
System Auditing for Real-Time Systems ∗

AYOOSH BANSAL, University of Illinois Urbana-Champaign, USA

ANANT KANDIKUPPA, University of Illinois Urbana-Champaign, USA

MONOWAR HASAN,Washington State University, USA

CHIEN-YING CHEN, University of Illinois Urbana-Champaign, USA

ADAM BATES, University of Illinois Urbana-Champaign, USA

SIBIN MOHAN, The George Washington University, USA

System auditing is an essential tool for detecting malicious events and conducting forensic analysis. Although used extensively on
general-purpose systems, auditing frameworks have not been designed with consideration for the unique constraints and properties of
Real-Time Systems (RTS). System auditing could provide tremendous benefits for security-critical RTS. However, a naïve deployment
of auditing on RTS could violate the temporal requirements of the system while also rendering auditing incomplete and ineffectual. To
ensure effective auditing that meets the computational needs of recording complete audit information while adhering to the temporal
requirements of the RTS, it is essential to carefully integrate auditing into the real-time (RT) schedule.

This work adapts the Linux Audit framework for use in RT Linux by leveraging the common properties of such systems, such as
special purpose and predictability. Ellipsis, an efficient system for auditing RTS is devised that learns the expected benign behaviors of
the system and generates succinct descriptions of the expected activity. Evaluations using varied RT applications show that Ellipsis
reduces the volume of audit records generated during benign activity by up to 97.55%, while recording detailed logs for suspicious
activities. Empirical analyses establish that the auditing infrastructure adheres to the properties of predictability and isolation that
are important to RTS. Furthermore, the schedulability of RT task sets under audit is comprehensively analyzed to enable the safe
integration of auditing in RT task schedules.

CCS Concepts: • Computer systems organization→ Real-time systems; • Security and privacy→ Systems security.

Additional Key Words and Phrases: security auditing, model-based reduction, cyber-physical systems

∗Ellipsis was first introduced in a paper published in ESORICS 2022 [15]. In this work we expand the capability of Ellipsis to efficiently audit
different classes of RT Applications and the automated template generation (Section 3.4, Algorithm 1 and Figure 2). This is evaluated by expanding
the experiments using the firm deadline RT application Ardupilot (Sections 5.3 and 5.5) and with new evaluations using a soft deadline video analysis
application called Motion (Sections 4.4 and 6). With comprehensive empirical analysis, we establish the auditing framework’s adherence to properties
that are important to RTS (Section 7). Finally, we perform a thorough schedulability analysis for RT applications under audit (Section 8). Other major
modifications/enhancements are: (a) we add a detailed discussion for RTS properties that Ellipsis depends on as Sections 2.2.1 and 2.2.2; (b) we provide
additional details about Ellipsis’ functionality in Section 3 and new Tables 2 and 4, summarizing notations and evaluation questions, respectively, for the
reader’s convenience and clarity; (c) we expand the discussion about Ellipsis in Sections 9.2, 9.5, and 9.6; (d) we expand the related work, Section 10,
to include state of the art in System Auditing, RTS Security and Data Compression and address recent literature; (e) we provide detailed examples of
templates in Appendix A; (f) other editorial changes to most sections, especially the abstract, introduction, and conclusion.

Authors’ addresses: Ayoosh Bansal, University of Illinois Urbana-Champaign, Urbana-Champaign, USA, ayooshb2@illinois.edu; Anant Kandikuppa,
University of Illinois Urbana-Champaign, Urbana-Champaign, USA, anantk3@illinois.edu; Monowar Hasan, Washington State University, Pullman, USA,
monowar.hasan@wsu.edu; Chien-Ying Chen, University of Illinois Urbana-Champaign, Urbana-Champaign, USA, cchen140@illinois.edu; Adam Bates,
University of Illinois Urbana-Champaign, Urbana-Champaign, USA, batesa@illinois.edu; Sibin Mohan, The George Washington University, Washington,
D.C., USA, sibin.mohan@gwu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0000-0002-4848-6850
HTTPS://ORCID.ORG/0000-0002-2657-0402
HTTPS://ORCID.ORG/0000-0002-3295-0233
https://orcid.org/0000-0002-4848-6850
https://orcid.org/0000-0002-2657-0402
https://orcid.org/0000-0002-3295-0233

2 Ayoosh Bansal, Anant Kandikuppa, Monowar Hasan, Chien-Ying Chen, Adam Bates, and Sibin Mohan

ACM Reference Format:
Ayoosh Bansal, Anant Kandikuppa, Monowar Hasan, Chien-Ying Chen, Adam Bates, and Sibin Mohan. 2023. System Auditing for
Real-Time Systems . ACM Trans. Priv. Sec. 37, 4, Article 111 (August 2023), 35 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Real-Time Systems (RTS) are an integral part of numerous safety and security-critical domains, includingmedical devices,
autonomous vehicles, manufacturing automation and smart cities, among others [47, 66, 83, 93]. Attacks on these systems
can lead to subversion of life-saving medical devices [106], vehicle hijacks [38, 55], manufacturing disruptions [98]
and even IoT botnets [49]. Therefore, RTS have become attractive targets for attacks [41]. The correctness of an RTS
depends on the computations being completed within a temporal constraint, which is referred to as a deadline.

Security auditing is a key component of intrusion detection and response in general-purpose systems. Auditing
plays a crucial role in detecting, investigating, and provenance analysis of intrusions [28, 52, 53, 81]. System auditing
takes place at the kernel layer and creates a new event for every syscall that is issued. Not only does this approach
relieve the application developer from the responsibility of event logging, it provides a unified view of system activity
in a way that application-specific logging simply cannot. In particular, systems logs can be parsed into a connected
graph based on the shared dependencies of individual events, facilitating causal analysis over the history of events
within a system [18, 58, 62, 65, 65, 72, 74, 78, 87, 90]. This capability is invaluable to defenders when tracing suspicious
activities [52, 53, 81], to the point that the vast majority of cyber analysts consider audit logs to be the most important
resource when investigating threats [28]. Hence, the deployment of system-level audit capabilities can help on multiple
fronts: (a) fault detection/diagnosis and (b) understanding and detecting future security events.

However, RTS event logging today is limited to application layer event recorders [23, 25] or performance profiling [26].
The information recorded, e.g., syscall occurrence not arguments, is insufficient to trace attacks.Without syscall argument
values links between entities cannot be identified, e.g., without a filename or file handle information accesses to a file
cannot be linked together. There is a growing need for comprehensive system auditing in RTS [12, 39, 63]. However,
auditing systems like Linux Audit are known to cause high overheads [76]. Therefore, a naïve inclusion of auditing in
Real-Time (RT) application schedules can lead to violations of the temporal requirements of the applications.

To bring comprehensive system auditing to RTS, we present Ellipsis, a kernel-based auditing system that leverages
unique properties of RTS to enable efficient system auditing in RTS. Adapting Linux Audit [101] for use in RTS, Ellipsis
leverages predictable repeating execution paths, a property common to the vast majority of RTS. As part of the extensive
pre-deployment analyses that are part of RTS development, using an automated iterative process Ellipsis learns these
execution paths, generating templates representing the learned behaviors to reduce the audit event streams by matching
these templates to succinct descriptions. Simultaneously, any anomalous behavior is recorded in full detail. Ellipsis
minimizes the volume of audit events and logs generated without losing security-relevant information.

Reducing expected event streams in the kernel, before they are ever recorded, allows Ellipsis to minimize the
auditing resource requirements for benign behaviors of RT applications, thus maximizing the auditing capacity available
for anomalous activities. Despite the reduction of event streams, Ellipsis retains all relevant information, detecting
stealthy attacks designed to work specifically against RTS. Ellipsis achieves high (> 90%) event generation reduction for
different classes of RT applications, from soft deadline video processing applications to firm deadline autopilot systems.
Furthermore, Ellipsis adheres to the properties of execution time predictability and does not introduce any significant
blocking and therefore priority inversion [94], i.e., Ellipsis can be safely integrated within RT schedules. Encouraged by
these findings, we conduct a detailed schedulability analysis for auditing RT tasks with Ellipsis. Ellipsis presents the
Manuscript submitted to ACM

https://doi.org/XXXXXXX.XXXXXXX

System Auditing for Real-Time Systems 3

Fig. 1. Linux Audit Framework [1]. Audit logs are generated using auditing hooks in the kernel’s syscall handler and temporarily
stored in the kauditd buffer. Log maintenance is handled by two background daemons, kauditd and auditd.

first system for security auditing tailored specifically for RTS. With the results and analysis presented in this work, RTS
can appropriately provision auditing tasks, including them as part of the RT schedules, enabling safe and effectual use
of system-wide security auditing in RTS. The key contributions of this work are:

• Ellipsis1, an audit framework, uniquely-tailored to RT environments (§3).
• Security analysis (§4) and performance evaluations (§5, §6) to demonstrate that Ellipsis retains relevant informa-
tion while significantly reducing audit event generation and log volume.
• Temporal Properties (§7) and Schedulability (§8) analyses to establish the safe inclusion of auditing in RTS.

2 BACKGROUND AND SYSTEMMODEL

2.1 Linux Audit Framework

The Linux Audit system [101] provides a way to record system activities. As illustrated in Figure 1, on any syscall
invocation 1 , hook code invokes Linux Audit. If the event matches the audit_filter 2 , as defined by the system
administrator, a new event record is added to a kaudit_buffer 3 . The control flow then returns back to syscall
handler 4 and eventually to the application 5 . The records in kaudit_buffer must be transferred to an eventual
user, most commonly to the file system for persistent storage. Background daemons kauditd and auditd, running in
kernel and user spaces respectively, transmit these records from the kaudit_buffer to the userspace for storage.

It is well-established that Linux Audit can incur large computational and storage overheads in traditional software [76].
However, its impacts on RT applications were unclear. Both components of auditing present unique challenges:

• Event generation hooks in the syscall path not only add additional latency to each syscall but also introduces the
shared kauditd buffer whose access is coordinated using a spinlock. These changes could potentially wreak
havoc on RT task sets as a result of changing execution profiles, resource contention, or priority inversion [94].
Encouragingly, upon conducting a detailed analysis (§7, §8) we observed that Linux Audit does not introduce
significant issues of priority inversion or contention over auditing resources shared across applications. Further,
except for limited outlier cases, the latency introduced by auditing syscalls can be bounded and schedulability
determined. Hence it is a good candidate for firm and soft deadline RTS as supported by RT Linux [103].
• Record storage completeness depends on the background daemons being provided sufficient execution time,
otherwise kaudit_buffer becomes full and any syscalls executed when the buffer is full are lost, compromising
the integrity and utility of the audit log. This problem is the main focus of Ellipsis.

1https://bitbucket.org/sts-lab/ellipsis

Manuscript submitted to ACM

https://bitbucket.org/sts-lab/ellipsis

4 Ayoosh Bansal, Anant Kandikuppa, Monowar Hasan, Chien-Ying Chen, Adam Bates, and Sibin Mohan

Table 1. RTS properties relevant to Ellipsis

Property Relevance to Ellipsis Sections

Periodic tasks Most RT tasks are periodically activated, leading to repeating behaviors. Ellipsis
templates describe the most common repetitions.

2.2.1, 3

Aperiodic
tasks

The second most common form of RT tasks, Aperiodic tasks also lead to repeating
behaviors, but with irregular inter-arrival times.

2.2.1, 3

Code Cover-
age

High code coverage analyses are part of existing RTS development processes, Ellipsis’
automated template generation adds minimal cost.

2.2.2, 9.5

Special Pur-
pose

RTS are special purpose machines, tasks are known at development i.e., templates
can be created before system deployment.

3

Temporal Pre-
dictability

A requirement for safety and correct functioning of RTS, naïvely enabling auditing
can violate this by introducing overheads and variability.

5.5, 9.3

Longevity Once deployed RTS can remain functional for years. Ellipsis’ can save enormous log
storage and transmission costs over the lifetime of the RTS.

5.4, 6

2.2 RTS Properties

Ellipsis leverages properties unique to RT environments, that we describe here. In contrast to traditional applications
where determining all possible execution paths is often undecidable, knowledge about execution paths is an essential
component of RT application development. RTS are special-purpose machines that execute well-formed tasksets to
fulfill predetermined tasks. RT Applications structure commonly involves repeating loops that are excellent targets
for conversion to templates. Various techniques are employed to analyze the tasksets with high code coverage e.g.,
worst-case execution time (WCET) analysis for real-time tasks [27, 48, 54, 71, 92, 96, 120]. All expected behaviors of the
system must be accounted for at design time in conjunction with the system designers. Any deviation is an unforeseen
fault or malicious activity, which needs to be audited in full detail. Table 1 contains a summary of RTS features and
constraints, with references to sections in this work that discuss, evaluate, or leverage these features. In this work we
show that applications from two different classes of RTS follow this model; a control application (Ardupilot [14]) and a
video analysis application (Motion [5]). We now discuss in further detail two RTS features that Ellipsis leverages.

2.2.1 Repetition of Sequences. In their seminal work on Intrusion Detection, Hofmeyr et al. [57] established that the
normal behavior of an application can be profiled as sequences of syscall. This works exceptionally well for RTS as
they feature limited tasks with limited execution paths on a system. Unlike general-purpose systems, RTS run limited
predefined tasks. The requirements of reliability, safety, and timing predictability imply that RTS have limited execution
paths which can be tested and analyzed to ensure the previously mentioned requirements. A recently published survey
of industry practitioners in RTS [9] shows that 82% of the RTS contained tasks with periodic activation. Periodically
activated tasks with limited execution paths will invariably lead to high repetitions of certain sequences. Yoon et al. [120]
demonstrated the existence of repeating syscall sequences in an RTS. The reliable repetition of behaviors has also led to
profile-driven techniques being successfully employed towards achieving predictable temporal behaviors in RTS [45].

2.2.2 Code Coverage. The survey [9] also noted that the five most important system aspects for industrial RTS were
Functional Correctness, Reliability and Availability, System Safety, Timing predictability, and System security. The
role of code coverage in software testing is well established [60, 113]. Prior works have established the correlation
between code coverage and reliability of software [34, 35, 40]. Software safety standards include structural code coverage
as a requirement [8, 24]. Timing predictability in RTS is ensured by coding standards, guidelines [54, 92, 105] and
Manuscript submitted to ACM

System Auditing for Real-Time Systems 5

worst-case execution time (WCET) analysis [48, 96]. Therefore, high code coverage is an integral component of the
RTS development process. Template generation for Ellipsis therefore does not introduce a significant additional burden.
Template sequences are determinable in the course of existing development processes for RTS.

2.3 Threat Model

We consider an adversary that aims to penetrate and impact an RTS through exfiltration of data, corruption of actuation
outputs, causing deadline violations, etc. This attacker may install modified programs, exploit a running process, or
install malware on the RTS to achieve their objectives. To observe this attacker, our system adopts an aggressive audit
configuration intended to capture all forensically-relevant events, as identified in prior works [44, 52, 72, 77, 85, 102, 116].2

We assume that the underlying OS and the audit subsystem therein are trusted. This is a standard assumption in the
system auditing literature [18, 52, 73, 79, 91]. Far from being impractical on RTS, prior works provide a secure kernel
that meets both the trust and temporal requirements for hosting Ellipsis in RT Linux [31, 37, 108, 109].

Ellipsis’ goal is to capture evidence of an attacker’s intrusion and activity without losing relevant information and
hand it off to a tamper-proof system. Although audit log integrity is an important security goal itself, it is commonly
explored orthogonally to other audit research due to the modularity of security solutions, e.g., [18, 85, 117]. Therefore,
we assume that once recorded to kaudit_buffer, attackers cannot compromise the integrity of audit logs. Finally, we
assume that the real-time applications can be profiled in a controlled benign environment prior to being the target of
attack, such as pre-deployment testing and verification as in prior work [121].

3 ELLIPSIS

The volume of audit events is the major limiting factor for auditing RTS. High event volume can result in event loss,
high log storage costs, and large maintenance overheads [76]. We present Ellipsis, an audit event reduction technique
designed specifically for RTS. Ellipsis achieves this through templatization of the audit event stream. Templates represent
learned expected behaviors of RT tasks, described as a sequence of syscalls with arguments and temporal profiles.3

These templates are generated in an offline profiling phase, similar to common RTS analyses like WCET [27, 69, 121]. At
runtime, the application’s syscall stream is compared against its templates; if a contiguous sequence of syscalls matches a
template, only a single record indicating the template match is inserted into the event stream (kaudit_buffer). Matched
syscalls are never inserted into the event stream, reducing the number of events generated by the auditing system.
While a sequence of audited syscall events is replaced by a single record, the relevant information is preserved (§4).

3.1 Model

Consider a system in which the machine operator wishes to audit a single RT task 𝝉 . An RT task here corresponds to a
thread in Linux systems, identified by a combination of process and thread ids. We can limit this discussion to a single
task, without losing generality, as Ellipsis’ template creation, activation, and runtime matching is independent for each
task. We modified Linux Audit to include thread ids in audit event records to support this independent handling.

RT tasks are commonly structuredwith a one-time init component and repeating loops. Let 𝒔𝒊 denote a syscall sequence
the task exhibits in a loop execution and 𝑵 the count of different syscall execution paths 𝜏 might take (i.e., 0 < 𝑖 ≤ 𝑁). A

2 Specifically, our ruleset audits execve, read, readv, write, writev, sendto, recvfrom, sendmsg, recvmsg, mmap, mprotect,
link, symlink, clone, fork, vfork, open, close, creat, openat, mknodat, mknod, dup, dup2, dup3, bind, accept, accept4,
connect, rename, setuid, setreuid, setresuid, chmod, fchmod, pipe, pipe2, truncate, ftruncate, sendfile, unlink, unlinkat,
socketpair, splice, init_module, and finit_module.

