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ABSTRACT

Hard real-time applications have stringent response time requirements and failure to meet

the deadlines can have catastrophic consequences. With the success of the edge computing

paradigm, more edge applications have real-time requirements. User mobility and multi-

tenancy on the edge nodes create new challenges for these real-time applications running

inside containers. These problems can be resolved by migrating the container along with

all of the underlying files to a new node where the application can run safely. However,

single-target migration is prone to failure due to network issues or system crashes at the

target. It is also hard to guarantee that applications will meet their real-time requirements

during (or even after) the migration process.

To this end, we propose a framework for planning reliable real-time container migration.

This framework monitors the container and nodes in the network and accurately predicts

the future resource availability of the nodes. The forecasts are used to identify a subset of

nodes that have sufficient resources to run the container. We migrate to multiple nodes in

parallel to make it resilient to network issues and crashes.
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CHAPTER 1: INTRODUCTION

Real-time systems refer to systems that respond to an external input within a finite time

limit. The correctness of these systems depend not only on the accuracy of the results, but

also on whether they meet the timing guarantees, often referred to as ‘deadlines’. There are

two types of real-time systems: soft and hard. Soft real-time systems may miss a deadline.

The consequences of missing the deadline are often not severe. However, in hard real-time

systems, failure to meet the timing guarantees has extreme consequences. Missing a deadline

might render the whole system useless. For example, consider a system for deploying a

vehicle’s airbags in the event of a crash. If the system fails to deploy the airbag on time,

the safety of the human occupant is compromised. Many cyber-physical systems used in

the automobile industry, aviation, healthcare, manufacturing, robotics have such stringent

timing requirements.

The success of the edge computing paradigm has brought about an increased use of edge

applications with real-time requirements. This creates a new set of challenges [1]. In sce-

narios where the user of the application is mobile, the response times might go up as the

user moves away from the edge node where the computation is hosted. This is not good for

latency-critical applications. We can improve the Quality of Service (QoS) by moving the

computation to another edge node that is closer to the user. Another key challenge in edge

computing is resource management [2]. The physical resources on an edge node are often

shared among multiple tenants. If one of the tenants uses an excessive amount of resources,

it might affect the performance of the other applications running on that node. The desired

QoS can be delivered by moving the application to another node that has enough resources.

The applications run in virtualized environments on the edge. Container technology (OS-

level virtualization) has become a very popular lightweight alternative to virtual machines

due to their ease of deployment and superior performance [3]. For containers running on the

edge nodes, live migration can be performed to resolve the aforementioned problems arising

from user mobility or multi-tenancy. The application is migrated with all of its runtime

state and restored at the destination.

Migration over the network comes with an element of risk. A migration attempt might

fail for a variety of reasons - for example, the target node might crash while the migration

is taking place. If an attempt fails, we could restart and try migrating to another node in

the network. Such an approach might work well for non real-time applications without any

deadlines. However, it is not suited for safety or mission critical applications that often have

response time requirements in milliseconds. It is also hard to guarantee that applications
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will meet their real-time requirements while running at the destination node.

We can perform the live migration in a more fault tolerant manner by attempting migra-

tions to multiple destinations in parallel. In order to do this, we must identify a set of nodes

that have sufficient resources to run the container. In this work, we show how this can be

done by tracking and forecasting the resources available on the nodes in the network.

Research Goal. This thesis makes the following hypothesis:

it is possible to forecast the future resource availability of remote nodes by

monitoring their system states and resource usage; the forecasts can enable

additional capabilities such as fault tolerant migration, load balancing, etc.

There are three questions that this thesis serves to answer:

1. How do we profile containers and remote hosts to track their resource usage?

2. How can we project the resource usage to model the system state after migration?

3. How can we use the forecasts to identify nodes that have enough resources to run the

real-time container?

Contributions. The main contributions of this work can be summarized as:

• Development of a monitoring framework that can track the container and nodes.

• Design of an analysis engine that uses the information collected to forecast the resource

availability and plan a reliable migration of real-time containers.

• Implementation and evaluation of our proposed framework.

Outline. The rest of this thesis is organized as follows. Chapter 2 provides some back-

ground information related to this work. In chapter 3, we describe the overall design of our

framework and list the functions of each component in our system. Chapters 4-6 explain

each component of our framework in detail. In chapter 7, we describe the experiments we

ran and present our results. Chapter 8 talks about other research related to this work. In

chapter 9, we discuss the limitations of our work and possible future directions.
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CHAPTER 2: BACKGROUND

In this chapter, we provide some background information on virtualization and two sta-

tistical models we have used for fitting the data (Chapter 5).

