bugs
found and the number of unique ASAN traces for TOPr vs.
AFLGo and TOPr vs. SieveFuzz respectively. Higher values
indicate better performance. For most benchmarks, TOPr finds
more bugs than its competitors, AFLGo and SieveFuzz. For
the remaining benchmarks, TOPr performs on a par with the
other 2 tools. This shows that in terms of the most important
evaluation metric, unique bugs found, TOPr outperforms both
AFLGo and SieveFuzz (highlighted by numbers shown in bold
in the tables). TOPr found 24 bugs in the latest versions of 5
projects. More details on the reported bugs are discussed in
Section § V-E.

2) Time to Bug Exposure: Tables Table VI and Table IX
show the results for time to exposure of the first bug within
the fuzzing campaigns along with type and location of the
bugs. Lower values for TTB indicate better performance. For
most benchmarks, TOPr finds bugs faster (lower TTB) in
comparison to its competitors, AFLGo and SieveFuzz. The
average speedup of TOPr w.r.t. time to bug exposure in
Tables Table VI and Table IX are 8% and 85% respectively
(We compute this average for all benchmarks where values
for both tools are not X , and we compute the average
of (TOPr − baseline)/baseline values where baseline is
AFLGo or SieveFuzz respectively). This indicates that once
again TOPr outperforms both AFLGo and SieveFuzz (high-
lighted by numbers shown in bold in the tables).

3) Target Reachability and Test Case Throughput:
Tables Table VII and Table X show the results for basic
block coverage in target-relevant code, number of times
target(s) reached, number of inputs reaching target(s) and
the test case throughput. Higher values indicate better
performance. For most of the benchmarks, TOPr achieves
better target rechability compared to its competitors, AFLGo
and SieveFuzz. On average, TOPr’s increase in test-case
throughput in Tables Table VII and Table X are 73% and
222% respectively. TOPr’s average increase in target relevant
coverage as shown in Tables Table VII and Table X are 9%
and 149% respectively. Yet again, w.r.t. target reachability,
TOPr outperforms both AFLGo and SieveFuzz (highlighted
by numbers shown in bold in the tables).

SieveFuzz operates by pruning irrelevant control-flow
at a function-level granularity, and incorporates statically-
unobtainable indirect edges in its dynamically-updated CFG.
As shown in Table VIII, Table IX and Table X, TOPr enables a
more thorough exploration of directed fuzzing target locations
across the 6 benchmarks—reaching target locations at a higher
frequency per trial—enabling upwards of 12× more unique
bugs to be discovered than SieveFuzz. We posit that TOPr’s

improvement over SieveFuzz is primarily due to SieveFuzz’s
coarse-grained pruning coupled with its higher overhead:
TOPr’s pruning instead operates at the basic block level and
captures indirect function call edges statically, thus achieving
higher precision and speed than SieveFuzz.

Summary. To summarize the results overall, TOPr out-
performs both AFLGo and SieveFuzz in terms of (i) bug
discovery (both number and speed), (ii) target reachability and
(iii) speed by achieveing a higher test case throughput.

TABLE V: AFLGo vs. TOPr: number of AddressSanitizer-
reported unique bugs found (UB) and unique bug stack traces
(UT) for TOPr versus AFLGo. Numbers are shown in bold
when TOPr outperforms AFLGo. (Higher is better.)

Benchmark AFLGo UB TOPr UB AFLGo UT TOPr UT

cxxfilt-2 18 32 134 310
giflib-1 4 4 32 46
giflib-2 2 2 2 2
hdf5 11 12 16 16
jasper-2 15 24 271 433
libming-1 0 67 0 2126
libming-2 0 77 0 2101
libxml2-2 8 9 14 20
lrzip-1 1 1 1 1
lrzip-2 9 9 22 22
lrzip-3 1 1 1 1
mjs-1 0 1 0 1
mjs-2 13 14 22 23
mjs-3 2 2 2 2
netcdf-c 2 6 3 9
objdump-2 2 2 2 2

TABLE VI: AFLGo vs. TOPr: time to bug exposure in seconds
(TTB) of the first bug within the fuzzing campaign. Numbers
are shown in bold when TOPr outperforms AFLGo. (Lower
is better.)