3 Template examples are available as Appendix A

Manuscript submitted to ACM

6 Ayoosh Bansal, Anant Kandikuppa, Monowar Hasan, Chien-Ying Chen, Adam Bates, and Sibin Mohan

Table 2. Notations

Symbol Description

S1, S2, S3 System Calls

𝑖𝑇𝑃𝐿 Intermediate Template, i.e., a template without temporal information

𝑇𝑃𝐿 − 𝑋 Template-X where 𝑋 ∈ N
Δ𝑖 Observed runtime for ith instance of the templatized task

𝑇𝑋 Temporal constraint of 𝑇𝑃𝐿 − 𝑋
x,{y} Unique state ID for Ellipsis FSA

x: number of system calls matched; y: set of potential template matches.

𝜏 A RT task

𝑠𝑖 𝑖 𝑡ℎ syscall sequence exhibited by 𝜏

𝑁 Count of possible 𝑠𝑖 for 𝜏 , 0 < 𝑖 ≤ 𝑁

𝑙𝑒𝑛(𝑠𝑖) number of syscalls in 𝑠𝑖

𝑝𝑖 probability of occurrence of corresponding 𝑠𝑖

template describes these sequences (𝑠𝑖), identifying the syscalls and arguments. As noted in Section 2.2, RT applications
are developed to have limited code paths and bounded loop iterations. Extensive analysis of execution paths is a standard
part of the RTS development process. Thus, for RTS, 𝑁 is finite and determinable. Let function 𝒍𝒆𝒏(𝒔𝒊) return the
number of syscalls in the sequence 𝑠𝑖 . Further, let 𝒑𝒊 be the probability that an iteration of 𝜏 exhibits syscall sequence 𝑠𝑖 .

3.2 Template Learning Phase

Templates are created during a predeployment learning phase. Identification of cyclic syscall behaviors has been addressed
in prior works [67, 77], using binary analysis, code annotations, stack analysis, or a combination. While any technique
that yields 𝑠𝑖 and 𝑝𝑖 can be employed here, including the prior mentioned ones, we developed an automated dynamic
analysis, leveraging RT task structure and Linux Audit itself. Applications are executed and audited in a benign
environment, as in prior work [120]. Stress tests and code coverage suits are ideal for this, to generate audit logs from
all recurrent code paths. These audit logs contain the syscall sequence that the application exhibits. The learning phase
duration is primarily dependent on the application’s test suite’s execution time and the number of times individual
tests may need to be run (§3.4). Subsequent sections describe the template creation process.

3.3 Sequence Identification

Given the audit logs from the application test suite execution, we can identify syscalls sequences and their probability
of occurrence. We observe that RT tasks typically end with calls to sleep or yield that translate to nanosleep and
sched_yield syscalls in Linux. Periodic behaviors can also be triggered by polling timerfds to read events from
multiple timers by using select and epoll_wait syscalls. We leverage these syscalls to identify boundaries of task
executions within the audit log and then extract sequences of syscall invocations. Figure 2 provides an overview of this
process. We also modified Linux Audit to include the Thread ID in log messages to disambiguate threads belonging to a
process. This first step yields the per-task syscall sequences exhibited by the application and their properties: length,
probability of occurrence, and arguments. These syscall sequences are then converted into intermediate templates,
each entry of which includes the syscall name along with the arguments. Intermediate templates are identical to final
Manuscript submitted to ACM

System Auditing for Real-Time Systems 7

Fig. 2. Ellipsis template creation. Syscalls are denoted by S1/S2.
Application is audited iteratively with Ellipsis to identify repeat-
ing syscall sequences, with each iteration using the intermediate
templates identified previously. Final iterations yield no new tem-
plates, but rather yield the task’s execution time profile (Δ𝑖), used
to generate the temporal constraint (𝑇1). Intermediate templates
enriched with temporal constraints are the final templates.

0,
{1,2}

1,
{1,2}

2,{2}

S1

S3
TPL-2

2,{1}
S2

TPL-13,{1}

3,{2}

S1

S1

Full
Log

Full
Log

Fig. 3. Runtime template matching as an FSA with states as
[syscalls matched count, {set of reachable templates}]. Syscall in-
vocations trigger state transitions. TPL-1 (S1, S2, S1) and TPL-2 (S1,
S3, S1) are shown as example. Template matches (TPL-1, TPL-2)
emit a single record, failure leads to a full log store. Completing
the template sequence and satisfying temporal constraints leads
to an accept state (TPL-1, TPL-2) emitting a single record. Any
divergence or failure causes Ellipsis to emit complete logs, shown
as dotted transitions. The FSA then returns to the initial state [0,
{1,2}] for the task to start capturing the next iteration.

templates, except that they do not have any temporal limits. Since audit events may be lost during this tracing, the
sequences identified at this stage may be incomplete. Therefore an iterative procedure is required to ensure that all
sequences exhibited by the application at runtime are identified by Ellipsis.

3.4 Iterative Procedure

Event loss may occur during the learning phase, i.e., before Ellipsis can be used to reduce the audit event volume.
Templates captured from such an audit log will be incomplete. An iterative process is required to capture complete
syscall sequences, as described by Algorithm 1. In each iteration, all previously identified intermediate templates are
loaded to memory (§3.7). Ellipsis uses these intermediate templates to reduce audit events (§3.8). Intermediate templates
do not have temporal information and therefore temporal constraint is assumed to be infinity. Parts of the audit trace
will be formed of records reduced by Ellipsis. This frees up auditing capacity (§5.3), leading to a reduction in the number
of audit records lost. In each iteration, therefore, additional intermediate templates (sequences) are identified, further
freeing up auditing capacity for the next iteration. This procedure terminates successfully when no audit events are
lost, but unsuccessfully when audit events are lost but no new sequences could be identified. At the end of this process,
we have a set of intermediate templates which correspond to all identified sequences.

3.5 Sequence Selection

A subset of intermediate templates is chosen to be converted to final templates. This choice is based on the trade-off
between the benefit of audit event volume reduction and the memory cost as defined later by (3) and (7), respectively.

Manuscript submitted to ACM

8 Ayoosh Bansal, Anant Kandikuppa, Monowar Hasan, Chien-Ying Chen, Adam Bates, and Sibin Mohan

Algorithm 1 Iterative Sequences Identification

1: 𝑖𝑇𝑃𝐿 ← {} ⊲ Initialize intermediate template set to empty
2: repeat
3: Clear templates from memory, audit stats, and audit logs ⊲ using auditctl and file truncation
4: Load current 𝑖𝑇𝑃𝐿 to memory ⊲ Described in Section 3.7
5: Run application test suite, while being audited with Ellipsis.
6: Wait till test suite finishes and kaudit_buffer is empty ⊲ using auditctl
7: 𝑙𝑜𝑠𝑡_𝑐𝑢𝑟 ← count of audit events lost ⊲ using auditctl
8: 𝑖𝑇𝑃𝐿_𝑐𝑢𝑟 ← new sequences from audit trace ⊲ Ellipsis reduces all previously identified sequences
9: 𝑖𝑇𝑃𝐿 ← {𝑖𝑇𝑃𝐿, 𝑖𝑇𝑃𝐿_𝑐𝑢𝑟 }
10: if 𝑙𝑜𝑠𝑡_𝑐𝑢𝑟 == 0 then
11: 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑑𝑜𝑛𝑒 ⊲ No loss so further iterations will not yield new patterns
12: else if 𝑙𝑜𝑠𝑡_𝑐𝑢𝑟 == 𝑙𝑜𝑠𝑡_𝑝𝑟𝑒𝑣 & 𝑖𝑇𝑃𝐿_𝑐𝑢𝑟 == {} then
13: 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑓 𝑎𝑖𝑙 ⊲ Stuck with log loss and no new iTPL to reduce loss further
14: else
15: 𝑙𝑜𝑠𝑡_𝑝𝑟𝑒𝑣 ← 𝑙𝑜𝑠𝑡_𝑐𝑢𝑟
16: end if
17: until 𝑟𝑒𝑠𝑢𝑙𝑡 == 𝑑𝑜𝑛𝑒 | |𝑟𝑒𝑠𝑢𝑙𝑡 == 𝑓 𝑎𝑖𝑙

The security tradeoff is minimal, as demonstrated in Section 4. Let’s assume 𝒏 sequences are chosen to be reduced
(0 ≤ 𝑛 ≤ 𝑁). As noted earlier, Ellipsis treats each task independently, the value of 𝑛 is also independent for each task.

3.6 Template Creation

For the next step, Figure 2 Temporal Profile, these 𝑛 templates are loaded and the application profiled again to
collect temporal profile for each template i.e., the expected duration and inter-arrival intervals for each template. The
intermediate templates are enriched with temporal information, yielding final templates. Templates are stored in the
form of text files and occupy negligible disk space, e.g., templates used for evaluation (§4.3.1) occupied 494 bytes. This
whole process is automated, given an application binary with necessary inputs, using the template creation toolset.1

3.7 Ellipsis Activation

We extend the Linux Audit command-line auditctl utility to transmit templates to kernel space. Once templates are
loaded, Ellipsis can be activated using auditctl to start reducing any matching behaviors. This extended auditctl

can also be used to activate/deactivate Ellipsis and load/unload templates, however, these operations are privileged,
identical to deactivating Linux Audit itself. System administrators can use this utility to easily update templates as
required, e.g., in response to application updates.

3.8 Runtime Matching

Given the template(s) of syscall sequences, an Ellipsis kernel module, extending from Linux Audit syscall hooks, filters
syscalls that match a template. The templates are modeled as a finite state automaton (FSA), implemented as a collection
of linked lists in kernel memory. While the RT task is executing, all syscall sequences allowed by the automaton are
stored in a temporary task-specific buffer. If the set of events fully describes an automaton template, Ellipsis discards
the contents of the task-specific buffer and enqueues a single record onto the kaudit buffer to denote the execution
of a templatized activity. Alternatively, Ellipsis enqueues the entire task-specific buffer to the main kaudit_buffer if
Manuscript submitted to ACM

System Auditing for Real-Time Systems 9

Table 3. Parameters from evaluation (§4.3.1)

Task Name 𝑁 𝐼 𝑙𝑒𝑛(𝑠𝑖) 𝑝𝑖 𝑓

arducopter 5 100 [14, 15, 17, 17, 18] [0.95, 0.02, 0.01, 0.01, 0.01] 679
ap-rcin 1 182 [16] [1] 2
ap-spi-0 5 1599 [1, 1, 1, 2, 2] [0.645, 0.182, 0.170, 0.001, 0.001] 0

(a) a syscall occurs that is not allowed by the automaton, (b) the template is not fully described at the end of the task
instance or (c) the task instance does not adhere to the expected temporal behavior of the fully described template. Thus,
the behavior of each task instance is reduced to a single record when the task behaves as expected. For any abnormal
behavior, the complete audit log is retained. Figure 3 demonstrates this procedure with simplified examples.

3.9 Audit Event Reduction

Let the task 𝜏 be executed for 𝑰 iterations and 𝒇 denote the number of audit events in init phase. The number of audit
events generated by 𝝉 when audited by Linux Audit (𝑬𝑨), when Ellipsis reduces 𝑛 out of total 𝑁 sequences (𝑬𝑬), and
the reduction (𝐸𝐴 − 𝐸𝐸) are given by

𝐸𝐴 = 𝐼 ∗ (∑𝑁
𝑖=1 (𝑝𝑖 ∗ 𝑙𝑒𝑛(𝑠𝑖))) + 𝑓 (1)

𝐸𝐸 = 𝐼 ∗ (∑𝑛
𝑖=1 𝑝𝑖 +

∑𝑁
𝑖=𝑛+1 (𝑝𝑖 ∗ 𝑙𝑒𝑛(𝑠𝑖))) + 𝑓 (2)

𝐸𝐴 − 𝐸𝐸 = 𝐼 ∗ (∑𝑛
𝑖=1 (𝑝𝑖 ∗ 𝑙𝑒𝑛(𝑠𝑖)) −

∑𝑛
𝑖=1 𝑝𝑖) (3)

Ellipsis’ Event reduction

Iterations

Audit events for n sequences

Ellipsis events for n sequences

As evident from (3), to maximize reduction, long sequences with large 𝑝𝑖 values must be chosen as the 𝑛 sequences
for reduction. RT applications, like control systems, autonomous systems, and even video streaming, feature limited
execution paths for the majority of their runtimes [64]. This property has been utilized by Yoon et al. in a prior
work [120]. Therefore, for RT applications the distribution of 𝑝𝑖 is highly biased i.e., certain sequences 𝑠𝑖 have a high
probability of occurrence. Table 3 provides example values for the parameters used, determined during the Sequence
Identification step in template creation for the later case study (§5).

3.10 Storage Size Reduction

Let 𝑩𝑨 denote the average cost of representing a syscall event in the audit log and 𝑩𝑬 denote the average cost of
representing Ellipsis’ template match record. Thus 𝐵𝐴 represents the average size over all events in the Linux Audit log,
whereas in Ellipsis syscall sequences that match a template will be removed and replaced with a template match event
of an average size 𝐵𝐸 . By design, 𝐵𝐸 <= 𝐵𝐴; 𝐵𝐸 is a constant 343 bytes, while 𝐵𝐴 averaged 527 bytes (1220 bytes max)
in our evaluation. Noting that the init events (𝑓) are not reduced by Ellipsis, the disk size reduction i.e., difference in
sizes of 𝝉 ’s audit log for Linux Audit (𝑳𝑨) and Ellipsis (𝑳𝑬) is:

𝐿𝐴 = 𝐼 ∗ (𝐵𝐴 ∗
∑𝑁
𝑖=1 (𝑝𝑖 ∗ 𝑙𝑒𝑛(𝑠𝑖))) + 𝑓 ∗ 𝐵𝐴 (4)

𝐿𝐸 = 𝐼 ∗ (𝐵𝐸 ∗
∑𝑛
𝑖=1 𝑝𝑖 + 𝐵𝐴 ∗

∑𝑁
𝑖=𝑛+1 (𝑝𝑖 ∗ 𝑙𝑒𝑛(𝑠𝑖))) + 𝑓 ∗ 𝐵𝐴 (5)

Manuscript submitted to ACM

10 Ayoosh Bansal, Anant Kandikuppa, Monowar Hasan, Chien-Ying Chen, Adam Bates, and Sibin Mohan

The reduction in log size is given by:

𝐿𝐴 − 𝐿𝐸 = I ∗ (𝐵𝐴 ∗
∑𝑛
𝑖=1 (𝑝𝑖 ∗ 𝑙𝑒𝑛(𝑠𝑖)) − 𝐵𝐸 ∗

∑𝑛
𝑖=1 𝑝𝑖) (6)

Log size reduction

Iterations

Audit log size for n sequences

Ellipsis log size for n sequences

From (3) and (6), Ellipsis’ benefits come from the audit events count and log size becoming independent of sequence
size (𝑙𝑒𝑛(𝑠𝑖)) for the chosen 𝑛 sequences, multiplied further by repetitions of these sequences (𝐼 ∗ 𝑝𝑖). Ellipsis behaves
identically to Linux Audit for any sequence that is not included as a template, i.e., 𝑖 ≥ 𝑛 + 1 in (2) and (5). The impact of
any inaccuracies in determining 𝑝𝑖 can be minimized by increasing 𝑛, the number of sequences converted to templates.

3.11 Memory Tradeoff

The tradeoff for Ellipsis’ benefits are computational overheads (evaluated in §5.6 and §7.6) and the memory cost of
storing templates (𝑴𝝉). Let 𝑴𝒇 𝒊𝒙𝒆𝒅 be the memory required per template, excluding syscalls, while 𝑴𝒔𝒚𝒔𝒄𝒂𝒍𝒍 be the
memory required for each syscall in the template. On 32 bit kernel𝑀𝑓 𝑖𝑥𝑒𝑑 = 116 and𝑀𝑠𝑦𝑠𝑐𝑎𝑙𝑙 = 56 bytes, determined
by sizeof data structures. As an example, 3 templates from evaluation occupied 2 KB in memory (Appendix A)

𝑀𝜏 = 𝑀𝑓 𝑖𝑥𝑒𝑑 ∗ 𝑛 +𝑀𝑠𝑦𝑠𝑐𝑎𝑙𝑙 ∗
∑𝑛
𝑖=1 𝑙𝑒𝑛(𝑠𝑖) (7)

For reference, the parameters for the application detailed in Section 4.3.1 are provided in Table 3. Complete templates
for the same can be found in Appendix A. The 3 templates used for the case study took 2 KB of memory space. It
should be noted that (7) does not consider the potential to reduce the kaudit_buffer size, decreasing the memory
space required for auditing. Section 5.3 evaluates the reduction in kaudit_buffer occupancy when using Ellipsis.

3.12 Extended Reduction Horizon

Until now we have limited the horizon of reduction to individual task loop instances. We can further optimize by
creating a single record that describes multiple consecutive matches of a template. This higher performance system
is henceforth referred to as Ellipsis-HP. When a Ellipsis-HP match fails, a separate record is logged for each of the
base template matches along with a complete log sequence for the current instance (i.e., the base behavior of Ellipsis).
Ellipsis-HP performs best when identical sequences occur continuously, capturing all sequence repetitions in one entry.
By design, event reduction for Ellipsis-HP is always better than or equal to Ellipsis. The memory and computational costs
of using Ellipsis-HP over Ellipsis are negligible. The potential drawback of Ellipsis-HP is in the increased uncertainty in
the timing for individual events, if the complete audit log needs to be reconstructed, as described in Section 4.2.