2.1 VIRTUALIZATION

Virtualization has been widely used in the industry. It provides a number of benefits

ranging from reduced upfront and operating costs to dynamic scaling of allocated resources.

There are two main virtualization technologies that have become popular over the years -

virtual machines (VMs) and containers. Figure 2.1 shows how these two technologies differ

in their architecture.

Host OS 

libs & bins

App App App

Physical Hardware

Hypervisor 

libs & bins

App

libs & bins

App App

Guest OSGuest OS Guest OS

OS 

libs & bins

App App App

Physical Hardware

Container Engine 

libs & bins

App

libs & bins

App App

VM1 VM2 VM3

Container1 Container2 Container3

Figure 2.1: Virtual Machines (left) vs. Containers (right)

Virtual machines abstract out the underlying hardware and allow them to be shared among

multiple virtual instances of the system. Each virtual machine can run its own copy of an

operating system. A hypervisor (virtual machine monitor) sits between the host operating

system and virtual machines, and manages resource allocation, communication, etc.

Unlike virtual machines, containers virtualize only the host operating system (OS-level

virtualization). They are much faster [3, 4] and portable as they don’t have a guest operating

system in every container instance. Containers provide a light-weight way to package an

application along with its supporting files.
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Containers have grown in popularity since the introduction of Docker in 2013. Docker [5] is

an open-source platform that allows us to build, test and deploy containerized applications.

Podman [6] is another tool for building containers. It is compatible with Docker and can

launch containers using Docker container images. Unlike docker, podman is daemonless; it

launches containers as child processes. The docker dameon is a single point of failure in

the system. As a result, podman containers are inherently more secure. We use podman

containers in this work.

2.2 ARIMA MODEL

The AutoRegressive Integrated Moving Average (ARIMA) model [7] is a statistical model

that is used for forecasting univariate time series data. An ARIMA model is a combination

of two simpler models:

• An AutoRegressive (AR) model is one in which the value of a variable is estimated

using a linear combination of its previous (lagged) values. In an AR model of order p

(written AR(p)), the value of a variable x at time t can be expressed as:

xt = c+ ϕ1xt−1 + ϕ2xt−2 + ...+ ϕpxt−p + ϵt (2.1)

where xt−1, xt−2, ..., xt−p are p lagged values of x; ϕ1, ϕ2, ..., ϕp are parameters of the

AR model; c is a constant and ϵt is noise.

• A Moving Average (MA) model uses the past prediction errors to forecast a variable.

In a MA model of order q (written MA(q)), the current value can be expressed as a

linear combination of q previous error terms as:

xt = µ+ ϵt + θ1ϵt−1 + θ2ϵt−2 + ...+ θqϵt−q (2.2)

where ϵt, ϵt−1, ϵt−2, ..., ϵt−q are prediction errors; θ1, θ2, ..., θq are parameters of the MA

model; µ is the mean of the time series.

An ARMA(p,q) model [8] is a combination of an AR(p) and MA(q) model and can be

represented mathematically as:

xt = c+

p∑
i=1

ϕixt−i + ϵt +

q∑
i=1

θiϵt−i (2.3)
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The observations are differenced to produce a stationary time series. A time series is said to

be stationary if its properties are stable over time i.e., they remain same regardless of when

series is observed. In other words, the time series is devoid of any seasonality. The number

of times the series is differenced is the order of differencing (d) of the ARIMA(p,d,q) model.

2.3 LEAST SQUARES FITTING

Consider n data samples x1, x2, x3, x4, ..., xn collected at times t1 through tn. We would

like to find a polynomial of degree k (with k < n), that best fits this series of data points.