Benchmark AFLGo TOPr
TTB Type Location TTB Type Location
(sec) (sec)

netcdf-c 21 Leak nchashmap.c:183 20 Leak nchashmap.c:183
hdf5 51 Leak h5trav.c:124 35 Leak h5trav.c:124
mjs-1

X X X
510 Crash Unspecified

lrzip-1 1873 Leak stream.c:1692 3443 Heap stream.c:1692
giflib-1 357 Leak gifalloc.c:329 92 Leak egif lib.c:101
libming-1

X X X
506 Leak parser.c:2435

libming-2
X X X

2450 Heap decompile.c:896

libxml2-2 241 Heap xmlsave.c:2057 1158 Leak valid.c:952
jasper-2 31 Leak jas malloc.c:106 10 Leak jas malloc.c:106
cxxfilt-2 256 Heap xmalloc.c:147 62 Heap xmalloc.c:147
mjs-2 764 Stack mjs.c:12522 384 Crash mjs.c:8820
mjs-3 1813 Crash mjs.c:9082 2721 Crash mjs.c:9082
objdump-2 247 Heap xmalloc.c:147 67 Heap xmalloc.c:147
giflib-2 41 Crash gifsponge.c:58 56 Crash gifsponge.c:58
lrzip-2 15 Leak stream.c:1651 5 Leak stream.c:1651
lrzip-3 5 Leak lrzip.c:1326 5 Leak lrzip.c:1326
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TABLE VII: AFLGo vs. TOPr: basic block coverage of target-relevant code, total instances target(s) is reached, total inputs
reaching target(s), and test case throughput. Numbers are shown in bold when TOPr outperforms AFLGo. (Higher is better.)

Benchmark Target-Relevant Coverage Target Reaches Target-Reaching Inputs Test Case Throughput
AFLGo TOPr AFLGo TOPr AFLGo TOPr AFLGo TOPr

cxxfilt-1 4.86% 4.94% 2777115 2856414 60997 63397 39121411 29160761
cxxfilt-2 6.31% 6.48% 44674525 5572273 87367 116256 12424857 23310188
giflib-1 65.19% 65.41% 34529 34563 7075 7119 31487585 31622273
giflib-2 55.43% 57.74% 337 310 259 208 26010883 38766493
hdf5 10.69% 10.8% 17430 23353 17430 23353 3817389 5857210
jasper-1 31.29% 31.37% 1304630 3603540 31622 25034 2220500 3064910
jasper-2 38.39% 39.00% 43682 50691 35066 34489 1451864 5378160
libming-1 49.91% 65.03% 0 58533 0 58533 16480846 16244787
libming-2 55.56% 67.75% 0 129321 0 60198 14670904 17524671
libxml2-1 14.45% 15.42% 60107 106178 54738 72002 4354232 8956259
libxml2-2 14.33% 15.31% 81886 142048 66420 74602 6717548 8976242
lrzip-1 11.52% 15.86% 12250 1837 12250 1837 3679161 22457124
lrzip-2 22.95% 25.39% 116250 188456 12575 15132 3476647 3732705
lrzip-3 22.77% 24.22% 13924 16373 13924 16373 5139749 3715864
mjs-1 39.21% 40.82% 155956 232189 41547 38517 36098187 31482133
mjs-2 38.75% 39.94% 2351387 2618489 34629 43924 23525141 36261339
mjs-3 40.55% 41.13% 602653 690056 36993 42194 24022544 27349040
netcdf-c 6.29% 6.26% 4995 10815 999 2163 3419075 4730305
objdump-1 2.89% 3.07% 138228 338736 64836 24029 9707018 14370966
objdump-2 4.07% 5.11% 25975 29038 23256 15947 2721294 8077430

TABLE VIII: SieveFuzz vs. TOPr: mean number of
AddressSanitizer-reported unique bugs found (UB) and unique
bug stack traces (UT) for TOPr versus SieveFuzz. Numbers are
shown in bold when TOPr outperforms SieveFuzz. (Higher is
better.)

Benchmark SieveFuzz
UB

TOPr UB SieveFuzz
UT

TOPr UT

cxxfilt-2
X

2.6
X

6

giflib-3 0 0.8 0 0.9
jasper-3 1 10 3.8 50
libming-3 2.3 3.1 2.5 3.1
lrzip-2 1 3.6 1 7.8
mjs-4 0.1 1 0.1 1

E. Reported Bugs in Latest Versions of Applications

Table XI shows the summary of the reported bugs that were
found by our tool, TOPr, in the latest versions of 5 projects.
The table shows the number of bugs found per benchmark, the
binary on which fuzzer was run along with the type, location,
status, severity and the link of each reported bug. Of the 24
bugs found, 13 are in hdf5, 5 in netcdf-c, 1 in lrzip, 4 in giflib
and 1 in mjs. 12 bugs in hdf5, 5 bugs in netcdf-c and 1 bug in
lrzip have all been confirmed by developers. Furthermore, 12
of the hdf5 bugs have been labelled as “Priority - 1. High”
and 12 of them have already been fixed.