𝐸𝐵𝑒𝑠𝑡Ellipsis-HP = 𝑛 + 𝐼 ∗∑𝑁
𝑖=𝑛+1 (𝑝𝑖 ∗ 𝑙𝑒𝑛(𝑠𝑖)) + 𝑓 (8)

𝐸𝐴 − 𝐸𝐵𝑒𝑠𝑡Ellipsis-HP = I ∗ ∑𝑛
𝑖=1 (𝑝𝑖 ∗ 𝑙𝑒𝑛(𝑠𝑖)) − 𝑛 (9)

Log size reduction

Iterations

Audit log size for n sequences

𝐸𝐵𝑒𝑠𝑡
Ellipsis-HP log size for n sequences

Manuscript submitted to ACM

System Auditing for Real-Time Systems 11

Table 4. Evaluation and Analyses questions

Sections Question

4.1, 4.2 Does Ellipsis create new vulnerabilities allowing attackers to evade detection?
4.3, 4.4 Is Ellipsis and Auditing in general capable of detecting attacks on RTS?
5, 6 How effective is Ellipsis in reducing audit event generation for real-world RT applications?
7 Do Linux Audit and Ellipsis adhere to the temporal properties important to RTS?
8 Can the schedulability of RT tasks under audit be determined? What changes must be considered?

3.13 Temporal Constraints

RTS are sensitive to time intervals between events, thus, Ellipsis also considers temporal checks in the template matching
process (§3.6 and §3.8). Ellipsis-HP adds additional checks for inter-arrival times of different task instances. Note that
the prior discussion on log sizes ((3), (6) and (9)), assumes that temporal constraints are always met. The impact of
temporal constraints on log size is evaluated in Section 5.5.

3.14 Summary

Ellipsis leverages predictable benign behaviors and analyses of RT applications to limit the audit event volume generation.
We now evaluate and analyze Ellipsis, compared to Linux Audit, to answer the questions summarised in Table 4.

4 SECURITY ANALYSIS

The security goal of Ellipsis, indeed auditing in general, is to record all forensically relevant information, thereby
aiding in the investigation of suspicious activities. We now discuss the security implications of Ellipsis, demonstrating
that Ellipsis fulfills the same security role as Linux Audit, even improving upon it by reducing benign information,
simplifying the forensic analysis, and avoiding loss of records of malicious events.

4.1 Stealthy Evasion

If a malicious process adheres to the expected behavior of benign tasks, the associated logs will be reduced. The question,
then, is whether a malicious process can perform meaningful actions while adhering to the benign templates. If Ellipsis
exclusively matched against syscall IDs only, such a feat may be possible; however, Ellipsis also validates syscalls’
arguments and temporal constraints, effectively validating both the control flow and data flow before templatization, to
the extent possible using syscalls. Thus making it exceedingly difficult for a process to match a template while affecting
the RTS in any meaningful way. For example, an attacker might try to substitute a read from a regular file with a read
from a sensitive file; however, doing so would require changing the file handle argument, failing the template match.
Thus, at a minimum, Ellipsis provides comparable security to commodity audit frameworks and may provide improved
security by avoiding the common problem of log event loss. A positive side effect of Ellipsis is built-in partitioning of
execution flows, benefiting provenance techniques that utilize such partitions [67, 77, 78].

4.2 Information Loss

Another concern is whether Ellipsis templates remove forensically-relevant information. The following is an example
write as would be recorded by Linux Audit.

Manuscript submitted to ACM

12 Ayoosh Bansal, Anant Kandikuppa, Monowar Hasan, Chien-Ying Chen, Adam Bates, and Sibin Mohan

Table 5. Platform Setup

Platform Raspberry Pi 4 Model B [2] (RPi4)

RAM 4 GB

Kernel RT Linux [103] 4.19 from raspberrypi/linux [3], patched with Ellipsis

Kconfig Enabled CONFIG_PREEMPT_RT_FULL, CONFIG_AUDIT, CONFIG_AUDITSYSCALL

Performance and Iso-
lation

Power Management Disabled, CPU Frequency Governor Performance [70], All
kernel background tasks/interrupts to core 0 using the isolcpu kernel argument.

Audit Rules Audit rules for capturing syscall events were configured to match against the
evaluated application, i.e., background process activity was not audited.

kaudit_buffer size Set to 50K, unless otherwise specified. Larger values led to system panic/hangs.

type=SYSCALL msg=audit (1601405431.612391366:5893333): arch =40000028 syscall =4 per =800000

success=yes exit=7 a0=4 a1=126 ab0 a2=1 a3=3 items=0 ppid =1513 pid =1526 tid =1526 auid =1000

uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts0 ses=1 comm=" arducopter"

exe="/ home/pi/ardupilot/build/navio2/bin/arducopter" key=(null)

The record above, if reduced with Ellipsis and reconstructed using the Ellipsis log and templates, yields:

type=SYSCALL msg=audit ([1601405431.612391356 , 1601405431.612391367]:∅): arch =40000028

syscall =4 per =800000 success=yes exit=7 a0=4 a1=∅ a2=1 a3=∅ items=0 ppid =1513 pid =1526

tid =1526 auid =1000 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts0 ses=1

comm=" arducopter" exe="/ home/pi/ardupilot/build/navio2/bin/arducopter" key=(null)

∅ denotes values that could not be reconstructed and [min, max] denotes where a range is known but not the exact
value. Nearly all of the information in an audit record can be completely reconstructed, including (a) all audit events
executed by a task, in order of execution, (b) forensically relevant arguments. On the other hand, information not
reconstructed is (a) accurate timestamps, (b) a monotonically increasing audit ID, (c) forensically irrelevant syscall
arguments. The effect of this lost information is that fine-grained inter-task event ordering and interleaving cannot be
reconstructed. This loss of information is minimal and at worst increases the size of the attack graph of a malicious
event. It should be noted that the log reconstructed from Ellipsis-HP differs from Ellipsis in only one respect, i.e., the
timestamp range for reconstructed events for Ellipsis-HP is longer, due to the extended reduction horizon for Ellipsis-HP .
We now demonstrate Ellipsis’s ability to retain forensically relevant information.

4.3 Demonstration: Throttle Override Attack

4.3.1 Application Description. ArduPilot is an open-source autopilot application that can fully control various classes of
autonomous vehicles such as quadcopters, rovers, submarines, and fixed-wing planes [14]. It has been installed in over
a million vehicles and has been the basis for many industrial and academic projects [10, 21]. We chose the quadcopter
variant of ArduPilot, called ArduCopter, as it has the most stringent temporal requirements within the application suite.
ArduPilot periodically updates actuation signals that control the rotary speed of motors that power rotors. The periodic
updates are responsible for maintaining vehicle stability and responding, in real time, to any perturbations (e.g., wind).

The platform setup is described in Table 5. The RPi4 board was equipped with a Navio2 Autopilot hat [6] for
sensor/actuator interfaces. Among the syscalls observed in the trace of ArduPilot, we found that only a small subset of
Manuscript submitted to ACM

System Auditing for Real-Time Systems 13

syscalls were relevant to forensic analysis [44]: execve, openat, read, write, close and pread64. Upon running
the template generation script on the application binary, we obtained the most frequently occurring templates for
three tasks (𝑛 = 1, for each task), consisting of 14 write, 16 pread64 and 1 read, respectively. These templates include
expected values corresponding to the file descriptor and count arguments of the syscalls as well as temporal constraints.
Templates were loaded into the kernel when evaluating Ellipsis or Ellipsis-HP . Auditing was set up to audit invocations
of the syscalls made by the ArduPilot application as mentioned above. Complete templates are provided in Appendix A.

4.3.2 Attack Scenario. Let’s consider a stealthy attacker who wants to destabilize or take control of unmanned drones.
To achieve this, the attacker first gains control of a task on the system and attempts to override the control signals.
An actuation signal’s effect depends on the duration for which it controls the vehicle, therefore, naïvely overriding an
actuation signal is not a very effective attack as the control task may soon update it to the correct value, reducing the
attack’s effect. The attacker instead leverages side-channel attacks such as Scheduleak [33] during the reconnaissance
phase of the attack to learn when the control signals are updated. Armed with this knowledge, the attacker overrides the
actuation signals immediately after the original updates, effectively taking complete control, with little computational
overhead. Using tools provided with Scheduleak [33], a malicious task is able to override actuation signals generated by
ArduPilot. This setup is run for 250 seconds and audit logs are collected with Ellipsis.

4.3.3 Results. Overriding throttle control signals involves writing to files in sysfs. This attack behavior can be observed
in audit logs as sequences of openat, write and close syscalls. Combining templates with the obtained audit log
yields the attack graph in Figure 4a. Ellipsis correctly identifies that ArduPilot is only exhibiting benign behaviors,
reducing its audit logs. Ellipsis preserves detailed attack behaviors for the malicious syscall sequences. Ellipsis did not
lose audit events throughout the application runtime. In contrast, Linux Audit loses audit events (§5.2), due to buffer
overflows (§5.3), potentially losing critical forensic evidence. Linux Audit would also have captured the complete log
from the benign ArduPilot task, complicating the eventual forensic analysis.

4.3.4 Discussion. Scheduleak [33] invokes clock_gettime syscall frequently to infer task activation times. Such
syscalls are irrelevant for commonly used forensic analysis as they don’t capture critical information flows. Despite the
lack of visibility in the reconnaissance phase of the attack, auditing can capture evidence of attacker interference that
creates new information flows, as shown in Figure 4a. We have demonstrated that when a process deviates from the
expected behaviors, e.g., due to an attack, Ellipsis provides the same security as Linux Audit. Ellipsis all but eliminates
the possibility of losing portions of the malicious activity due to kaudit buffer overflow. However, it is impossible to
guarantee that no events will ever be lost with malicious activities creating unbounded new events. Ellipsis improves
upon Linux Audit by (a) freeing up auditing resources which can then audit malicious behaviors, and (b) reducing the
audit records from benign activities that must be analyzed as part of forensic provenance analysis. Stealthy attacks like
this also show the role of auditing in improving vulnerability detection and forensic analysis on RTS.

4.4 Demonstration: Data Exfiltration Attack

4.4.1 Application Description. Motion [5] is a soft real-time video analysis application. It monitors camera images
and detects motion by tracking pixel changes between consecutive image frames. It is primarily used for surveillance
and stores images when movement is detected. Images are stored at a location specified by the system administrator.
Using the platform setup described in Table 5, we ran Motion v4.3.2 using a webcam as a video source. While not
commonly considered forensically relevant, we include ioctl, rt_sigprocmask and gettimeofday in our audit

Manuscript submitted to ACM

14 Ayoosh Bansal, Anant Kandikuppa, Monowar Hasan, Chien-Ying Chen, Adam Bates, and Sibin Mohan

basharducopter

/sys/.../pwm0/duty_cycle

pwm_attackbash

/sys/.../pwm1/duty_cycle

(a) (§4.3) Throttle Override Attack

bash motion /images

/tmp/dev/video0

(b) (§4.4) Data exfiltration attack

Fig. 4. Attack graphs created using Ellipsis audit logs.

ruleset as these syscalls are used to capture frames from video devices and maintain video frame rates. By running the
template generation tools we obtained two templates that describe how Motion (i) captures an image frame and (ii)

captures an image frame with movement and saves it to the file system.

4.4.2 Attack Scenario. The attacker inserts malicious code into the victim application to save images to an attacker-
controlled location when motion is detected, as shown in Figure 4b. The attacker can exploit another process running on
the system to exfiltrate these images out of the system at a later point in time, successfully leaking sensitive information.
Both Motion and the malicious application are audited by Ellipsis for 5 minutes. We introduce movement in the camera’s
field of view to trigger image stores. Images get stored in both benign and malicious locations in the system. The attack
can be realized using the following code snippet, developed by Yoon et al. [120] :

const char* orig_target_dir = cnt ->conf.target_dir;

cnt ->conf.target_dir = "/tmp";

event(cnt , EVENT_IMAGE_DETECTED , &cnt ->imgs.img_ring[cnt ->imgs.img_ring_out], NULL , NULL ,

&cnt ->imgs.img_ring[cnt ->imgs.img_ring_out]. timestamp_tv);

cnt ->conf.target_dir = orig_target_dir;

4.4.3 Results. Ellipsis correctly reduces audit logs that correspond to the capture of image frames where motion is not
detected because that behavior matches the templates and remains unchanged in the malicious application. As the
attacker inserts code to copy image frames describing movement, Ellipsis observes additional occurrences of openat,
write and close syscalls that differ from the behavior described by the templates, therefore retaining complete audit
logs generated in response to observed movement.

4.4.4 Discussion. Since the attack continued throughout the experiment, we observe only a 25% reduction in audit log
size with Ellipsis compared to Linux Audit when the same number of images are written to disk. However, if the attack
was made stealthier by selectively exfiltrating images of interest, we would have observed close to regular levels of
reduction, i.e., ≈ 90% (§6). We also evaluated this stealthier version of the attack where the attackers only switch the
destination directory for a brief time to hide evidence of malicious activity. As motion detection drives the creation of
images on disk, it may not be immediately apparent that an attack has occurred without observing audit logs. Ellipsis
compares syscall arguments against expected values and hence can identify changes to the filename argument passed
to the openat system call in the attack trace.
Manuscript submitted to ACM

System Auditing for Real-Time Systems 15

4.5 Summary

Owing to the rigorous syscall order and argument checking, Ellipsis captures the same information as lossless auditing
by Linux Audit. Its audit event volume reduction does not lose relevant information, rather reducing the benign
activity records helps avoid loss of records of malicious activity. The reduced audit log volume also simplifies eventual
forensic analysis. However, it should be noted that Ellipsis’s security goal is to match the protection and forensic
analysis capabilities provided by Linux Audit. Any malicious attacks that evade Linux Audit, evade Ellipsis too. Any
forensically relevant information, not expressed by audit events, is not recorded by Linux Audit or Ellipsis alike. Having
established Ellipsis’ security impacts, we now present case studies, using applications i.e., ArduPilot (§5) and Motion (§6),
investigating in detail the audit record volume reduction and overheads of Ellipsis.

5 CASE STUDY: ARDUPILOT

5.1 Application Description

We use the same setup as described in Table 5 and Section 4.3.1. Additionally, we instrumented the application for
measuring the runtime overheads introduced by auditing. Among the seven tasks spawned by ArduPilot, we focus
primarily on a task named FastLoop for evaluating temporal overheads as it includes the stability and control tasks that
need to run at a high frequency to keep the QuadCopter stable and safe.

5.2 Audit Completeness

Experiment. We ran the application for 100K iterations at task frequencies of 100 Hz, 200 Hz, 300 Hz and 400 Hz4,
measuring audit events lost. The fast dynamics of a quadcopter benefit from the lower discretization error in the
ArduPilot’s PID controllers at higher frequencies [110] leading to more stable vehicle control.

Observations. Figure 5 compares the log event loss for Linux Audit, Ellipsis, and Ellipsis-HP across multiple task
frequencies. We observe that Linux Audit lost log events at all task frequencies above 100 Hz. In contrast, Ellipsis and
Ellipsis-HP did not lose the audit event log at any point in the experiment.

Discussion. Because this ArduCopter task performs critical stability and control functions, reducing task frequency to
accommodate Linux Audit may have considerable detrimental effects. Further investigation (§5.3) revealed that Linux
Audit dropped log events due to kaudit buffer overflow, despite the buffer size being 50K. In contrast, Ellipsis can
provide auditing for the entire frequency range without suffering log event loss.

5.3 Audit Buffer Utilization

Experiment. The size of the kaudit buffer is determined by a “backlog limit" configuration, that controls the number of
outstanding audit messages allowed in the kernel [4]. The default configuration is 8192 but as noted before (Table 5)
we set it to 50K. The kaudit_buffer state was sampled periodically, once every 2 seconds, by querying the audit
command-line utility auditctl during the execution of the application for 100K iterations. Figure 6 shows the comparison
of the percentage utilization of the audit buffer by Linux Audit, Ellipsis, and Ellipsis-HP over time.

Observations. From Figure 6, we see that for Linux Audit, the utilization of the kaudit_buffer rises quickly and
remains close to 100% for the majority of the runtime, resulting in loss of audit messages, as measured earlier (§5.2). In

4Frequency values are chosen based on application support: https://ardupilot.org/copter/docs/parameters-Copter-stable-V4.1.0.html#sched-loop-
rate-scheduling-main-loop-rate

Manuscript submitted to ACM

https://ardupilot.org/copter/docs/parameters-Copter-stable-V4.1.0.html#sched-loop-rate-scheduling-main-loop-rate
https://ardupilot.org/copter/docs/parameters-Copter-stable-V4.1.0.html#sched-loop-rate-scheduling-main-loop-rate

16 Ayoosh Bansal, Anant Kandikuppa, Monowar Hasan, Chien-Ying Chen, Adam Bates, and Sibin Mohan

100 200 300 400
Task Frequency (Hz)

0

50 k

100 k

150 k

200 k

250 k
Au

di
t L

og
s L

os
t

Linux Audit
Ellipsis
Ellipsis-HP

Fig. 5. (§5.2) Number of audit events lost vs. frequencies of the
primary loop in ArduPilot, for 100K iterations. The frequency
of the Fast Loop task is varied from 100 Hz to 400 Hz and the
number of logs lost are plotted. Ellipsis and Ellipsis-HP suffer no
log loss at any frequencies and hence their lines overlap exactly
with the X-axis.

0 50 100 150 200 250
Execution Time (s)

0%

20%

40%

60%

80%

100%

Au
di

t B
uf

fe
r U

til
iza

tio
n

Linux Audit Ellipsis Ellipsis-HP

Fig. 6. (§5.3) Audit buffer utilization. Additional red annotations
signify times when the buffer is filled. Ellipsis and Ellipsis-HP
did not use more than 2% buffer space.

contrast, Ellipsis and Ellipsis-HP ensure that the buffer utilization remains negligible throughout the execution. As noted
before (Table 5), the buffer size is already set to the largest value the platform can support without panics or hangs.

Discussion.When the kaudit_buffer is full, new audit messages are lost; hence, to ensure that suspicious events
are recorded, it is essential that the buffer is never full. Ellipsis can keep the buffer from overflowing by reducing the
number of audit logs being generated and thus reducing the number of outstanding audit logs buffered in the system.
The variations that we see in the plots can be attributed to the scheduling of the non-real-time kauditd thread that is
responsible for sending the outstanding audit messages to user space for retention on disk. We observe that the backlog
builds with time when kauditd isn’t scheduled and drops sharply when kauditd eventually gets CPU time.