A degree k polynomial has the form:

x = a0 + a1t+ a2t
2 + a3t

3 + ...+ akt
k (2.4)

where a0, a1, ..., ak are constants. The residual (difference between the actual and estimated

value) for a data point at time ti is ri = xi − x̂i = xi − (a0 + a1ti + ...+ akt
k
i ). The values of

the coefficients for the best fit curve are obtained by minimizing the sum of squares of the

residuals [9], computed as:

E =
n∑

i=1

r2i =
n∑

i=1

{
xi − (a0 + a1ti + ...+ akt

k
i )
}2

(2.5)

To find the values of the coefficients at which E attains it minimum value, we equate the

partial derivatives of E with respect to each aj to 0 [10], i.e.,

∂E
∂aj

= 0, ∀j ∈ {0, 1, 2, ..., k} (2.6)

2
n∑

i=1

{
xi − (a0 + a1ti + ...+ akt

k
i )
}
· (−tji ) = 0, ∀j (2.7)

This produces a system of k + 1 equations that can be expressed in matrix form as follows:

∑n
i=1 t

0
i

∑n
i=1 t

1
i

∑n
i=1 t

2
i . . .

∑n
i=1 t

k
i∑n

i=1 t
1
i

∑n
i=1 t

2
i

∑n
i=1 t

3
i . . .

∑n
i=1 t

k+1
i∑n

i=1 t
2
i

∑n
i=1 t

3
i

∑n
i=1 t

4
i . . .

∑n
i=1 t

k+2
i

...
...

...
. . .

...∑n
i=1 t

k
i

∑n
i=1 t

k+1
i

∑n
i=1 t

k+2
i . . .

∑n
i=1 t

2k
i


×



a0

a1

a2
...

ak


=



∑n
i=1 xi∑n
i=1 xiti∑n
i=1 xit

2
i

...∑n
i=1 xit

k
i


(2.8)
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The augmented matrix for this system is,

M =



n
∑n

i=1 ti
∑n

i=1 t
2
i . . .

∑n
i=1 t

k
i

∑n
i=1 xi∑n

i=1 ti
∑n

i=1 t
2
i

∑n
i=1 t

3
i . . .

∑n
i=1 t

k+1
i

∑n
i=1 xiti∑n

i=1 t
2
i

∑n
i=1 t

3
i

∑n
i=1 t

4
i . . .

∑n
i=1 t

k+2
i

∑n
i=1 xit

2
i

...
...

...
. . .

...
...∑n

i=1 t
k
i

∑n
i=1 t

k+1
i

∑n
i=1 t

k+2
i . . .

∑n
i=1 t

2k
i

∑n
i=1 xit

k
i


(2.9)

The augmented matrix M can be transformed to its reduced row echelon form using

Gauss-Jordan elimination [11, 12]. For every matrix, the reduced row echelon form is unique

and does not depend on how the row reduction is performed. Once we compute the reduced

form, the last column gives the values of the coefficients a0 through ak.
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CHAPTER 3: SYSTEM DESIGN

The system consists of a set of heterogeneous nodes with different resource capacities.

We assume a closed system where the IP address of each node in the system is known in

advance. New nodes cannot enter the system at any point in time. However, existing nodes

can go offline (due to a crash or network failure) and come back online later. Nodes can

communicate and exchange information with any other node in the system.

The application with timing requirements executes a container that is running on a node.

The container consumes resources such as CPU and memory for executing the application.

When we migrate the container to a different node in the network, it is important to ensure

that the destination node has sufficient resources to allow the container to run smoothly

while meeting the real-time guarantees of the application running in it.

Node 1

Analysis Engine

Prediction Framework

Monitoring Framework
Files

Migration Executor 
(CRIU)

Node 3

Node 2

Node N

Node i

...

Container

...

Potential Destinations

Figure 3.1: Overall architecture of our framework

Figure 3.1 shows the architecture of our framework for migration. Here, the system has

N nodes and the podman container [6] (to be migrated) is running on node 1. There are

four main components that work together to migrate the container:

• Monitoring Framework. Records the resource usage statistics of the container and

resource availability of the node. It also collects information regarding the resource

availability of the other nodes. In addition to this, the monitoring framework keeps

7



track of the status of the network to identify any targets that might be offline and

unsuitable for migration.

• Prediction Framework. Uses the information collected by the monitor to predict

the resource availability at the nodes.

• Analysis Engine. Analyzes the data recorded for node 1, to figure out if and when

there is a need for migrating the container. It also uses the forecasts of the resource

availability on the other nodes to determine a subset of nodes that are suitable targets

for migration.

• Migration Executor. Handles the live migration process. It uses CRIU [13] pre-

dump to dump the container’s memory pages, which are then copied to the destination.

The migration executor checkpoints the application at the source node and syncs the

container file systems at the source and destination. The container is later restored

(from the checkpoint) at the destination.

Multiple destinations are selected from the ranked list produced by the analysis engine.