VI. RELATED WORK

Recently, directed fuzzing has gained much popularity [32],
[39], [71], [35], [37], [31], [64], [65], [36], [4]. Beacon [32]
uses path-condition satisfiability to prune execution paths at

TABLE IX: SieveFuzz vs. TOPr: mean time to bug exposure
in seconds (TTB) of the first bug within fuzzing campaign.
Numbers are shown in bold when TOPr outperforms Sieve-
Fuzz. (Lower is better.)

Benchmark SieveFuzz TOPr
TTB Type Location TTB Type Location
(sec) (sec)

mjs-4 3307 FPE mjs.c:8602 2041.6 Stack mjs.c:12488
FPE mjs.c:8602

giflib-3
X X X

960.6 Leak gifalloc.c:329

lrzip-2 7.7 Leak stream.c:1651 4.8 Leak stream.c:1651
cxxfilt-2

X X X
1423 Crash cp-demangle.c:1596

Crash cplus-dem.c:4839
Heap xmalloc.c:147
Leak xmalloc.c:147

jasper-3 5.4 Crash jas malloc.c:111 31.4 Crash jas cm.c:1281
libming-3 15.6 Leak read.c:227 5.4 Leak parser.c:882

runtime which incurs a high analysis overhead of approx-
imately 20.8%. Prior work [59] has already demonstrated
that Beacon’s runtime pruning suffers from the following
drawbacks — (i) its significant high cost reduces fuzzing
throughput and (ii) its imprecise control flow analysis tends to
over-prune and aggressively remove reachable paths. Contrary
to this, (i) TOPr employs an extremely light-weight static
pruning mechanism that prunes code at compile time with an
analysis overhead in the order of a few seconds, incurring no
runtime overhead and (ii) TOPr’s precise indirect flow analysis
recovers indirect edges w.r.t. targets accurately.

SelectFuzz [39] proposes a new metric for distance min-
imization that aids in the selection and exploration of paths
specific to targets. Beak [71] is a hybrid directed fuzzer for
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TABLE X: SieveFuzz vs. TOPr: mean basic block coverage of target-relevant code, mean of instances target(s) reached, mean
of inputs reaching target(s), and mean of test case throughput. Numbers are shown in bold when TOPr outperforms SieveFuzz.
(Higher is better.)

Benchmark Target-Relevant Coverage Target Reaches Target-Reaching Inputs Test Case Throughput
SieveFuzz TOPr SieveFuzz TOPr SieveFuzz TOPr SieveFuzz TOPr

cxxfilt-2 X 4.72% X 2561 X 1054.6 X 1649432.1
giflib-3 47.74% 52.33% 0 42.2 0 42.2 321822.4 1643788.5
jasper-3 5.81% 40.64% 81.7 842.4 81.7 842.4 121633.9 111484.4
libming-3 3.47% 3.63% 108.1 54 38.1 18 783136.5 211008.1
lrzip-2 9.64% 20.68% 80.2 1366.4 39.5 242.5 100613.8 586171.2
mjs-4 32.08% 36.97% 524 1870.9 376.7 655.4 569233.8 2273708

TABLE XI: Summary of the 24 newly-discovered bugs found by TOPr. Details collected using ASAN.

Benchmark #Bugs Binary Type Location Status Severity Bug Link
hdf5 13 h5dump Heap Buffer Overflow H5Oginfo.c:104 Fixed High Priority b1-link

Memory Allocation Error H5C.c:7120 Fixed High Priority b2-link
Memory Leaks h5trav.c:124 Fixed High Priority b3-link

Heap Buffer Overflow H5Olinfo.c:121 Fixed High Priority b4-link
Heap Buffer Overflow H5Fint.c:2859 Fixed High Priority b5-link

Memory Leaks H5Oefl.c:137 Fixed High Priority b6-link
Heap Buffer Overflow H5MM.c:311 Fixed High Priority b7-link

Memory Leaks H5FL.c:237 Fixed High Priority b8-link
Memory Leaks H5Opline.c:392 Fixed High Priority b9-link

Out Of Memory H5C.c:7120 Fixed High Priority b10-link
Heap Buffer Overflow H5Oattr.c:144 Fixed High Priority b11-link

Memory Leaks H5FL.c:246 Not fixed High Priority b12-link
Segmentation Fault H5MM.c:311 Fixed - b13-link

netcdf-c 5 ncdump Segmentation Fault hdf5open.c:1333 Confirmed Pending b14-link
Memory Leaks nchashmap.c:183 Confirmed Pending b15-link

Heap Buffer Overflow hdf5open.c:1333 Confirmed Pending b16-link
Heap Buffer Overflow hdf5var.c:2102 Confirmed Pending b17-link

Memcpy Parameter Overlap hdf5open.c:1333 Confirmed Pending b18-link
lrzip-1 1 lrzip Memory Allocation Error stream.c:1692 Confirmed Pending b19-link
giflib-1 4 gifsponge Memory Leaks gifalloc.c:329 Reported Pending b20-link