However, there are two limitations to using auditctl to estimate memory usage. First, kaudit_buffer size does not
consider the additional memory used by Ellipsis and Ellipsis-HP to maintain templates in memory and perform runtime
matching. Manual calculations yielded a memory overhead of less than 100 KB or 1 % of the buffer size. Second, the
relatively slow sampling rate of 0.5 Hz can miss transient changes in buffer utilization. auditctl reports buffer occupancy
at the moment it is invoked. However, running auditctl at a higher frequency leads to changes in the application profile.
So we ran further experiments to determine the minimum kaudit_buffer size with which Ellipsis and Ellipsis-HP

can still achieve complete auditing. These further experiments are free from any sampling limitation. We find that a
buffer of 2.5K for Ellipsis and 1.5K for Ellipsis-HP was enough to support lossless auditing under normal operation.
This reduced memory requirement is valuable for RTS that run on resource-constrained platforms. The reduced time
that the buffer holds audit logs, reduces the attack window for recently identified race condition attacks on the audit
buffer [86]. While the buffer utilization under normal operation is vastly reduced, the buffer limit should still be kept
larger than the observed minimum utilization to capture anomalous behavior without loss.

Manuscript submitted to ACM

System Auditing for Real-Time Systems 17

101 102 103 104 105

Iterations

0

200 M

400 M

600 M

800 M

1 G

Au
di

t L
og

 S
ize

 (b
yt

es
)

Linux Audit
Ellipsis
Ellipsis-HP
Linux Audit Lossless

Fig. 7. (§5.4) Total size on disk of the audit log (Y-axis), captured
for different numbers of iterations (X-axis). The size of the log is
measured as file size on disk in bytes. 105 iterations take ≈ 250
seconds to complete. For Linux Audit, we measure the actual
size of the log on disk albeit logs are lost. Linux Audit Lossless
provides an estimate of the size of the log if the auditing was
lossless.

Ellipsis Ellipsis-HP
Audit System

0

100 M

200 M

300 M

400 M

Au
di

t L
og

 S
ize

 (b
yt

es
)

Temporal Constraint Policy
 +
 + 2

 + 3
 + 4

max
none

89%

78%

67%

56%

Lo
g

Re
du

ct
io

n

Fig. 8. (§5.5) Log size (Y-axis left) under varying temporal con-
straint policies. The right Y axis shows the % reduction in log
size compared to Linux Audit. 𝜇 + 4𝜎 covers 99.5% of the total
105 iterations. none policy result herer is same as 105 results in
Figure 7.

5.4 Audit Log Size Reduction

Experiment. We ran the ArduCopter application over multiple iterations in the 10 to 100K range to simulate application
behavior over varying runtimes. For each iteration count, we measure the size of the disk of the recorded log.

Observations. Figure 7 compares the storage costs in terms of file size on disk in bytes. The storage costs for all
systems over shorter runs were found to be comparable, as the cost of auditing the initialization phase of the application
(𝐵𝐴 ∗ 𝑓) tends to dominate over the periodic loops. Over a 250 second runtime (105 iterations) the growth of log size in
Ellipsis was drastically lower compared to vanilla Linux Audit, with storage costs reducing by 740 MB, or 80%, when
using Ellipsis. Ellipsis-HP provides a more aggressive log size reduction option by lowering storage costs by 860MB, or
93%, compared to Linux Audit. Linux Audit Lossless estimates the log size had Linux Audit not lost any log events using
the number of logs lost and the average size of each log entry.

Discussion. The observations line up with our initial hypothesis that the bulk of the audit logs generated during a
loop iteration would exactly match the templates. Thus, in Ellipsis by reducing all the log messages that correspond to a
template down to a single message, we see a vast reduction in storage costs while ensuring the retention of all the
audit data. Ellipsis-HP takes this idea further by eliminating audit log generation over extended periods of time if the
application exhibits expected behaviors only. For RTS that are expected to run for months or even years without failing,
these savings are crucial for continuous and complete security audit of the system.

5.5 Temporal Constraint Policy

Experiment. We explore here the impact of different temporal constraint policies. Temporal constraints are applied,
intra-task, for Ellipsis and additionally inter-task for Ellipsis-HP . While the constraint values on expected runtimes
and expected inter-arrival times of task instances are learned and applied separately for each task, a common policy
can be enforced. For example the policy max implies that all timing constraints are set to the maximum value that
was observed for them during the learning phase. Other policies explored in this experiment are based on the average

Manuscript submitted to ACM

18 Ayoosh Bansal, Anant Kandikuppa, Monowar Hasan, Chien-Ying Chen, Adam Bates, and Sibin Mohan

Unaudited Linux Audit Ellipsis Ellipsis-HP Ellipsis NR
Scenarios

200

400

600

800

1000

1200

1400

Ex
ec

ut
io

n
Ti

m
e

(
s)

Fig. 9. (§5.6) Comparison of runtime overheads of ArduPilot main loop. The task period and deadline is 2500 𝜇𝑠 . Ellipsis NR (No
Reduction) refers to a forced scenario where each template match fails, leading to no log reduction.

(𝜇) and standard deviation (𝜎) of the time intervals observed during the learning phase. The none policy disables all
temporal constraints and represents the best case in this experiment.

Observations. Figure 8 shows the impact of different temporal constraint policies on log size. With more stringent
timing constraints, fewer task instances are observed to adhere to constraints leading to an increase in log size. max

and none policy yield the same log size, which is expected given that temporal determinism is a design feature of RTS.
Discussion. The timing constraints are decided based on the observed values from the learning phase. Learning phase

behavior is considered correct as this phase is a controlled execution. Hence Ellipsis should be used at runtime to record
unexpected behaviors, i.e., not seen during the learning phase, while eliminating audit logs for expected behaviors. The
policies max and 𝜇 + 4𝜎 most closely correspond with this. Further is it notable that since max and none policy yielded
almost the same log size, the max constraint provided temporal violation checks with negligible cost.

5.6 Runtime Overheads

Experiment. This evaluation measures the execution time in microseconds (𝜇𝑠), for the Fast Loop task of ArduPilot,
for 1000 iterations, under various auditing setups. The small number of iterations kept the generated log volume
within kaudit_buffer capacity, avoiding overflows and audit events loss in any scenario. This avoids polluting the
overhead data with instances of event loss. The time measurement is based on the monotonic timer counter. This process
was repeated 100 times to capture the distribution of these measurements over longer application runs. Ellipsis and
Ellipsis-HP refers to the normal execution of the application with their respective reduction techniques. To evaluate the
absolute worst case for Ellipsis, a synthetic worst-case Ellipsis NR (No Reduction) is also included. In Ellipsis NR, the last
syscall in each template is manually modified to an invalid syscall. All syscalls, before the last, match normally. The last
syscall match, however, always fails, due to the modification. Therefore, all additional overheads to match a template
are incurred, without any eventual gain of successful event reduction. Ellipsis NR is also the worst case for Ellipsis-HP .

Observations. Figure 9 shows the distribution of 100 execution time samples for each scenario. Ellipsis, Ellipsis-HP ,
and Ellipsis NR have nearly the same overhead as Linux Audit. On average, Ellipsis’s overhead is 0.93x and Ellipsis-HP’s
overhead is 0.90x of Linux Audit. The observed maximum overheads show a greater improvement. Ellipsis’s observed
Manuscript submitted to ACM

System Auditing for Real-Time Systems 19

Table 6. Motion Application Log Reduction for different configurations

Index Input Detection Application Logging Syscall Rate Linux Audit Log Size Ellipsis Log Size Reduction

1 Motion Disabled Verbose 48.2 / s 7.6 MB 0.19 MB 97.55 %
2 Still Disabled Verbose 48.0 / s 7.6 MB 0.24 MB 96.80 %
3 Motion Enabled Verbose 44.2 / s 6.9 MB 0.29 MB 95.83 %
4 Motion Disabled Limited 33.2 / s 5.4 MB 0.26 MB 95.21 %
5 Still Disabled Limited 27.6 / s 4.5 MB 0.25 MB 94.38 %
6 Motion Enabled Limited 29.7 / s 4.8 MB 0.41 MB 91.55 %
7 Still Enabled Verbose 20.9 / s 3.2 MB 0.30 MB 89.83 %
8 Still Enabled Limited 8.4 / s 1.3 MB 0.24 MB 81.44 %

maximum overhead is 0.87x and Ellipsis-HP’s 0.70x of Linux Audit. Ellipsis NR shows a 1.05x increase in average
overhead and 1.07x increase in maximum observed overhead compared to Linux Audit.

Discussion. Ellipsis adds additional code to syscall auditing hooks, which incurs small computational overheads.
When template matches fail (Ellipsis NR), this additional overhead is visible, although the overhead is not significantly
worse than the baseline Linux Audit. However, in the common case where audit events are reduced by Ellipsis, this
cost is masked by reducing the total amount of log collection and transmission work performed by Linux Audit. This
effect is further amplified in Ellipsis-HP owing to its greater reduction potential (§5.4). Thus, Ellipsis’s runtime overhead
depends on the proportion of audit information reduced in the target application. Thus, while reducing the runtime
overhead of auditing is not Ellipsis’ primary goal, it nonetheless enjoys a modest performance improvement by reducing
the total work performed by the underlying audit framework.

5.7 Summary of Results

Ellipsis provides complete audit events retention while meeting temporal requirements of the ArduPilot application,
with significantly reduced storage costs. Ellipsis-HP improves this further. The temporal constraint allows additional
temporal checks, detecting anomalous latency spikes with effectively no additional log size overhead during normal
operation. Under normal operation, Ellipsis and Ellipsis-HP also reduce the computational overheads of auditing. Linux
Audit and Ellipsis’ synchronous overheads, which can potentially interfere with temporal properties important to RTS,
are analyzed in detail in Section 7.

6 CASE STUDY: MOTION

6.1 Application Description

We use the same setup as described in Table 5 and Section 4.4.1, equipped with a camera [13]. Motion [5] is a soft real-
time video analysis application where the application execution paths and behavior vary depending on configuration
and inputs. Motion application detects movement in camera inputs and saves images when movement is detected within
frames. We point a camera to a screen showing a still image (Input = Still) or a video5 with random motion (Input =
Motion). Motion’s behavior is determined via its configuration file. emulate_motion when set to on, it causes an image to
be saved at a fixed rate of 2 Hz. When emulate_motion is set to off, an image is stored only when motion is detected in
the input stream. Thus Motion Detection is Enabled when emulate_motion=off and Disabled when emulate_motion=on.
Application logging verbosity is set to minimum level for Limited and maximum level for Verbose.

5https://www.youtube.com/watch?v=cElhIDdGz7M

Manuscript submitted to ACM

https://www.youtube.com/watch?v=cElhIDdGz7M

20 Ayoosh Bansal, Anant Kandikuppa, Monowar Hasan, Chien-Ying Chen, Adam Bates, and Sibin Mohan

6.2 Audit Log Size Reduction

Experiment. In this experiment, we run Motion with varying configurations and report the log reduction percentage.
For each configuration, green colored option increases execution paths variability, while red colored option decreases
the variability. For each combination templates are learned over a 120 second execution. The application is then audited
with Linux Audit and Ellipsis for 300 seconds each.

Observations.We provide the rate of audited syscall events and size on disk for audit logs of both Linux Audit and
Ellipsis with the log size reduction percentage in Table 6. Reduction is the percentage reduction in log size generated by
Ellipsis from that generated by Linux Audit. In most cases, a log reduction of > 90% is achieved. The lowest reduction
occurs when the application only processes the camera feed, never saving any images. The resultant log, with a low
number of syscalls and lowest size, contains disproportionately high events from the setup phase of the application,
leading to a lower reduction by Ellipsis, which is still quite high at 81.44%. We also experimented with a doubled rate of
storing images (4 Hz) but no differences were observed, as is expected. Log loss was not observed in any scenario.

Discussion. Ellipsis achieves high audit event and log reduction even when the application can have variable execution
paths, 𝑁 = 26 for this evaluation. The only requirement is that the execution paths also be encountered in the template
generation step. The properties of repeating execution paths, shared by ArduPilot and Motion are present across a vast
majority of RT applications and thus Ellipsis can be beneficially used to audit them.

7 SYNCHRONOUS OVERHEAD ANALYSIS

We now analyze the auditing overhead added to each syscall, i.e., Figure 1 2 , 3 , 4 . The primary purpose of this
analysis is to determine if these synchronous overheads violate properties important to RTS, e.g., execution time
variability, resource contention, and overhead scaling.

7.1 Setup

The evaluation platform with static configurations is detailed in Table 5. We configured audit rules to only match
the applications we are running, i.e., background process activity was not audited. Buffer size is set to 50K to avoid
overflows, however, in some evaluations smaller buffer sizes are used. The values and reasoning are explained where
applicable. isolcpu kernel argument is used to remove background activity from interfering with the evaluation
applications. However, auditing background daemons, kauditd and auditd are scheduled on the same cores as the
evaluation application where asynchronous kaudit_buffer drainage is part of the evaluation. Due to the large number
of data points recorded, we show the distribution of latency values as BoxenPlots [56].

Since Linux Audit and Ellipsis share much of their infrastructure, we focus primarily on Linux Audit here, evaluating
Ellipsis only where differences exist. For Ellipsis we evaluate two configurations, the best case of Ellipsis-HP , named
Ellipsis B, where all reduction attempts succeed, and the worst case Ellipsis NR where all reduction attempts fail, as
also in Section 5.6. Since the success of Ellipsis is based on how predictable the execution paths of the taskset are, in RTS,
Ellipsis performs closer to Ellipsis B than Ellipsis NR, as evidenced by high reduction percentages in Sections 5.4 and 6.2.

7.2 Benchmarks

(a) 𝜇 − 𝑏𝑒𝑛𝑐ℎ. We execute a microbenchmark to observe variations in syscall execution time in the presence of external
factors such as auditing, RT scheduling priorities, background stress, and parallel execution. We primarily use getpid
syscall, a low latency non-blocking syscall. Since the goal of this analysis is to measure the properties of auditing
Manuscript submitted to ACM

System Auditing for Real-Time Systems 21

baseline audit
RT+audit filtered

Ellipsis-B
Ellipsis-W

Scenario

0

20

40

60

80

100

La
te

nc
y

(
s)

Fig. 10. Latency of getpid for various auditing scenarios.

close openat read write pread
Syscalls

0

20

40

60

80

100

La
te

nc
y Audited

False
True

Fig. 11. Execution times of various syscalls, when audited and not.

hooks in the syscall execution path, it is necessary to minimize the latency of the syscall itself. Other syscalls were also
evaluated to ensure the generality of observations as shown in Figure 11.� �
1 for (i = 0 ; i < 1 0 0 0 ; i ++) {
2 c l o c k _ g e t t ime (CLOCK_MONOTONIC , s t a r t _ d a t a) ;
3 s y s c a l l () ; / / R e p l a c e d wi th s p e c i f i c s y s c a l l s
4 c l o c k _ g e t t ime (CLOCK_MONOTONIC , s t o p_d a t a) ;
5 / / Get l a t e n c y o f r e a d i n g t h e t im e r .
6 c l o c k _ g e t t ime (CLOCK_MONOTONIC , emp ty_ s t a r t) ;
7 c l o c k _ g e t t ime (CLOCK_MONOTONIC , empty_stop) ;
8 l a t e n c y = t im e s p e c _ s u b t r a c t (s t a r t _ d a t a , s t o p _d a t a) − t im e s p e c _ s u b t r a c t (empty_s t a r t , empty_stop) ; }� �

(b) Cyclictest. Cyclictest [104] measures the latency between a thread’s scheduled and actual wake-up time. These
threads only use clock_gettime and clock_nanosleep syscalls, the latter of which is added to auditing rules.

(c) Stress. Stress6 application creates computational, file io, and virtual memory loads on the system. We audit the
sync, mmap2 and munmap syscalls used by this application.

(d) Scaling. We use synthetic tasksets to show that Ellipsis’ overhead per syscall scales independent of the size of the
template. The application setup is described in detail in Section 7.6.

7.3 Latency per Syscall

Experiment. We measure here the auditing overhead to a single syscall. Figure 10 shows the latency to execute the
𝜇−𝑏𝑒𝑛𝑐ℎ issuing a getpid syscall. Each column shows the distribution of getpid execution latency over 1000 iterations.
The baseline scenario has auditing disabled and no other application running. For the audit scenario, the baseline is
repeated but the benchmark application is under audit with Linux Audit. For the RT+audit scenario, we execute the
previous scenario with the benchmark application running at an RT priority. In the filtered scenario, the benchmark
application is still under audit but getpid is no longer in the auditing filters. Ellipsis B and Ellipsis NR (§7.1) are
equivalent to RT+audit, with auditing system changed. Figure 10 shows the results of this evaluation. Figure 11 shows
the latencies for baseline (Audited = False) and RT + audit (Audited = True) scenarios for different syscalls.

Observations: The observed maximum overhead was just under 100 𝜇s (audit), reducing to 60 𝜇𝑠 when the application
under audit is assigned RT priority. The overhead of auditing is limited to only the syscalls being audited.

6https://packages.ubuntu.com/bionic/stress

Manuscript submitted to ACM

https://packages.ubuntu.com/bionic/stress

22 Ayoosh Bansal, Anant Kandikuppa, Monowar Hasan, Chien-Ying Chen, Adam Bates, and Sibin Mohan

1 2 3 4
Thread Count

0

20

40

60

80

100

La
te

nc
y

(
s)

Fig. 12. Latency of a syscall execution with same priority parallel threads.

audit stress
RT+audit+stress

Scenario

0

20

40

60

80

100

La
te

nc
y

(
s)

Fig. 13. The overhead of auditing getpid with stress.