The migration executor initiates migration to all these destinations in parallel. When any

attempt succeeds, the migration executor is notified and it kills the other migrations.

The monitoring framework, prediction framework and the analysis engine are described

in chapters 4 through 6. The migration executor is not part of this thesis.
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CHAPTER 4: MONITORING FRAMEWORK

The monitoring framework allows us to profile the containers and nodes in the network.

Proper monitoring of the available resources is important as it allows us to identify any

machine that is overloaded and offload some of the computation to other machines not at

their maximum capacity. Resource monitoring has been a topic of interest in the industry and

research for quite some time. Some of the available monitoring solutions collect information

from API endpoints [14, 15], while others extract the data from the root file system [16].

When we monitor the system for an extended period of time, the large amounts of data

captured can cause the logs to grow very fast. Storage space becomes an obvious concern

when we have to log the resource usages for all hosts and running containers for long periods

of time. So, we use a custom framework that monitors the host and containers running in

the network and log only the information needed for planning the migration. The framework

collects CPU and memory data to keep track of the resource usage. The network bandwidth

from the source to every other node is also tracked.

A good monitoring solution should be able to support data collection at a good frequency

and do this for a long period of time without human intervention [17]. Also, the monitoring

framework should not perturb the behaviour of the system being monitored [18]. The mon-

itoring should system run as a background task without enhanced priority, ensuring that it

does not interfere with the foreground tasks.

Figure 4.1 shows the overall design of our monitoring framework. Our monitoring system

has five components:

1. Container Monitor – to log the resource usage (CPU and memory) of podman con-

tainers running on a node.

2. Host Monitor – to track the runtime statistics (CPU and memory availability) of the

node on which it is running.

3. Host Liveness – to identify if any of the nodes have gone offline.

4. Network Bandwidth Monitor – to measure the bandwidth available between the source

node of the container and other nodes.

5. Data Collection Agent – to collect the logs generated at other nodes in the network.

In this chapter, we describe each of these components in more detail.

9



Node 1
Monitoring Framework

Bandwidth Monitor
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write 
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Figure 4.1: Overall design of the monitoring framework

4.1 CONTAINER MONITOR

The container monitoring agent collects and records runtime statistics for podman con-

tainers running on the host. The metrics collected by this module are the percentage CPU

usage (i.e. percentage of the host’s CPU consumed by the container) and the memory usage.

These metrics are obtained once every second by performing a call to the podman stats

API [19] that prints out detailed information about several runtime metrics of all running

containers. We extract the relevant information for the target container from this output.

In order to handle multiple containers, we initiate parallel instances of the call. At any

point in time, we have only one thread for each podman container running on that node.

For every new container, information starts getting recorded automatically as soon as the

container is launched. The thread continues to record the information till the container has

exited or is removed.

The metrics collected are written to files, one for each container. The CPU and memory

usages are reported with a timestamp indicating when the data was collected. This allows

the prediction framework to train a model of the variation of the resource usage with time.
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4.2 HOST MONITOR

The purpose of this module is to record the resources available on a node. Like the

container monitor, this module tracks only the CPU and the memory. The host monitor

retrieves the relevant runtime statistics by accessing specific control files present in the root

file system of the node.

The /proc/stat control file records the number of CPU cycles spent by the processor

doing different kinds of work - user mode, kernel mode, idle time, I/O wait times, interrupt

handling times, etc. The total cycles consumed is computed as the sum total of the cycles

spent for each kind of work. The values recorded in the file are the cycles spent since the

last boot. So, the cycles spent doing a particular kind of work in 1 second can be estimated

by differencing the values collected in 2 successive iterations.

The idle CPU on the host at any time t is calculated as follows:

(% CPU idle)t =
(cyclesidle)t − (cycleidle)t−1

(cyclestotal)t − (cyclestotal)t−1

× 100 (4.1)

where (cyclesidles)i and (cyclestotal)i are the idle cycles and total number of cycles consumed

till time instant i. The CPU availability can then be computed as,

(% CPU available)t = 100− (% CPU idle)t (4.2)

Similarly, the memory information is available in the /proc/meminfo control file. Memory

available for use by new processes can be read from the MemAvailable field in this file.

The host monitor collects and records the CPU and memory statistics once each second.

These values are recorded with timestamps for use by the analysis engine.

4.3 HOST LIVENESS

The liveness module provides a mechanism for monitoring the other nodes’ health and

reporting them to the analysis engine for use in determining potential destinations for mi-

gration.