Memory Leaks egif lib.c:101 Reported Pending b21-link
Memory Leaks gifalloc.c:331 Reported Pending b22-link
Memory Leaks gifalloc.c:53 Reported Pending b23-link

mjs-1 1 mjs-bin Segmentation Fault Unspecified Reported Pending b24-link

smart contracts that also uses symbolic execution to improve
target specific testing. G-fuzz [35] is a directed fuzzer for
Google’s gVisor kernel that incorporates a combination of fine-
grained distance calculation, target related syscall inference
and utilization along with a dynamic switch between explo-
ration and exploitation to enhance directed fuzzing. RLF [37]
utilizes deep reinforcement learning along with computing
the distance between the path and the target to optimize
fuzzing. SwitchFuzz [31] aims to address the issue of path
exploration falling into a local optimum using runtime feed-
back. It switches to other possible paths when the distance of
test cases to target does not decrease over a period of time.
RDGFuzz [64] proposes to optimize AFLGo’s seed energy
allocation algorithm for better directed fuzzing. LeoFuzz [36]
proposes an energy scheduling strategy based on several
relations between seeds and target locations and a strategy
for better coordination of exploration, exploitation stages.
MC2 [65] introduces a complexity-theoretic framework to

convert directed greybox fuzzing into an oracle-guided search
problem where the querying oracle receives feedback on how
close an input is to the target. BugsBunny [4] aims to optimize
directed fuzzing for complex hardware designs by proposing
a distance-to-target feedback metric to minimize distance to
target locations. Distinct from TOPr, these techniques do not
use pruning to optimize directed fuzzing.

There has also been significant research effort towards
making directed fuzzing more effective on complex programs
including hybrid techniques that leverage symbolic execution.
Next, we discuss directed fuzzing and taint-based fuzzing
techniques that include both greybox and whitebox fuzzers.
Many coverage-based fuzzing techniques, both greybox and
whitebox, have endeavored to increase code coverage while
generating inputs [27], [34], [49]. Coverage-based greybox
fuzzers [20], [54], [58], [2], [8] primarily make use of light-
weight instrumentation to increase code coverage. AFL’s [2]
instrumentation tracks basic block transitions and branch-taken
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hit counts and uses it to decide which of the generated inputs to
preserve for fuzzing. AFLFast [20] investigates the possibility
of exercising low-frequency paths to cover more paths in a
given time unit. Vuzzer [54] triages basic blocks that select
certain paths likely leading to a vulnerability target location.
The technique by Sparks et al. [58] puts forward a genetic
algorithm to increase code coverage and penetration depth into
control-flow logic.

Symbolic execution based whitebox fuzzers are mostly
implemented on symbolic execution engine, KLEE [21]. Most
of the current directed fuzzers [17], [24], [29], [41], [42],
[51], [55], [67] exploit the systematic exploration of path,
a principal characteristic of symbolic execution. Symbolic
execution runs a program by assigning both concrete and sym-
bolic values to variables. Theoretically, symbolic execution
would explore all possible paths in a program by forking
at the conditional branches. However, in spite of being a
widely used technique in testing, symbolic execution suffers
from a few challenges that limit its usage in large real-
world programs [22]. Chief among these is path explosion that
prevents the technique from reaching deep parts of program
code.

There has also been work in the area of directed symbolic
execution. DiSE [50] combines static analysis techniques
for computing program differences between two versions to
improve symbolic execution for regression testing. Fitnex [66]
uses target-specific distance computation to guide path explo-
ration in symbolic execution. eXpress [62] uses path pruning
to enhance directed symbolic execution.

Apart from these, efforts combining both these strategies—
fuzzing and symbolic execution—have also been at-
tempted [48], [60] in the past. Also, there are many taint-based
directed whitebox fuzzing techniques [28], [54], [63] that
dispense with the not so lightweight machinery of symbolic
execution. Buzzfuzz [28] is a dynamic whitebox technique that
uses automatic taint tracking to mark the original input files
at strategic critical locations. Vuzzer [54] (already mentioned
above) is a coverage directed greybox fuzzer that also uses
taint analysis to exercise not easily accessible code.

VII. CONCLUSION

TOPr is designed to enable fast and precise directed fuzzing.
Our evaluation demonstrates that TOPr outperforms both
AFLGo and SieveFuzz in terms of (i) bug discovery (both
number and speed), (ii) target reachability and (iii) overall
speed by achieving a higher test case throughput. TOPr found
24 bugs in the latest versions of 5 projects, of which 18
bugs have been already confirmed and 12 bugs fixed by the
developers with 12 bugs labelled as ”Priority - 1. High”
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