No Stress
Stress

Stress Audited
0

20
40
60
80

100
120
140
160

In
te

rru
pt

 L
at

en
cy

 (
s)

Cyclictest

No Stress
Stress

Stress Audited

Cyclictest Linux Audit

No Stress
Stress

Stress Audited

Cyclictest Ellipsis B

No Stress
Stress

Stress Audited

Cyclictest Ellipsis NR

Fig. 14. Interrupt latency from Cyclictest. Cyclictest is run for 5 min with 1 ms interrupt intervals, at high priority, under different
auditing conditions. Background priority Stress (§7.2) status is indicated by X-Axis.

The overheads for different syscalls vary due to differences in auditing work for each syscall, e.g., openat creates a
new access interface for the application, requiring more audit information to be recorded. Ellipsis NR behaves similarly
to Linux Audit, while Ellipsis B shows significant overhead reduction.

7.4 Resource Contention

Experiment. Auditing introduces a resource shared among the RT tasks being audited, the kaudit_buffer, protected
by a spinlock. Parallel accesses can lead to contention and blocking, even between tasks with the same RT priority.
To test the presence of contention we run the 𝜇 − 𝑏𝑒𝑛𝑐ℎ issuing getpid syscalls. While measuring the latency of one
thread, we introduce an increasing number of additional threads running the same 𝜇 − 𝑏𝑒𝑛𝑐ℎ at the same RT priority.
The threads are synchronized via a barrier to start executing syscalls at the same time. 𝜇 − 𝑏𝑒𝑛𝑐ℎ is a tight loop that
runs a single getpid syscall in each thread, hence ruling out the cache or memory bandwidth as sources of contention.

Observations: The execution times for the syscalls from the thread under observation are shown in Fig. 12. In the
average case, we observe only a small difference in the latency of getpid regardless of the parallel workloads. While
the observed worst-case overhead is greater with 3 or 4 threads, it is still under 100 𝜇s even when the tasks on all 4
cores are being audited. Delays due to contention would occur if multiple threads try to access the spinlock at the same
time; but even with the fast getpid call the threads minimally contend on the spinlock. This result intuitively follows
as the shared spinlock covers a small critical section containing fast pointer manipulations only, making contention
uncommon even in this unfavorable scenario with repeated calls to a fast syscall. For brevity and because Ellipsis does
not modify this record insertion behavior, only volume, Ellipsis is not evaluated separately here.
Manuscript submitted to ACM

System Auditing for Real-Time Systems 23

7.5 Priority Scheduling and Blocking

Experiment. An important concern is that a low-priority task’s usage of the auditing system could block a higher-priority
task by virtue of shared usage of the auditing framework. To investigate this, we run cyclictest (§7.2), at high priority,
under different auditing and background Stress (§7.2) conditions. In Figure 14, Cyclictest is the baseline, followed by
Cyclictest being audited by Linux Audit, Ellipsis B, and Ellipsis NR. Stress application state is noted in the X-Axis, being
absent, present, and present + audited by Linux Audit, respectively. Ellipsis does not introduce any additional shared
resources and is hence not used to audit the Stress. Each column shows the distribution of interrupt latency as reported
by cyclictest. A similar evaluation for 𝜇 − 𝑏𝑒𝑛𝑐ℎ, for Linux Audit only, is shown in Figure 13.

Observations: From Figure 14 it is evident that the impact of the Stress application on cyclictest’s interrupt latency
is not affected by the Stress application being audited. Therefore we can conclude that auditing itself is not creating
any significant new blocking of the high-priority cyclictest. This is an expected, albeit reassuring, result because the
insertion of new events into the kaudit buffer does not block (§7.4) and audit daemons are not run at RT priority.
Additionally, Ellipsis NR again performs the same as Linux Audit while Ellipsis B has significantly reduced overhead.

7.6 Synthetic Tasks: Overhead Scaling

Experiment. Because Ellipsis adds template matching logic in the critical execution path of syscalls, a potential concern is
the overhead growth for tasks with long syscall sequences. In this experiment, we measure execution time for tasks that
execute varying counts of getpid syscalls (10, 20, 30 ... 300). getpid is a low latency non-blocking syscall, which allows
us to stress-test the auditing framework. As the max template length (i.e., syscall count) observed in real application
loops was 29, we analyze workloads of roughly 10 times that amount, i.e., 300. The execution time for each task is
measured 100 times. Temporal constraints are not used. Since the tasks have a single execution path i.e., a fixed count
of getpid syscalls, Ellipsis’ audit events reduction always succeeds. For Ellipsis NR (No Reduction) we force template
matches to fail at the last entry (same as §5.6). This represents the worst-case scenario.

Observations. Figure 15 shows the average syscall response time as the number of syscalls in the task loop increases.
The primary observation of interest is that the time to execute a syscall is roughly constant, independent of the number
of syscalls in the task and template. The higher value at the start is due to the non-syscall part of the task that quickly
becomes insignificant for tasks with a higher number of syscalls. The maximum variance is negligible at < 1.3𝜇𝑠 .

Discussion. Ellipsis scales well as the overhead per syscall remains independent of template size, even in the worst-case
scenario of Ellipsis NR. When log reduction succeeds the overhead is reduced. When the log reduction fails the overhead
is not significantly worse than Linux Audit.

7.7 Remarks

Linux Audit and Ellipsis do not introduce any significant issues of blocking or contention. While contention is possible
due to the spinlock on the kaudit_buffer, this cost does not impact the average latency of auditing as the number
of parallel threads increases. Further, except for limited outlier cases, the latency introduced by syscall auditing can be

measured and bounded. This works well for the latency-sensitive RT systems that RT Linux is intended for, hence Linux
Audit and Ellipsis are good candidates for auditing RTS based on RT Linux [103].

Manuscript submitted to ACM

24 Ayoosh Bansal, Anant Kandikuppa, Monowar Hasan, Chien-Ying Chen, Adam Bates, and Sibin Mohan

0 50 100 150 200 250 300

Task/Template Syscall Count

0

5

10

15

20

25

30

35

40

Av
g.

 T
im

e
pe

r S
ys

ca
ll

(
s)

Linux Audit
Ellipsis
Ellipsis NR

Fig. 15. (§7.6) Avg. execution latency of getpid syscall (Y-axis)
with varying task/template lengths (X-axis)

𝝉1 𝝉2

A(𝝉1) A(𝝉2) 𝝉B(𝝉1 + 𝝉2)

Base

Audited

A : Execution with log generation overhead
B : Overhead of logs dissemination and storage

Assumptions:
T1 > T2

A(T1) > A(T2)
B(T1) > B(T2)

B(T1 + T2) < B(T1) + B(T2)

Fig. 16. Sample timelines for two periodic tasks 𝜏1 and 𝜏2. 𝐴(·)
is the increased computation time of the task including audit
log generation overhead, i.e., 𝐴(𝜏𝑖) = 𝐶𝑖 + 𝐶𝐴

𝑖
. 𝜏𝐵 represents

kauditd and auditd daemons as they handle the logs generated
by the RT tasks 𝜏1 and 𝜏2. For brevity, only one instance per task
is shown.

8 SCHEDULABILITY ANALYSIS

Having established the suitability of auditing for RTS, we now present the schedulability analysis for Linux Audit and
Ellipsis. The base scenario in Figure 16 shows the execution timeline for two periodic tasks that are not under audit.
Audit overheads can be divided into two parts, as shown in the Audited scenario in Figure 16: (i)𝐴(·) represents the task
execution with the synchronous overhead of log generation, 𝐶𝐴

𝑖
, (Figure 1 2 , 3 , 4), and (ii) 𝜏𝐵 is a task representing

the background daemons that maintain the audit logs, transporting them from kaudit_buffer to userspace and
eventually to persistent storage, i.e., auditd and kauditd in Figure 1.𝐶𝐴

𝑖
depends on the number of audited events in a

task and the number of events recorded, while 𝜏𝐵 ’s computational time, 𝐶𝐵 , varies only with the number of events
recorded. As Ellipsis reduces the recorded events, it also reduces the computation times 𝐶𝐴

𝑖
(§5.6) and 𝐶𝐵 (§5.3).

8.1 Real-Time Task Model

We consider a multi-core system with𝑀 identical cores, running RT applications in a preemptive operating system
(e.g., Linux). The system consists of 𝑁 real-time tasks and is scheduled using a fixed-priority scheduling policy. An RT
task, 𝜏𝑖 , can be periodic or sporadic and is characterized by a tuple (𝑇𝑖 , 𝐷𝑖 ,𝐶𝑖) where 𝑇𝑖 is the period (or the minimum
inter-arrival time if 𝜏𝑖 is a sporadic task), 𝐷𝑖 is the relative deadline and𝐶𝑖 is the worst-case execution time (WCET). Let
us represent the taskset as Γ = {𝜏𝑖 (𝐶𝑖 ,𝑇𝑖 , 𝐷𝑖)}∀𝑖 . The hyperperiod of this taskset is the least common multiple (LCM) of
the periods of each task 𝜏𝑖 ∈ Γ and we denote this as 𝐿𝐶𝑀 (Γ). We assume that without auditing Γ is schedulable, i.e.,
the worst-case response time (WCRT) for each task is less than or equal to its deadline.

8.2 Schedulability

Auditing adds synchronous overheads to applications under audit, i.e., the computational time to generate audit record
and log it to kaudit_buffer (§2.1). Let 𝐶𝐴

𝑖
represent the additional (worst-case) computational time for log generation,

as evaluated in Section 7. The WCET of each audited task 𝜏𝑖 is then 𝐶I
𝑖
= 𝐶𝑖 +𝐶𝐴

𝑖
. Let us represent the taskset as

ΓI = {𝜏𝑖 (𝐶I
𝑖
,𝑇𝑖 , 𝐷𝑖)}, ∀𝜏𝑖 ∈ Γ. Auditing would not cause any deadline violations if the WCRT of each task 𝜏𝑖 ∈ ΓI (denoted

by 𝑅𝑖) is less than or equal to its deadline (𝑅𝑖 ≤ 𝐷𝑖). The response time calculation, hence the schedulability of task under
Manuscript submitted to ACM

System Auditing for Real-Time Systems 25

audit, can therefore be obtained by standard multicore global fixed-priority scheduling analysis techniques [46, 99] and
represented by: 𝑅𝑖 = min{𝑥} s.t.: 𝑥 ≤ 𝐶I

𝑖
and

∑
𝜏𝑘 ∈ℎ𝑝 (𝜏𝑖) 𝐼

𝑘
𝑖
(𝑥) < 𝑀 (𝑥 −𝐶I

𝑖
), where ℎ𝑝 (𝜏𝑖) represents the set of tasks

with a priority higher than 𝜏𝑖 and 𝐼𝑘𝑖 (·) is the interference experienced by 𝜏𝑖 from a higher-priority task 𝜏𝑘 .
Recall that the kaudit_buffer is filled by the RT tasks at runtime and needs to be cleared periodically (§2.1). Let 𝜏𝐵

represent the buffer draining mechanisms, i.e., background daemons auditd and kauditd (§2.1). 𝜏𝐵 is invoked once in
each hyperperiod, i.e.,𝑇𝐵 = 𝐿𝐶𝑀 (Γ) and needs to complete its execution before its next periodic interval (i.e., 𝐷𝐵 = 𝑇𝐵).
𝜏𝐵 is set to execute with the lowest priority and therefore does not interfere with the RT tasks. We assume here that 𝜏𝐵
is the only background task in the system. This simplification is based on the fact that only auditd and kauditd, which
combined are 𝜏𝐵 , are the only background tasks that participate in auditing. However, if other unrelated background
tasks exist their interference can be accounted for. We assume that the kaudit_buffer, the size of which is defined by
the system administrator, is large enough to hold all audit records generated between consecutive invocations of the
buffer draining task. At worst, this size is all the records that are generated over 2× the taskset hyperperiod.

Let’s now define the augmented taskset ΓII = ΓI ∪ {𝜏𝐵}. This taskset can be audited with no log loss if the WCRT of
the buffer draining task is less than its period, i.e., 𝑅𝐵 ≤ 𝑇𝐵 . Note that the taskset hyperperiods 𝐿𝐶𝑀 (Γ) = 𝐿𝐶𝑀 (ΓI) =
𝐿𝐶𝑀 (ΓII). Further, 𝜏𝐵 behaves similarly to garbage collectors that have been studied in prior work [97].

Let’s consider a window of length 𝑥 , e.g., a time interval [𝑡1, 𝑡2) such that 𝑡1 is the arrival time of a job of 𝜏𝐵 , 𝑡2 is
a generic value less than or equal to 𝑡1 +𝑇𝐵 and 𝑥 = 𝑡2 − 𝑡1. 𝐼 𝑖𝐵 (𝑥) is the interference from a higher-priority RT task
𝜏𝑖 within the window 𝑥 , i.e., the cumulative time in which the buffer draining task can not execute because of the
execution of 𝜏𝑖 . Note that 𝜏𝐵 cannot execute during the collection of intervals when all𝑀 cores are occupied by the
RT tasks. The cumulative length7 of this interval is 𝑥 −𝐶𝐵 [16], where 𝐶𝐵 represents the cumulative computational
time of 𝜏𝐵 . A sufficient condition of the schedulability of the audit draining task is given by:

∑
𝜏𝑖 ∈Γ 𝐼

𝑖
𝐵
(𝑥) < 𝑀 (𝑥 −𝐶𝐵)

where
∑
𝜏𝑖 ∈Γ 𝐼

𝑖
𝐵
(𝑥) represents the total interference from RT tasks. Let us assume that there exists a function R𝐵 (·)

that returns the minimum value of 𝑥 for schedulability conditions

𝑥 ≥ 𝐶𝐵 and
∑︁
𝜏𝑖 ∈Γ

𝐼 𝑖𝐵 (𝑥) < 𝑀 (𝑥 −𝐶𝐵), (10)

i.e., R𝐵 (·) = min{𝑥} if Eq. (10) holds; otherwise R𝐵 (·) = ∞. By definition the value of R𝐵 (·) is also an upper bound for
the WCRT of 𝜏𝐵 and the calculation of the functions 𝐼 𝑖

𝐵
(𝑥) and R𝐵 (·) can be obtained by standard global multicore

scheduling analysis [46, 99]. The logging mechanism therefore will work as expected if the following conditions hold:
R𝐵 (·) ≤ 𝑇𝐵 , 𝑇𝐵 = 𝐿𝐶𝑀 (ΓII) = 𝐿𝐶𝑀 (Γ) and 𝑅𝑖 ≤ 𝐷𝑖 ,∀𝜏𝑖 ∈ ΓII. However, if R𝐵 (·) > 𝑇𝐵 the accumulation of logs in the
buffer would eventually lead to R𝐵 (·) = ∞, overflowing the buffer.

8.3 Malicious Attacks

Prior analyses (§8.2, [97]) assume that the buffer usage is predictable, or at minimum bound-able. However, this
assumption is valid during the expected benign activity only. Despite the schedulability conditions established in
Section 8.2 being met, malicious attacks on the RTS, generating an unpredictable and arbitrarily high amount of audit
events can cause kaudit_buffer overflow. This is further complicated by the fact that there is no clear priority scheme
for the global kaudit_buffer usage, unlike prior work [36]. Audit events from low-priority or even background tasks
can contain information critical to the security of the high-priority tasks.

7This total interval length 𝑥 − 𝐶𝐵 may not necessarily be contiguous.

Manuscript submitted to ACM

26 Ayoosh Bansal, Anant Kandikuppa, Monowar Hasan, Chien-Ying Chen, Adam Bates, and Sibin Mohan

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

0.00

0.25

0.50

0.75

1.00
Ac

ce
pt

an
ce

 R
at

io

Audit ADM
Audit ZLL

Baseline

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

0.00

0.25

0.50

0.75

1.00

Ellipsis B ADM
Ellipsis B ZLL

Baseline

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

0.00

0.25

0.50

0.75

1.00

Ellipsis NR ADM
Ellipsis NR ZLL

Baseline

Fig. 17. Temporal and Auditing constraint analysis for periodic tasksets. Taskset utilization (X-axis) is plotted against the percentage
of tasksets (Y-axis) for which All Deadlines are Met (ADM) or have Zero Log Loss (ZLL). Tasks have 5% syscall and 95% non-syscall
workload. The shaded region shows the area where both ADM and ZLL requirements are satisfied. The ADM for Unaudited case is
provided as a Baseline since utilization computation is based on it.

In such conditions, while it remains impossible to provide deterministic guarantees, Ellipsis’ ability to severely reduce
the audit record volume generated from benign activity maximizes the potential to fully retain the record of malicious
activities (§5.4). Similarly, while the maximum kaudit_buffer demand cannot be bounded when the system is under
attack, Ellipsis maximizes the buffer capacity available to audit the malicious events (§5.3).

8.4 Evaluation

Experiment. To study the impact of auditing we perform a schedulability evaluation. Table 5 details the platform setup.
Tasksets (Γ) consist of upto 5 tasks (𝜏) with taskset utilization (

∑4
𝑖=0

𝐶𝑖

𝑇𝑖
) chosen uniformly ∈ [0, 1] and hyperperiod

(𝐿𝐶𝑀 (Γ)) of 1000𝜇𝑠 . Tasks have a period between 100𝜇𝑠 − 1000𝜇𝑠 and have a utilization selected using UUniFast
algorithm [22]. Each task’s computation time is divided into 95% busy wait and 5% audited syscalls. The syscalls are ∈
[getpid, getppid, getgid32, getuid32, getpgrp]. These syscalls were chosen for their stable execution profiles.
However, their small execution time means that the synchronous overhead component 𝐴(·) disproportionately impacts
them. Additionally, RT tasks and auditing daemons kauditd and auditd are isolated on core 3 (M = 1). All tasks are
started together and each 𝜏𝑖 runs for 2 × 𝐿𝐶𝑀 (Γ)/𝑇𝑖 iterations. Tasks are executed with a rate monotonic priority.

kaudit_buffer is set to be large enough to hold exactly one hyperperiod worth of audit records. This ensures that
if the second hyperperiod of the taskset starts with some audit logs in kaudit_buffer from the previous hyperperiod,
records will be lost. For each taskset we monitor whether all tasks meet their temporal requirement i.e., All Deadlines
Met (ADM). We also monitor whether any audit records/logs are lost i.e., Zero Log Loss (ZLL). 1000 tasksets are run,
and the results for tasksets are grouped by utilization in groups of width 0.1.