It checks if the other nodes in the network are online or offline. In order to do this, the

source node pings other nodes, once per second. One packet of size 64 bytes (56 bytes of

data + 8 bytes ICMP header) is sent to each node during the process. If the other node

does not respond to the ping within a time frame of 0.1 s, it is assumed to be offline. The

status of each node is written to a file, for later use.
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4.4 NETWORK BANDWIDTH MONITOR

The network bandwidth plays a crucial part in determining the speed at which the migra-

tion happens. So, it must be considered while making migration decisions. The monitoring

framework computes and records the bandwidth available between the source and every

other node in the network.

The bandwidth available between two nodes is tracked as shown in Algorithm 4.1. The

iperf3 tool [20] is used to estimate the bandwidth. Each node in the network runs a server

that listens for connections from clients on port 12345. The source node creates a new

iperf3 client object and tries to establish a connection to the iperf3 server running at

the target node. Once a connection is set up, test data is sent to the server (to measure

the upload speed of the client). The result of this test is available in json format and has

information about the number of bits sent out every second. This is used to estimate the

bandwidth between the source and other nodes as:

Estimated bandwidth =
bits per second (sent)

8 · 1024 · 1024
MB/s (4.3)

Algorithm 4.1: Bandwidth Monitor

Input: File with IP addresses of nodes

hosts← IP addresses of online hosts

for host ∈ hosts do
client← iperf3 client

set up connection to server at host : 12345

result← client.run()

extract bits per second from result json

bandwidth← bits per second
8·1024·1024 MB/s

write bandwidth to file
end

4.5 DATA COLLECTION AGENT

The host monitor running on every node computes the CPU and memory availability and

writes these values to a file. These data points have to be shared with the source node so

that it can make an informed choice about the migration targets. This is done by the data

collection agent.
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This module is run at the source node, once every 5 seconds. Since the host monitor

records 1 reading every second, we have 5 new resource availability samples generated at

each node in the network. Sending the full statistics file in every cycle is a wastage of network

bandwidth and is not a good option. Instead, the source node maintains an extended history

of the resource availability for each node in the network. We send only the 5 most recent

values to the source node in each update cycle. This is accomplished using the rsync utility

[21] that allows us to sync local and remote copies of files efficiently by transferring only the

differences between them.

Conclusion. In this chapter, we presented the design and implementation of our moni-

toring framework. The framework showed how we could log the resource consumption of

the container and hosts in the system. We also showed how the status of the nodes in the

network could be monitored. This answers the first research question raised in Chapter 1.
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CHAPTER 5: PREDICTION FRAMEWORK

Forecasting of resources is important as it allows us to schedule the containers more

effectively. For example, consider a scenario where there is a container C (with strict timing

requirements) running on host H. Assume H gets overloaded after some time. If we are able

to predict this ahead of time, we can migrate C to a different node before there is a shortage

of computational resources.

Current techniques for migration perform schedulability analysis using the utilisation val-

ues of the system at the instant the analysis is performed. In reality, the utilisation values

might have changed by the time migration happens. For example, if the utilisation of the

destination machine goes up during that time, it may not have enough resources to accom-

modate the incoming container. Therefore, it is better if we predict the values of utilisation

after migration and check schedulability using these estimates.

The resource usage of systems can vary rapidly. As a result, it is challenging to predict the

resource utilization accurately. We use two models, ARIMA and least squares curve fitting

for forecasting resource availability. The ARIMA model takes into the account the extended

history of resource availability. Curve fitting, on the other hand, is trained on recent samples

and focuses on recent trends in the data.

5.1 ARIMA MODEL

The monitor records the timestamps along with each observation. The resource statistics

file is pre-processed to translate these timestamps to the time elapsed since the first reading.

The ARIMA model works only for equally-spaced data points. Even though, the statistics

are collected each second, there might be minor delays while writing them to the file system,

resulting in unevenly-spaced samples. In order to resolve this, we round the time elapsed to

the nearest natural number. Any missing data points are estimated by interpolation, i.e. if

we have a reading x1 at time t and x2 at time t+ 2, then the missing value at time t+ 1 is

estimated as x1+x2

2
.

5.1.1 Grid Search

We perform a grid search to find suitable values for the three hyperparameters: p, d and q.

The goal of this optimization is to find parameters that result in the best performing model.

First, we define a search space P ×D × Q (3-dimensional grid). There are two versions of
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the grid search we use:

• Grid Search with Walk-Forward Validation. For each 3-tuple (p, d, q) in the

grid, we train an ARIMA model on 80% of the samples present in the dataset. We use

the remaining 20% for walk-forward validation. Root Mean Square Error (RMSE) is

used to compare the models. Algorithm 5.1 shows how we do walk-forward validation.

The trained ARIMA model is used to make a 1-step prediction. The residual (predic-

tion) is computed and used to update the squared error. In each successive iteration,

we move one element from the test set to the training set and re-train the ARIMA

model. This continues until we exhaust the initial test set. The RMSE is computed

from the accumulated squared error as:

RMSE =

√
accumulated squared error

0.2 ·N
(5.1)

where N is the number of samples in the original data set.

Once the grid search has finished running, we get the RMSE values for all models

in search space. We select the model with the lowest RMS error and use it to make

forecasts about the data.

Algorithm 5.1: Walk-Forward Validation for ARIMA(p,d,q)

Input: Host stats file, p, d, q

Output: RMSE

data← read input file

N ← length of data

test← data[0.8N : N ]

Squared error, SE ← 0

for i← 0 to 0.2N do
Fit ARIMA(p, d, q) on data[0 : 0.8N + i]

x̂← Predicted value at the next step

SE ← SE + (x̂− test[i])2

end

RMSE ←
√

SE
0.2N

return RMSE

• Grid Search without Walk-Forward Validation. For each 3-tuple (p, d, q) in

the grid, we train an ARIMA(p,d,q) model on the entire dataset. Akaike Information
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Criterion (AIC) [22] is used as the metric to evaluate the models. AIC is a metric that

estimates how well the model fits the training data. It uses a model’s log-likelihood to

evaluate the quality of time-series models. It is computed as:

AIC = −2 ln(L) + 2k (5.2)

where L is the maxima of the likelihood of the model and k is the number of parameters

in the model. A model with a lower AIC is a better estimator of the data than another

one with a bigger AIC. Once the grid search has successfully completed, we select the

model with the lowest AIC value.

5.1.2 Reduced Hyperparameter Search

Performing a search for 3 parameters in a reasonably sized 3-dimensional grid is time-

consuming (Table 7.4). In order to do it faster, we reduced the search space by estimating

the order of differencing and the lag order. Once we have values for p and d, the problem

simplifies to a 1-dimensional search for q, which is faster (shown in chapter 7).

We estimate the order of differencing (d) as shown in Algorithm 5.2. d is the minimum

number of times the data has to be differenced to make it stationary.

Algorithm 5.2: Finding the Degree of Differencing

Input: Time series

Output: Degree of differencing (d)

α← 0.05

d← 0

while True do
result← ADF(series)

p val← result[1]

if p val ≤ α then
break

end

difference the series

d← d+ 1
end

return d

We use the Augmented Dickey Fuller (ADF) test [23] to test the null hypothesis that our
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data has a unit root (in other words, not stationary). If the test results in a p-value statistic

smaller than our significance level, we can infer with 95% confidence that the time series

is stationary. If the test indicates that the series is not stationary, we difference the data

and repeat the process. The algorithm returns the value of d at which the series becomes

stationary for the first time.

The next step is to determine the lag order. We use the partial autocorrelation of the

data to figure out the number of lag terms that are significant. This is done as shown in

Algorithm 5.3. We use the 95% confidence intervals:

α = ± 2√
N

(5.3)

where N is the number of samples in the time series [24]. The time series is differenced d

times (computed earlier) to make it nearly stationary. The partial autocorrelation of the

differenced series is then computed. We consider only lags whose autocorrelation value is

beyond the significance level for estimating p.

Algorithm 5.3: Finding the Lag Order

Input: Differenced time series

Output: Lag order (p)

α← 2√
len(series)

pac← PACF (series)

p← 0

for i← 1 to len(pac) do

if | pac[i] |> α then
p← p+ 1

else
break

end

end

return p

Once we have estimated the values of p and d, we use them to perform a reduced grid

search. We do a 1-dimensional search for the value of q. For each q considered, we train an

ARIMA(p, d, q) model. Akaike Information Criterion (AIC) is used to compare the quality

of the models obtained. We select the model that yields a fit with the lowest AIC.
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5.2 CURVE FITTING

The first step is to identify the degrees of two polynomials that best describe the CPU and

memory availability of the node. This is done as described in Algorithm 5.4. Only curves

of degrees 1 to 10 are considered for this process. The complexity of the Gauss-Jordan

elimination process increases with the size of the augmented matrix. Higher degree curves

lead to larger augmented matrices that take more time to solve.