Observations. Figure 17 shows the results. The Y-axis measures the fraction of the tasksets in each group for which
ADM / ZLL requirements were satisfied. The synchronous 𝐴(·) component impacts ADM. Ellipsis B (§7.1) performs
better on ADM metric allowing all tasksets with up to 0.3 utilization to meet all deadlines, compared to 0.2 for Linux
Audit and Ellipsis NR (§7.1). The main point of difference is the 𝜏𝐵 task that deals with the maintenance of auditing
information; log loss occurs when this task does not get enough computation time. Linux Audit and Ellipsis NR start
experiencing log loss at a very small utilization of 0.1. In contrast, Ellipsis B achieves lossless auditing for all workloads.

Discussion. Although Linux Audit has been included in embedded Linux and Ellipsis has been developed to reduce
auditing volume for RTS, their impact on the schedulability of RT tasksets required careful analysis. In this experiment,
despite the low ratio of the task workload being audited (5%), tasksets under audit can meet deadlines for tasksets with
Manuscript submitted to ACM

System Auditing for Real-Time Systems 27

low utilization only. This is the trade-off for the security benefits of auditing. Ellipsis’ performance is dependent on the
success of the reduction attempts. In the worst case, Ellipsis NR performs identically to Linux Audit. However, in this
worst-case, the taskset is exhibiting behaviors, previously unseen during testing and analyses. Since RTS with well-
formed tasksets would not have such a condition occur during valid operations of the system, the actual performance
of Ellipsis would align closer to Ellipsis B. Ellipsis is the better auditing system for RTS.

9 DISCUSSION

9.1 System Scope

Ellipsis is useful for any application that has predictable repeating patterns. When sequence counts are too numerous
with no high-probability sequences, it may be possible that too much system memory would be required to achieve
significant log reduction. That said, a large number of possible sequences is not detrimental to Ellipsis as long as there
exist some high-probability sequences. Ellipsis’s efficacy is also not dependent on specific scheduling policies unless
tasks share process and thread ids; if task share process/thread ids and the scheduler can reorder them, Ellipsis cannot
distinguish between event chains, leading to unnecessary template match failures. Lastly, we note that while we have
motivated our design by discussing periodic tasks, Ellipsis is able to work effectively on any predictable execution
profiles; e.g.,, Ellipsis would also be effective for aperiodic or timetable-triggered tasks, that are significantly prevalent
in industrial RTS [9], or even non-RT applications that share the properties of predictability and repetition.

9.2 Limitations

Ellipsis is primarily an enhancement over Linux Audit, therefore, it shares many limitations of Linux Audit. Linux
Audit suffers from (i) high runtime overheads; (ii) loss of events leading to incomplete and ineffectual security auditing,
even in the absence of malicious activities; (iii) recording large amounts of extraneous audit data; (iv) limited scope of
visible events, e.g., syscalls. Ellipsis does not meaningfully change the runtime overheads, for better or worse (§5.6, §7.6).
Ellipsis all but eliminates event loss during typical benign operation, however, under malicious attacks, recording of
all events cannot be guaranteed, as the malicious activity may create audit events at unbounded rates. It is worth
noting that Ellipsis vastly increases the auditing capacity available for auditing malicious events (§5.3). Any attack
on Linux Audit that relies on overflowing the kaudit_buffer is therefore still possible on Ellipsis, made harder by
the high performant reduction of benign expected behaviors (> 90%). Ellipsis systemically addresses the problem of
recording extraneous audit data (§5.4). Ellipsis shares the visibility and scope of Linux Audit. Any malicious control or
data flow modification, that does not involve syscalls, cannot be recorded with either Linux Audit or Ellipsis. However,
it is noteworthy that without the use of syscalls, i.e., by introducing additional syscalls or modifying the arguments of
existing ones, the ability of malicious actors to cause harm is severely limited [42].

9.3 Auditing Hard Deadline RTS

Ellipsis, like Linux Audit and Linux itself, is unsuitable for hard-deadline RTS. All synchronous audit components must
meet the temporal requirements for Hard RTS with bounded WCET, including syscall hooks and Ellipsis template
matching. Additionally, the kaudit_buffer occupancy must have a strict upper bound. In this paper Ellipsis takes a
long step forward, deriving high confidence empirical bounds (§5.6) to enable Ellipsis’ use in firm- or soft-deadline RTS,
which are prolific [9]. However, the strict bounds required for Hard RTS are a work in progress. Similarly, security
auditing for specialized Real-Time Operating Systems, e.g., FreeRTOS [7], will be investigated in future work.

Manuscript submitted to ACM

28 Ayoosh Bansal, Anant Kandikuppa, Monowar Hasan, Chien-Ying Chen, Adam Bates, and Sibin Mohan

9.4 Unfavorable Conditions

We consider here the impact of using Ellipsis to audit hypothetical RTS where our assumptions about RTS properties
do not hold (§2.2). If the RTS may execute previously unknown syscall sequences, extra events would exist in the
audit log. The audit log recorded by Ellipsis would thus be larger. Since safety, reliability, and timing predictability
are important requirements for RTS [9] the gaps in code coverage can only be small. Hence the unknown syscall
sequences will not have a major impact on audit events and log size. If known syscall sequences have a near uniform
probability of occurrence, simply using templates for them all achieves high reduction (𝑛 = 𝑁). The tradeoff is additional
memory required to store templates which is a small cost (Eq. (7)). Finally, if the above are combined, sequences with a
substantial probability of occurrence would remain untested during the RTS development. For such a system, functional
correctness, reliability, safety or timing predictability cannot be established, making this RTS unusable.

9.5 Code Coverage

Ellipsis is extraordinarily effective for RT applications tested with high code coverage to ensure reliability [35]. However,
Ellipsis can be deployed on any system for any application under audit. The resultant log reduction benefit is proportional
to the ratio of runtime spent in previously analyzed execution paths that are included as templates. Therefore, perfect
code coverage is not a requirement for the use of Ellipsis.

9.6 Deployment Considerations

The mechanisms for template use are fully flexible. Any sequence for any task can be independently reduced with
Ellipsis. However, to use Ellipsis beneficially, sequences with a high probability of occurrence (𝑝𝑖) should be chosen
i.e., top 𝑛 sequences by high 𝑝𝑖 out of total 𝑁 . The primary trade-off is the memory cost of storing templates, as in (7).
For an RTS with limited memory, using (2) and (7), 𝑛 value can be chosen for each task independently to minimize the
Ellipsis events generated. The parameter 𝑛 is chosen independently for each task, allowing highly optimized use of
the main memory available for storing templates. A second trade-off is security. As the information lost by Ellipsis is
minimal (§4), the trade-off on security is also minimal.

10 RELATEDWORK

10.1 System Auditing

Due to its value in threat detection and investigation, system auditing is a subject of interest in traditional systems. While
a number of experimental audit frameworks have incorporated notions of data provenance [18, 87, 89, 91] and taint
tracking [20, 78], the bulk of this work is also based on commodity audit frameworks such as Linux Audit. Techniques
have also been proposed to efficiently extract threat intelligence from voluminous log data [43, 50–53, 58, 65, 72, 74, 77,
81, 88, 90, 100, 112]; in this work, we make the use of such techniques applicable to RTS through the design of a system
audit framework that is compatible with temporally constrained applications. Our approach to template generation in
Ellipsis shares similarities with the notion of execution partitioning of log activity [52, 53, 65, 67, 77], which decomposes
long-lived applications into autonomous units of work to reduce false dependencies in forensic investigations. Unlike
past systems, however, our approach requires no application instrumentation to facilitate. Further, the well-formed
nature of real-time tasks ensures the correctness of our execution units i.e., templates.

Manuscript submitted to ACM

System Auditing for Real-Time Systems 29

10.2 Auditing RTS

Although auditing has been widely acknowledged as an important aspect of securing embedded devices [12, 39, 63],
challenges unique to auditing RTS have received limited attention. Wang et al. present ProvThings, an auditing
framework for monitoring IoT smart home deployments [111], but rather than audit low-level embedded device activity
their system monitors API-layer flows on the IoT platform’s cloud backend. Tian et al. present a block-layer auditing
framework for portable USB storage that can be used to diagnose integrity violations [107]. Their embedded device
emulates a USB flash drive, but does not consider syscall auditing of RT applications. Wu et al. present a network-layer
auditing platform that captures the temporal properties of network flows and can thus detect temporal interference
[114]. Whereas their system uses auditing to diagnose performance problems in networks, the presented study considers
the performance problems created by auditing within RT applications. Zeno [115] provides event tracing that requires
application instrumentation. Feather-Trace [26] events can be inserted in the syscall path to trace them, though such
support does not currently exist, nor does it support ARM architectures. Our work directly enables efficient system-level
auditing in RTS and incorporates the auditing system into the real-time task schedule.

10.3 Forensic Reduction

Significant effort has been dedicated to improving the cost-utility ratio for system auditing by pruning, summarizing,
or otherwise compressing audit data that is unlikely to be of use during investigations [17, 19, 20, 32, 51, 59, 68, 75, 100,
102, 116, 122]. However, these approaches address the log storage overheads and not the voluminous event generation
that is prohibitive to RTS auditing (§5.2). KCAL [76] and ProTracer [78] systems are among the few that, like Ellipsis,
inline their reduction methods into the kernel. Regardless of their layer of operation, these approaches are often based
on an observation that certain log semantics are not forensically relevant (e.g., temporary file I/O [68]), but it is unclear
whether these assumptions hold for real-time cyber-physical environments, e.g., KCAL or ProTracer would reduce
multiple identical read syscalls to a single entry. However, a large number of extra reads can cause catastrophic deadline
misses. Forensic reduction in RTS, therefore, needs to be cognizant of the characteristics of RTS or valuable information
can be lost. Our approach to template generation in Ellipsis shares similarities with the notion of execution partitioning

of log activity [52, 53, 65, 67, 77], which decomposes long-lived applications into autonomous units of work to reduce
false dependencies in forensic investigations. Unlike past systems, however, our approach requires no instrumentation
to facilitate. Further, leveraging the well-formed nature of real-time tasks ensures the correctness of our execution units
i.e., templates. To our knowledge, this work is the first to address the need for forensic reduction of system logs in RTS.

10.4 RTS Security

RTS are an especially attractive target for malicious activity due to the potential to cause physical harm, as demonstrated
by remotely disabling the engine of a car while it was running on the highway [84]. Prior works have analyzed the need
and complexity of security in RTS [11, 29, 30, 61, 80, 95]. Security in RTS often involves a trade-off between system
safety and functionality [11]. RTS being computing systems suffer from all the vulnerabilities of any components that
they use, like sensors, operating systems, networking etc. There exists an additional class of attacks that impacts
RTS by disrupting the execution just enough to make tasks miss deadlines [33]. In this work, we do not focus on a
specific attack type but rather all attacks that leave identifiable information in logs as discussed in Section 4. Many
solutions have been proposed to bolster the security of RTS. These solutions exploit the specific nature of RTS which
can include predictable repetition of execution [118], memory access patterns [119] or static timing analysis [123]

Manuscript submitted to ACM

30 Ayoosh Bansal, Anant Kandikuppa, Monowar Hasan, Chien-Ying Chen, Adam Bates, and Sibin Mohan

to detect unexpected malicious attacks. However, due to their reliance on repetitive behavior, these techniques are
primarily suitable for simpler RTS which use a small set of known tasks. Sporadic tasks that activate at random times in
response to external stimuli further limit the utility of these techniques. In a survey of intrusion detection techniques for
cyber-physical systems various detection techniques and the auditing materials are discussed [82]. We focus on Audit
Log collection and usage which enables provenance techniques to investigate and detect intrusions. These techniques
do not depend on the specific nature of real-time systems. They are known to be generally applicable as discussed in
Section 4. Thus Audit logs and Provenance-based techniques can help secure RTS and CPS of all sizes and complexity.

10.5 Data Compression

Prius [100] proposed a trace compression technique for extremely resource-constrained devices like microsensor motes.
Prius and Ellipsis share some of the constraints and goals, like limited resources and log reduction. However, key
differences exist. Ellipsis achieves log reduction by filtering and coalescing events at the point of event generation,
while Prius reduces an existing log. As shown in Section 5.2, audit events can be lost unless the events are reduced at
the point of event creation itself. Ellipsis is complimentary to any data compression technique, e.g., logs from Table 6
Index 1 could be reduced further by using gzip, from 7.6 MB to 237 KB for Linux Audit log, from 191 KB to 13 KB for
Ellipsis log. The final point of difference is that Ellipsis removes unnecessary information in perpetuity not just for cold
storage and transmission. Although reconstruction is possible (§4.2), the removed information has a high probability of
being benign. The removal of extraneous information simplifies forensic analysis/investigation.

11 CONCLUSION

This work presents Ellipsis, a security auditing system designed for Real-Time Systems (RTS). Ellipsis is built to satisfy
the unique requirements of RTS, which it does by leveraging the unique properties of special-purpose design, predictable
execution, and extensive analyses before deployment. The successful application-aware co-design of Ellipsis and the
increasing need for securing RTS motivates the adaptation of other general-purpose security tools for RTS.

ACKNOWLEDGMENTS

The material presented in this paper is based on work supported by the Office of Naval Research (ONR) under grant num-
ber N00014-17-1-2889, National Aeronautics and Space Administration (NASA) under grant number 80NSSC22M0070,
and the National Science Foundation (NSF) under grant numbers CNS 1750024, CNS 1932529, CNS 1955228, CNS 2055127,
CNS 2152768, and CNS 2246937. Any opinions, findings, and conclusions or recommendations expressed in this publica-
tion are those of the authors and do not necessarily reflect the views of the sponsors.

REFERENCES
[1] 2018. System Auditing. https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security_guide/chap-system_auditing
[2] 2019. Raspberry Pi 4 Model B. https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
[3] 2019. Raspberry Pi Linux 4.19 Preempt RT. https://github.com/raspberrypi/linux/tree/rpi-4.19.y-rt
[4] 2020. auditctl. https://manpages.debian.org/buster/auditd/auditctl.8.en.html
[5] 2021. Motion. https://motion-project.github.io/
[6] 2021. Navio2 board. https://navio2.emlid.com/
[7] 2023. FreeRTOS: Real-time operating system for microcontrollers. https://freertos.org/
[8] RTCA (Firm). SC 167. 1992. Software considerations in airborne systems and equipment certification. RTCA, Incorporated.
[9] Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, and Robert Ian Davis. 2020. An empirical survey-based study into industry

practice in real-time systems. In 2020 IEEE Real-Time Systems Symposium (Proceedings). IEEE.

Manuscript submitted to ACM

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security_guide/chap-system_auditing
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://github.com/raspberrypi/linux/tree/rpi-4.19.y-rt
https://manpages.debian.org/buster/auditd/auditctl.8.en.html
https://motion-project.github.io/
https://navio2.emlid.com/
https://freertos.org/

System Auditing for Real-Time Systems 31

[10] Azza Allouch, Omar Cheikhrouhou, Anis Koubâa, Mohamed Khalgui, and Tarek Abbes. 2019. MAVSec: Securing the MAVLink protocol for
ardupilot/PX4 unmanned aerial systems. In 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC). IEEE.

[11] R. Altawy and A. M. Youssef. 2016. Security Tradeoffs in Cyber Physical Systems: A Case Study Survey on Implantable Medical Devices. IEEE
Access 4 (2016), 959–979. https://doi.org/10.1109/ACCESS.2016.2521727

[12] Mike Anderson. 2020. SECURING EMBEDDED LINUX. https://elinux.org/images/5/54/Manderson4.pdf
[13] ArduCam. 2009. Arducam 5MP OV5647 1080p Mini Camera Module for Raspberry Pi 4/3B+/3. https://www.arducam.com/product/arducam-

ov5647-standard-raspberry-pi-camera-b0033/. [Online; accessed 1-Nov-2022].
[14] ArduPilot Development Team and Community. 2020. ArduPilot. https://ardupilot.org/
[15] Ayoosh Bansal, Anant Kandikuppa, Chien-Ying Chen, Monowar Hasan, Adam Bates, and Sibin Mohan. 2022. Towards Efficient Auditing for

Real-Time Systems. In European Symposium on Research in Computer Security. Springer, 614–634.
[16] Sanjoy Baruah. 2007. Techniques for multiprocessor global schedulability analysis. In 28th IEEE International Real-Time Systems Symposium (RTSS

2007). IEEE, 119–128.
[17] Adam Bates, Kevin R. B. Butler, and Thomas Moyer. 2015. Take Only What You Need: Leveraging Mandatory Access Control Policy to Reduce

Provenance Storage Costs. In 7th Workshop on the Theory and Practice of Provenance (Edinburgh, Scotland) (TaPP’15).
[18] Adam Bates, Dave Tian, Kevin R.B. Butler, and Thomas Moyer. 2015. Trustworthy Whole-System Provenance for the Linux Kernel. In Proceedings

of 24th USENIX Security Symposium (Washington, D.C.).
[19] Adam Bates, Dave Tian, Grant Hernandez, Thomas Moyer, Kevin R.B. Butler, and Trent Jaeger. 2017. Taming the Costs of Trustworthy Provenance

through Policy Reduction. ACM Trans. on Internet Technology 17, 4 (sep 2017), 34:1–34:21.
[20] Y. Ben, Y. Han, N. Cai, W. An, and Z. Xu. 2018. T-Tracker: Compressing System Audit Log by Taint Tracking. In 2018 IEEE 24th International

Conference on Parallel and Distributed Systems (ICPADS). 1–9. https://doi.org/10.1109/PADSW.2018.8645035
[21] He Bin and Amahah Justice. 2009. The design of an unmanned aerial vehicle based on the ArduPilot. Indian Journal of Science and Technology 2, 4

(2009), 12–15.
[22] Enrico Bini and Giorgio C Buttazzo. 2005. Measuring the performance of schedulability tests. Real-Time Systems 30, 1-2 (2005), 129–154.
[23] Klaus Böhm, Tibor Kubjatko, Daniel Paula, and Hans-Georg Schweiger. 2020. New developments on EDR (Event Data Recorder) for automated

vehicles. Open Engineering 10, 1 (2020), 140–146.
[24] Matteo Bordin, Cyrille Comar, Tristan Gingold, Jérôme Guitton, Olivier Hainque, Thomas Quinot, Julien Delange, Jérôme Hugues, and Laurent

Pautet. 2009. Couverture: an innovative open framework for coverage analysis of safety critical applications. Ada User Journal 30, 4 (2009).
[25] Ujjayini Bose. 2014. The black box solution to autonomous liability. Wash. UL Rev. 92 (2014), 1325.
[26] B Brandenburg and J Anderson. 2007. Feather-trace: A lightweight event tracing toolkit. In Proceedings of the third international workshop on

operating systems platforms for embedded real-time applications. 19–28.
[27] Claire Burguiere and Christine Rochange. 2006. History-based schemes and implicit path enumeration. In 6th International Workshop on Worst-Case

Execution Time Analysis (WCET’06). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.
[28] Carbon Black. 2018. Global Incident Response Threat Report. https://www.carbonblack.com/global-incident-response-threat-report/november-

2018/. Last accessed 04-20-2019.
[29] Alvaro Cardenas, Saurabh Amin, Bruno Sinopoli, Annarita Giani, Adrian Perrig, Shankar Sastry, et al. 2009. Challenges for securing cyber physical

systems. InWorkshop on future directions in cyber-physical systems security, Vol. 5.
[30] A. A. Cardenas, S. Amin, and S. Sastry. 2008. Secure Control: Towards Survivable Cyber-Physical Systems. In 2008 The 28th International Conference

on Distributed Computing Systems Workshops. 495–500. https://doi.org/10.1109/ICDCS.Workshops.2008.40
[31] António Casimiro, Pedro Martins, and Paulo Verissimo. 2000. How to build a timely computing base using real-time linux. In 2000 IEEE International

Workshop on Factory Communication Systems. Proceedings (Cat. No. 00TH8531). IEEE, 127–134.
[32] Chen Chen, Harshal Tushar Lehri, Lay Kuan Loh, Anupam Alur, Limin Jia, Boon Thau Loo, and Wenchao Zhou. 2017. Distributed provenance

compression. In Proceedings of the 2017 ACM International Conference on Management of Data. 203–218.
[33] Chien-Ying Chen, Amiremad Ghassami, Stefan Nagy, Man-Ki Yoon, Sibin Mohan, Negar Kiyavash, Rakesh B Bobba, and Rodolfo Pellizzoni. 2015.

Schedule-based side-channel attack in fixed-priority real-time systems. Technical Report.
[34] Mei-Hwa Chen, Michael R Lyu, and W Eric Wong. 1996. An empirical study of the correlation between code coverage and reliability estimation. In

Proceedings of the 3rd International Software Metrics Symposium. IEEE, 133–141.
[35] M-H Chen, Michael R Lyu, and W Eric Wong. 2001. Effect of code coverage on software reliability measurement. IEEE Transactions on reliability

50, 2 (2001), 165–170.
[36] Rodrigo Coelho, Gerhard Fohler, and Jean-Luc Scharbarg. 2017. Upper bound computation for buffer backlog on AFDX networks with multiple

priority virtual links. In Proceedings of the Symposium on Applied Computing. 586–593.
[37] Miguel Correia, Paulo Veríssimo, and Nuno Ferreira Neves. 2002. The design of a COTS real-time distributed security kernel. In European Dependable

Computing Conference. Springer, 234–252.
[38] Casey Crane. 2020. Automotive Cyber Security: A Crash Course on Protecting Cars Against Hackers. https://www.thesslstore.com/blog/automotive-

cyber-security-a-crash-course-on-protecting-cars-against-hackers/
[39] Robert Day and Michael Slonosky. 2020. Securing connected embedded devices using built-in RTOS security. http://mil-embedded.com/articles/

securing-connected-embedded-devices-using-built-in-rtos-security/

Manuscript submitted to ACM

https://doi.org/10.1109/ACCESS.2016.2521727
https://elinux.org/images/5/54/Manderson4.pdf
https://www.arducam.com/product/arducam-ov5647-standard-raspberry-pi-camera-b0033/
https://www.arducam.com/product/arducam-ov5647-standard-raspberry-pi-camera-b0033/
https://ardupilot.org/
https://doi.org/10.1109/PADSW.2018.8645035
https://www.carbonblack.com/global-incident-response-threat-report/november-2018/
https://www.carbonblack.com/global-incident-response-threat-report/november-2018/
https://doi.org/10.1109/ICDCS.Workshops.2008.40
https://www.thesslstore.com/blog/automotive-cyber-security-a-crash-course-on-protecting-cars-against-hackers/
https://www.thesslstore.com/blog/automotive-cyber-security-a-crash-course-on-protecting-cars-against-hackers/
http://mil-embedded.com/articles/securing-connected-embedded-devices-using-built-in-rtos-security/
http://mil-embedded.com/articles/securing-connected-embedded-devices-using-built-in-rtos-security/

32 Ayoosh Bansal, Anant Kandikuppa, Monowar Hasan, Chien-Ying Chen, Adam Bates, and Sibin Mohan

[40] Fabio Del Frate, Praerit Garg, Aditya P Mathur, and Alberto Pasquini. 1995. On the correlation between code coverage and software reliability. In
Proceedings of Sixth International Symposium on Software Reliability Engineering. ISSRE’95. IEEE, 124–132.

[41] Department of Homeland Security. 2020. Cyber Physical Systems Security. https://www.dhs.gov/science-and-technology/cpssec
[42] Stephanie Forrest, Steven Hofmeyr, and Anil Somayaji. 2008. The evolution of system-call monitoring. In 2008 annual computer security applications

conference (acsac). IEEE, 418–430.
[43] Peng Gao, Xusheng Xiao, Ding Li, Zhichun Li, Kangkook Jee, Zhenyu Wu, Chung Hwan Kim, Sanjeev R. Kulkarni, and Prateek Mittal. 2018. SAQL:

A Stream-based Query System for Real-Time Abnormal System Behavior Detection. In 27th USENIX Security Symposium (USENIX Security 18).
USENIX Association, Baltimore, MD, 639–656. https://www.usenix.org/conference/usenixsecurity18/presentation/gao-peng

[44] Ashish Gehani and Dawood Tariq. 2012. SPADE: Support for Provenance Auditing in Distributed Environments. In Proceedings of the 13th
International Middleware Conference (Montreal, Quebec, Canada) (Middleware ’12).

[45] Golsana Ghaemi, Dharmesh Tarapore, and Renato Mancuso. 2021. Governing with Insights: Towards Profile-Driven Cache Management of
Black-Box Applications. In 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[46] Nan Guan, Meiling Han, Chuancai Gu, Qingxu Deng, and Wang Yi. 2015. Bounding carry-in interference to improve fixed-priority global
multiprocessor scheduling analysis. In 2015 IEEE 21st International Conference on Embedded and Real-Time Computing Systems and Applications.
IEEE, 11–20.

[47] Levent Gurgen, Ozan Gunalp, Yazid Benazzouz, and Mathieu Gallissot. 2013. Self-aware cyber-physical systems and applications in smart buildings
and cities. In 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 1149–1154.

[48] Jan Gustafsson and Andreas Ermedahl. 2007. Experiences from applying WCET analysis in industrial settings. In 10th IEEE International Symposium
on Object and Component-Oriented Real-Time Distributed Computing (ISORC’07). IEEE, 382–392.

[49] Mounir Hahad. 2020. IoT proliferation and widespread 5G: A perfect botnet storm. https://www.scmagazine.com/home/opinion/executive-
insight/iot-proliferation-and-widespread-5g-a-perfect-botnet-storm/

[50] Xueyan Han, Thomas Pasqueir, Adam Bates, James Mickens, and Margo Seltzer. 2020. Unicorn: Runtime Provenance-Based Detector for Advanced
Persistent Threats. In 27th ISOC Network and Distributed System Security Symposium (NDSS’20).

[51] Wajih Ul Hassan, Nuraini Aguse, Mark Lemay, Thomas Moyer, and Adam Bates. 2018. Towards Scalable Cluster Auditing through Grammatical
Inference over Provenance Graphs. In Proceedings of the 25th ISOC Network and Distributed System Security Symposium. San Diego, CA, USA.

[52] Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang Chen, Kangkook Jee, Zhichun Li, and Adam Bates. 2019. NoDoze: Combatting Threat Alert
Fatigue with Automated Provenance Triage. In 26th ISOC Network and Distributed System Security Symposium (NDSS’19).

[53] Wajih Ul Hassan, Mohammad Noureddine, Pubali Datta, and Adam Bates. 2020. OmegaLog: High-Fidelity Attack Investigation via Transparent
Multi-layer Log Analysis. In 27th ISOC Network and Distributed System Security Symposium (NDSS’20).

[54] Les Hatton. 2004. Safer language subsets: an overview and a case history, MISRA C. Information and Software Technology 46, 7 (2004), 465–472.
[55] James Hayes. 2020. Hackers under the hood. https://eandt.theiet.org/content/articles/2020/03/hackers-under-the-hood/
[56] Heike Hofmann, Karen Kafadar, and Hadley Wickham. 2011. Letter-value plots: Boxplots for large data. Technical Report. had.co.nz.
[57] Steven A Hofmeyr, Stephanie Forrest, and Anil Somayaji. 1998. Intrusion detection using sequences of system calls. Journal of computer security 6,

3 (1998), 151–180.
[58] Md Nahid Hossain, Sadegh M. Milajerdi, Junao Wang, Birhanu Eshete, Rigel Gjomemo, R. Sekar, Scott Stoller, and V.N. Venkatakrishnan. 2017.

SLEUTH: Real-time Attack Scenario Reconstruction from COTS Audit Data. In 26th USENIX Security Symposium (USENIX Security 17). USENIX
Association, Vancouver, BC, 487–504. https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/hossain

[59] Md Nahid Hossain, Junao Wang, R. Sekar, and Scott D. Stoller. 2018. Dependence-preserving Data Compaction for Scalable Forensic Analysis.
In Proceedings of the 27th USENIX Conference on Security Symposium (Baltimore, MD, USA) (SEC’18). USENIX Association, Berkeley, CA, USA,
1723–1740. http://dl.acm.org/citation.cfm?id=3277203.3277331

[60] Marko Ivanković, Goran Petrović, René Just, and Gordon Fraser. 2019. Code coverage at Google. In Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 955–963.

[61] Md E. Karim and Vir V. Phoha. 2014. Cyber-physical Systems Security. In Applied Cyber-Physical Systems, Sang C. Suh, U. John Tanik, John N.
Carbone, and Abdullah Eroglu (Eds.). Springer New York, New York, NY, 75–83.

[62] Samuel T. King and Peter M. Chen. 2003. Backtracking Intrusions. In Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles
(Bolton Landing, NY, USA) (SOSP ’03). ACM, New York, NY, USA, 223–236. https://doi.org/10.1145/945445.945467

[63] KaiGai Kohei. 2020. Recent security features and issues in embedded systems. https://elinux.org/images/e/e2/ELC2008_KaiGai.pdf
[64] Sascha Konrad and Betty HC Cheng. 2005. Real-time specification patterns. In Proceedings of the 27th international conference on Software engineering.

372–381.
[65] Yonghwi Kwon, Fei Wang, Weihang Wang, Kyu Hyung Lee, Wen-Chuan Lee, Shiqing Ma, Xiangyu Zhang, Dongyan Xu, Somesh Jha, Gabriela

Ciocarlie, Ashish Gehani, and Vinod Yegneswaran. 2018. MCI: Modeling-based Causality Inference in Audit Logging for Attack Investigation. In
Proc. of the 25th Network and Distributed System Security Symposium (NDSS’18).

[66] Insup Lee, Oleg Sokolsky, Sanjian Chen, John Hatcliff, Eunkyoung Jee, BaekGyu Kim, Andrew King, Margaret Mullen-Fortino, Soojin Park,
Alexander Roederer, et al. 2011. Challenges and research directions in medical cyber–physical systems. Proc. IEEE 100, 1 (2011), 75–90.

[67] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013. High Accuracy Attack Provenance via Binary-based Execution Partition. In Proceedings
of NDSS ’13 (San Diego, CA).

Manuscript submitted to ACM

https://www.dhs.gov/science-and-technology/cpssec
https://www.usenix.org/conference/usenixsecurity18/presentation/gao-peng
https://www.scmagazine.com/home/opinion/executive-insight/iot-proliferation-and-widespread-5g-a-perfect-botnet-storm/
https://www.scmagazine.com/home/opinion/executive-insight/iot-proliferation-and-widespread-5g-a-perfect-botnet-storm/
https://eandt.theiet.org/content/articles/2020/03/hackers-under-the-hood/
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/hossain
http://dl.acm.org/citation.cfm?id=3277203.3277331
https://doi.org/10.1145/945445.945467
https://elinux.org/images/e/e2/ELC2008_KaiGai.pdf

System Auditing for Real-Time Systems 33

[68] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013. LogGC: Garbage Collecting Audit Log. In Proceedings of the 2013 ACM SIGSAC conference on
Computer and Communications Security (Berlin, Germany) (CCS ’13). ACM, New York, NY, USA, 1005–1016. https://doi.org/10.1145/2508859.2516731

[69] Yau-Tsun Steven Li and Sharad Malik. 1995. Performance analysis of embedded software using implicit path enumeration. In Proceedings of the
ACM SIGPLAN 1995 workshop on Languages, compilers, & tools for real-time systems. 88–98.

[70] Linux Kernel Organization, Inc. 2020. CPU frequency and voltage scaling code in the Linux kernel. https://www.kernel.org/doc/Documentation/cpu-
freq/governors.txt

[71] C. L. Liu and James W. Layland. 1973. Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment. J. ACM 20, 1 (Jan. 1973),
46–61. https://doi.org/10.1145/321738.321743

[72] Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee, Zhichun Li, Zhenyu Wu, Junghwan Rhee, and Prateek Mittal. 2018. Towards a Timely Causality
Analysis for Enterprise Security. In Proceedings of the 25th ISOC Network and Distributed System Security Symposium (NDSS’18). San Diego, CA,
USA.

[73] Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee, Zhichun Li, Zhenyu Wu, Junghwan Rhee, and Prateek Mittal. 2018. Towards a Timely Causality
Analysis for Enterprise Security. In NDSS.

[74] Sadegh M. Milajerdi, Birhanu Eshete, Rigel Gjomemo, and Venkat N. Venkatakrishnan. 2018. ProPatrol: Attack Investigation via Extracted
High-Level Tasks. In Information Systems Security, Vinod Ganapathy, Trent Jaeger, and R.K. Shyamasundar (Eds.). Springer International Publishing,
Cham, 107–126.

[75] Shiqing Ma, Kyu Hyung Lee, Chung Hwan Kim, Junghwan Rhee, Xiangyu Zhang, and Dongyan Xu. 2015. Accurate, Low Cost and Instrumentation-
Free Security Audit Logging for Windows. In Proceedings of the 31st Annual Computer Security Applications Conference (Los Angeles, CA, USA)
(ACSAC 2015). ACM, New York, NY, USA, 401–410. https://doi.org/10.1145/2818000.2818039

[76] Shiqing Ma, Juan Zhai, Yonghwi Kwon, Kyu Hyung Lee, Xiangyu Zhang, Gabriela Ciocarlie, Ashish Gehani, Vinod Yegneswaran, Dongyan Xu, and
Somesh Jha. 2018. Kernel-Supported Cost-Effective Audit Logging for Causality Tracking. In 2018 USENIX Annual Technical Conference (USENIX
ATC 18). USENIX Association, Boston, MA, 241–254. https://www.usenix.org/conference/atc18/presentation/ma-shiqing

[77] Shiqing Ma, Juan Zhai, Fei Wang, Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2017. MPI: Multiple Perspective Attack Investigation with
Semantic Aware Execution Partitioning. In 26th USENIX Security Symposium.

[78] Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. 2016. ProTracer: Towards Practical Provenance Tracing by Alternating Between Logging and
Tainting. In Proceedings of NDSS ’16 (San Diego, CA).

[79] Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. 2016. ProTracer: Towards Practical Provenance Tracing by Alternating Between Logging and
Tainting. In NDSS.

[80] D. W. McKee, S. J. Clement, J. Almutairi, and J. Xu. 2017. Massive-Scale Automation in Cyber-Physical Systems: Vision amp;amp; Challenges. In
2017 IEEE 13th International Symposium on Autonomous Decentralized System (ISADS). 5–11. https://doi.org/10.1109/ISADS.2017.56

[81] S. Momeni Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakrishnan. 2019. HOLMES: Real-Time APT Detection through Correlation
of Suspicious Information Flows. In 2019 2019 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA.
https://doi.org/10.1109/SP.2019.00026

[82] Robert Mitchell and Ing-Ray Chen. 2014. A Survey of Intrusion Detection Techniques for Cyber-physical Systems. ACM Comput. Surv. 46, 4, Article
55 (March 2014), 29 pages. https://doi.org/10.1145/2542049

[83] László Monostori, Botond Kádár, Thomas Bauernhansl, Shinsuke Kondoh, S Kumara, Gunther Reinhart, Olaf Sauer, Gunther Schuh, Wilfried Sihn,
and Kenichi Ueda. 2016. Cyber-physical systems in manufacturing. Cirp Annals 65, 2 (2016), 621–641.

[84] PBS NewsHour. 2015. Hacking researchers kill a car engine on the highway to send a message to automakers. https://www.pbs.org/newshour/
show/hacking-researchers-kill-car-engine-highway-send-message-automakers

[85] Riccardo Paccagnella, Pubali Datta, Wajih Ul Hassan, Adam Bates, Christopher W. Fletcher, Andrew Miller, and Dave Tian. 2020. Custos: Practical
Tamper-Evident Auditing of Operating Systems Using Trusted Execution. In 27th ISOC Network and Distributed System Security Symposium.

[86] Riccardo Paccagnella, Kevin Liao, Dave Tian, and Adam Bates. 2020. Logging to the Danger Zone: Race Condition Attacks and Defenses on System
Audit Frameworks. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. 1551–1574.

[87] Thomas Pasquier, Xueyuan Han, Mark Goldstein, Thomas Moyer, David Eyers, Margo Seltzer, and Jean Bacon. 2017. Practical Whole-system
Provenance Capture. In Proceedings of the 2017 Symposium on Cloud Computing (Santa Clara, California) (SoCC ’17). ACM, New York, NY, USA,
405–418. https://doi.org/10.1145/3127479.3129249

[88] Thomas Pasquier, Xueyuan Han, Thomas Moyer, Adam Bates, Olivier Hermant, David Eyers, Jean Bacon, , and Margo Seltzer. 2018. Runtime
Analysis of Whole-System Provenance. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. ACM.

[89] T. F. J. . Pasquier, J. Singh, D. Eyers, and J. Bacon. 2017. Camflow: Managed Data-Sharing for Cloud Services. IEEE Transactions on Cloud Computing
5, 3 (July 2017), 472–484. https://doi.org/10.1109/TCC.2015.2489211

[90] Kexin Pei, Zhongshu Gu, Brendan Saltaformaggio, Shiqing Ma, Fei Wang, Zhiwei Zhang, Luo Si, Xiangyu Zhang, and Dongyan Xu. 2016. HERCULE:
Attack Story Reconstruction via Community Discovery on Correlated Log Graph. In Proceedings of the 32Nd Annual Conference on Computer
Security Applications (Los Angeles, California, USA) (ACSAC ’16). ACM, New York, NY, USA, 583–595. https://doi.org/10.1145/2991079.2991122

[91] D.J. Pohly, S. McLaughlin, P. McDaniel, and K. Butler. 2012. Hi-Fi: Collecting High-Fidelity Whole-System Provenance. In Proceedings of the 2012
Annual Computer Security Applications Conference (ACSAC ’12). Orlando, FL, USA.

Manuscript submitted to ACM

https://doi.org/10.1145/2508859.2516731
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://doi.org/10.1145/321738.321743
https://doi.org/10.1145/2818000.2818039
https://www.usenix.org/conference/atc18/presentation/ma-shiqing
https://doi.org/10.1109/ISADS.2017.56
https://doi.org/10.1109/SP.2019.00026
https://doi.org/10.1145/2542049
https://www.pbs.org/newshour/show/hacking-researchers-kill-car-engine-highway-send-message-automakers
https://www.pbs.org/newshour/show/hacking-researchers-kill-car-engine-highway-send-message-automakers
https://doi.org/10.1145/3127479.3129249
https://doi.org/10.1109/TCC.2015.2489211
https://doi.org/10.1145/2991079.2991122

34 Ayoosh Bansal, Anant Kandikuppa, Monowar Hasan, Chien-Ying Chen, Adam Bates, and Sibin Mohan

[92] Peter Puschner and Alan Burns. 2002. Writing temporally predictable code. In Proceedings of the Seventh IEEE International Workshop on
Object-Oriented Real-Time Dependable Systems.(WORDS 2002). IEEE, 85–91.

[93] Ragunathan Rajkumar, Insup Lee, Lui Sha, and John Stankovic. 2010. Cyber-physical systems: the next computing revolution. In Design Automation
Conference. IEEE, 731–736.

[94] Ragunathan Rajkumar, Lui Sha, and John P Lehoczky. 1988. Real-time synchronization protocols for multiprocessors. In Proceedings. Real-Time
Systems Symposium. 259–260.

[95] A. Sadeghi, C. Wachsmann, and M. Waidner. 2015. Security and privacy challenges in industrial Internet of Things. In 2015 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC). 1–6. https://doi.org/10.1145/2744769.2747942.

[96] Daniel Sandell, Andreas Ermedahl, Jan Gustafsson, and Björn Lisper. 2004. Static timing analysis of real-time operating system code. In International
Symposium On Leveraging Applications of Formal Methods, Verification and Validation. Springer, 146–160.

[97] Martin Schoeberl. 2006. Real-time garbage collection for Java. In Ninth IEEE International Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC’06). IEEE, 9–pp.

[98] David Shepherd. 2020. Industry 4.0: the development of unique cybersecurity. https://www.manufacturingglobal.com/technology/industry-40-
development-unique-cybersecurity

[99] Youcheng Sun and Marco Di Natale. 2018. Assessing the pessimism of current multicore global fixed-priority schedulability analysis. In Proceedings
of the 33rd Annual ACM Symposium on Applied Computing. 575–583.

[100] Vinaitheerthan Sundaram, Patrick Eugster, and Xiangyu Zhang. 2012. Prius: Generic hybrid trace compression for wireless sensor networks. In
Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems. 183–196.

[101] SUSE LINUXAG. 2004. Linux Audit-Subsystem Design Documentation for Linux Kernel 2.6, v0.1. Available at http://uniforum.chi.il.us/slides/
HardeningLinux/LAuS-Design.pdf.

[102] Yutao Tang, Ding Li, Zhichun Li, Mu Zhang, Kangkook Jee, Xusheng Xiao, ZhenyuWu, Junghwan Rhee, Fengyuan Xu, and Qun Li. 2018. NodeMerge:
Template Based Efficient Data Reduction For Big-Data Causality Analysis. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (Toronto, Canada) (CCS ’18). ACM, New York, NY, USA, 1324–1337. https://doi.org/10.1145/3243734.3243763

[103] The Linux Foundation. 2018. Real-Time Linux. https://wiki.linuxfoundation.org/realtime/start
[104] The Linux Foundation. 2022. RT-Tests. https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/rt-tests
[105] The MISRA Consortium Limited. 2021. MISRA. https://www.misra.org.uk/
[106] The MITRE Corporation. 2018. Medical Device Cybersecurity. https://www.mitre.org/sites/default/files/publications/pr-18-1550-Medical-Device-

Cybersecurity-Playbook.pdf
[107] Dave (Jing) Tian, Adam Bates, Kevin R. B. Butler, and Raju Rangaswami. 2016. ProvUSB: Block-level Provenance-Based Data Protection for USB

Storage Devices. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. ACM, New York, NY, USA.
[108] Paulo Veríssimo and António Casimiro. 2002. The timely computing base model and architecture. IEEE Trans. Comput. 51, 8 (2002), 916–930.
[109] Paulo Veríssimo, António Casimiro, and Christof Fetzer. 2000. The timely computing base: Timely actions in the presence of uncertain timeliness.

In Proceeding International Conference on Dependable Systems and Networks. DSN 2000. IEEE, 533–542.
[110] Liuping Wang. 2020. PID control system design and automatic tuning using MATLAB/Simulink. John Wiley & Sons.
[111] Qi Wang, Wajih Ul Hassan, Adam Bates, and Carl Gunter. 2017. Fear and Logging in the Internet of Things. In Proceedings of the 25th ISOC Network

and Distributed System Security Symposium (NDSS’18).
[112] Qi Wang, Wajih Ul Hassan, Ding Li, Kangkook Jee, Xiao Yu, Kexuan Zou, Jungwhan Rhee, Zhengzhang Zhen, Wei Cheng, Carl A. Gunter, and

Haifeng chen. 2020. You Are What You Do: Hunting Stealthy Malware via Data Provenance Analysis. In 27th ISOC Network and Distributed System
Security Symposium (NDSS’20).

[113] W Eric Wong, Yu Qi, Lei Zhao, and Kai-Yuan Cai. 2007. Effective fault localization using code coverage. In 31st Annual International Computer
Software and Applications Conference (COMPSAC 2007), Vol. 1. IEEE, 449–456.

[114] Yang Wu, Ang Chen, and Linh Thi Xuan Phan. 2019. Zeno: Diagnosing Performance Problems with Temporal Provenance. In 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 19). USENIX Association, Boston, MA, 395–420. https://www.usenix.org/
conference/nsdi19/presentation/wu

[115] Yang Wu, Ang Chen, and Linh Thi Xuan Phan. 2019. Zeno: Diagnosing Performance Problems with Temporal Provenance.. In NSDI. 395–420.
[116] Zhang Xu, Zhenyu Wu, Zhichun Li, Kangkook Jee, Junghwan Rhee, Xusheng Xiao, Fengyuan Xu, Haining Wang, and Guofei Jiang. 2016. High

Fidelity Data Reduction for Big Data Security Dependency Analyses. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (Vienna, Austria) (CCS ’16). ACM, New York, NY, USA, 504–516. https://doi.org/10.1145/2976749.2978378

[117] Carter Yagemann, Mohammad Noureddine, Wajih Ul Hassan, Simon Chung, Adam Bates, and Wenke Lee. 2021. Validating the Integrity of Audit
Logs Against Execution Repartitioning Attacks. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security.

[118] M. Yoon, S. Mohan, J. Choi, J. Kim, and L. Sha. 2013. SecureCore: A multicore-based intrusion detection architecture for real-time embedded systems.
In 2013 IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS). 21–32. https://doi.org/10.1109/RTAS.2013.6531076

[119] M. Yoon, S. Mohan, J. Choi, and L. Sha. 2015. Memory Heat Map: Anomaly detection in real-time embedded systems using memory behavior. In
2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6. https://doi.org/10.1145/2744769.2744869

[120] Man-Ki Yoon, Sibin Mohan, Jaesik Choi, Mihai Christodorescu, and Lui Sha. 2017. Learning execution contexts from system call distribution for
anomaly detection in smart embedded system. In Proceedings of the Second International Conference on Internet-of-Things Design and Implementation.

Manuscript submitted to ACM

https://doi.org/10.1145/2744769.2747942.
https://www.manufacturingglobal.com/technology/industry-40-development-unique-cybersecurity
https://www.manufacturingglobal.com/technology/industry-40-development-unique-cybersecurity
http://uniforum.chi.il.us/slides/HardeningLinux/LAuS-Design.pdf
http://uniforum.chi.il.us/slides/HardeningLinux/LAuS-Design.pdf
https://doi.org/10.1145/3243734.3243763
https://wiki.linuxfoundation.org/realtime/start
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/rt-tests
https://www.misra.org.uk/
https://www.mitre.org/sites/default/files/publications/pr-18-1550-Medical-Device-Cybersecurity-Playbook.pdf
https://www.mitre.org/sites/default/files/publications/pr-18-1550-Medical-Device-Cybersecurity-Playbook.pdf
https://www.usenix.org/conference/nsdi19/presentation/wu
https://www.usenix.org/conference/nsdi19/presentation/wu
https://doi.org/10.1145/2976749.2978378
https://doi.org/10.1109/RTAS.2013.6531076
https://doi.org/10.1145/2744769.2744869

System Auditing for Real-Time Systems 35

[121] Man-Ki Yoon, Sibin Mohan, Jaesik Choi, Jung-Eun Kim, and Lui Sha. 2013. SecureCore: A multicore-based intrusion detection architecture for
real-time embedded systems. In 2013 IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE, 21–32.

[122] Tiantian Zhu, Jiayu Wang, Linqi Ruan, Chunlin Xiong, Jinkai Yu, Yaosheng Li, Yan Chen, Mingqi Lv, and Tieming Chen. 2021. General, efficient,
and real-time data compaction strategy for apt forensic analysis. IEEE Transactions on Information Forensics and Security 16 (2021), 3312–3325.

[123] Christopher Zimmer, Balasubramanya Bhat, Frank Mueller, and Sibin Mohan. 2010. Time-based Intrusion Detection in Cyber-physical Systems. In
Proceedings of the 1st ACM/IEEE International Conference on Cyber-Physical Systems (Stockholm, Sweden) (ICCPS ’10). ACM, New York, NY, USA,
109–118. https://doi.org/10.1145/1795194.1795210

A TEMPLATES FOR ARDUPILOT

Table 7. Columns of this table describe the three template files for ArduPilot.

Thread/Task arducopter ap-rcin ap-spi-0

Syscall Count 14 16 1
Expected runtime (ns) 1303419 671567 0
Expected inter-arrival time (ns) 5012313 20029121 2010477

Syscall List

4:3:-1:1:-1
4:4:-1:1:-1
4:5:-1:1:-1
4:6:-1:1:-1
4:7:-1:1:-1
4:8:-1:1:-1
4:9:-1:1:-1
4:10:-1:1:-1
4:11:-1:1:-1
4:12:-1:1:-1
4:13:-1:1:-1
4:14:-1:1:-1
4:15:-1:1:-1
4:16:-1:1:-1

180:17:-1:11:-1
180:18:-1:11:-1
180:19:-1:11:-1
180:20:-1:11:-1
180:21:-1:11:-1
180:22:-1:11:-1
180:23:-1:11:-1
180:24:-1:11:-1
180:25:-1:11:-1
180:26:-1:11:-1
180:27:-1:11:-1
180:28:-1:11:-1
180:29:-1:11:-1
180:30:-1:11:-1
180:31:-1:11:-1
180:32:-1:11:-1

3:55:-1:8:-1

ArduPilot yielded 3 templates. System call numbers and their corresponding arguments, a0 - a4, were extracted
from the audit logs. read, write, pread64 have syscall numbers 3,4 and 180 respectively. Argument values of -1 and
temporal constraint values of 0 denote that these arguments are ignored. 4:3:-1:1:-1 then indicates a write syscall with
a0 as 3, a2 as 1. a1 and a3 are not forensically relevant. Table 7 describes the complete templates. An execution sequence
matching a template is reduced to a single line in the audit logs at runtime as shown in the following example� �
1 type=SYSCALL msg= au d i t (1 6 0 1 4 0 5 4 3 1 . 6 1 2 3 9 1 3 5 6 : 5 8 9 3 3 3 0) : a r ch =40000028 per =800000 t emp l a t e = a r du cop t e r

rep =10 s t ime =1601405431589320747 e t ime =1601405431612287042 pp id =1208 p id =1261 t i d =1261 au id =1000 u id
=0 g id =0 eu id =0 su i d =0 f s u i d =0 eg i d =0 s g i d =0 f s g i d =0 t t y = p t s 0 s e s =3 comm= " a r du cop t e r " exe= " / home / p i /
a r d u p i l o t / b u i l d / nav io2 / b in / a r du cop t e r " key =(n u l l)� �
Some fields in Ellipsis log are distinct from standard Linux Audit logs; (i) template: the name of the template, the first

line of a template file e.g.,arducopter, ap-rcin, ap-spi-0; (ii) rep: the number of consecutive repetitions of the template this
entry represents when using Ellipsis-HP ; (iii) stime: timestamp of the first syscall in this reduced sequence, the unit is
nanoseconds; (iv) etime: timestamp of the last syscall in this reduced sequence, the unit is nanoseconds.

Received 5 March 2023; revised 16 July 2023; accepted 12 September 2023

Manuscript submitted to ACM

https://doi.org/10.1145/1795194.1795210

	Abstract
	1 Introduction
	2 Background and System Model
	2.1 Linux Audit Framework
	2.2 RTS Properties
	2.3 Threat Model

	3 Ellipsis
	3.1 Model
	3.2 Template Learning Phase
	3.3 Sequence Identification
	3.4 Iterative Procedure
	3.5 Sequence Selection
	3.6 Template Creation
	3.7 Ellipsis Activation
	3.8 Runtime Matching
	3.9 Audit Event Reduction
	3.10 Storage Size Reduction
	3.11 Memory Tradeoff
	3.12 Extended Reduction Horizon
	3.13 Temporal Constraints
	3.14 Summary

	4 Security Analysis
	4.1 Stealthy Evasion
	4.2 Information Loss
	4.3 Demonstration: Throttle Override Attack
	4.4 Demonstration: Data Exfiltration Attack
	4.5 Summary

	5 Case Study: ArduPilot
	5.1 Application Description
	5.2 Audit Completeness
	5.3 Audit Buffer Utilization
	5.4 Audit Log Size Reduction
	5.5 Temporal Constraint Policy
	5.6 Runtime Overheads
	5.7 Summary of Results

	6 Case Study: Motion
	6.1 Application Description
	6.2 Audit Log Size Reduction

	7 Synchronous Overhead Analysis
	7.1 Setup
	7.2 Benchmarks
	7.3 Latency per Syscall
	7.4 Resource Contention
	7.5 Priority Scheduling and Blocking
	7.6 Synthetic Tasks: Overhead Scaling
	7.7 Remarks

	8 Schedulability Analysis
	8.1 Real-Time Task Model
	8.2 Schedulability
	8.3 Malicious Attacks
	8.4 Evaluation

	9 Discussion
	9.1 System Scope
	9.2 Limitations
	9.3 Auditing Hard Deadline RTS
	9.4 Unfavorable Conditions
	9.5 Code Coverage
	9.6 Deployment Considerations

	10 Related Work
	10.1 System Auditing
	10.2 Auditing RTS
	10.3 Forensic Reduction
	10.4 RTS Security
	10.5 Data Compression

	11 Conclusion
	Acknowledgments
	References
	A Templates for ArduPilot