Algorithm 5.4: Determining the Degree of the Best Polynomials

Input: Host stats file

Output: Degrees of the best polynomials for CPU and memory stats

data← last 20 lines of the file

train← data[0 : 18]

test← data[18 : 20]

for k ← 1 to 10 do
Fit 2 degree k polynomials on CPU and memory data in train

Predict 19th and 20th values

Compute RMS errors over 19th and 20th values (equation 5.4)

end

kcpu ← degree of CPU curve with least RMS error

kmem ← degree of memory curve with least RMS error

return kcpu and kmem

20 most recent data samples (pre-processed) are read from the file. We use 90% of these

samples for fitting the curve. The remaining 10% (2 samples) are used for testing. We use

a 90 − 10 split, because the curve fitting model is used to account for recent trends in the

resource availability. By including 90% of these samples in the training set, we make sure

the model fits the recent data points reasonably well.

For each degree k, the coefficients of the best fit polynomial are obtained using the ap-

proach described in chapter 2. This polynomial is then used to predict the next 2 values -

x̂19 and x̂20. Root Mean Square (RMS) error is used to compare the accuracy of the models

obtained. We select the polynomial with the lowest root mean square error and use its

degree to estimate the future data points. If x19 and x20 (in test) are their actual values,

the RMS error for this degree k polynomial is computed as:

RMSE =

√
(x19 − x̂19)2 + (x20 − x̂20)2

2
(5.4)

18



This is done for both CPU and memory values. The degrees output by Algorithm 5.4 (kcpu

and kmem) are then used to fit two polynomials on the 20 most recent CPU and memory

data values. Let

f1(t) = a0 + a1t+ a2t
2 + a3t

3 + ...+ akcput
kcpu (5.5)

be the best curve for the CPU availability, and let

f2(t) = b0 + b1t+ b2t
2 + b3t

3 + ...+ bkmemt
kmem (5.6)

be the corresponding curve for the memory data. The CPU and memory availability at some

time τ are estimated as f1(τ) and f2(τ) respectively.

Conclusion. In this chapter, we presented two approaches used for fitting the data col-

lected by the monitoring framework. The models obtained after learning can be used to

predict the state of the system. This answers the second research question (Chapter 1) and

validates the part of the hypothesis related to forecasting the resource availability of the

nodes in the network.
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CHAPTER 6: ANALYSIS ENGINE

The analysis engine uses the resource statistics collected by the monitoring framework to

make all migration-related decisions. It carries out three main functions:

1. maintain a ranked set of potential destination nodes that have enough resources to

host the container.

2. determine if and when there is a need to migrate the container

3. when there is a need for migration, ensure that the chosen nodes still have enough

resources for the container to meet its computational and timing requirements.

In this chapter, we describe why each of these functions is important and how the analysis

engine uses the information to accomplish these tasks.

6.1 RANKING POTENTIAL DESTINATIONS

Before selecting a node as a potential destination for migration, we need to make sure

that it has enough resources to meet the resource demands of the container. We use the

notion of eligibility sets [25] to refer to the subset of nodes that satisfy the above condition.

Algorithm 6.1 shows how we create the eligibility set.

The data collection agent collects the resource availability information from the other

nodes in the network. We use the data collected by the agent to train ARIMA models for

predicting the future availability on these nodes. Let x̂ and ŷ be the estimated CPU and

memory availability of a node. The resource availability might change rapidly over time.

We consider the standard deviation over the recent samples to reduce the impact of recent

fluctuations on the estimated availability [25]. If σ1 and σ2 are the standard deviations of the

CPU and memory availability (computed over the last 10 readings), the node is considered

an eligible target for migration if:

(x̂− σ1 > rcpu) ∧ (ŷ − σ2 > rmem) (6.1)

Here rcpu and rmem are the maximum CPU and memory needs of the container on that node.

Once we know the set of nodes that have enough resources to run the container, we

create a ranked list of targets. We use the bandwidth information collected by the network

bandwidth monitor to rank the nodes in the eligibility set. The nodes are ranked in the

descending order of the bandwidth between the source (running the container) and that
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Algorithm 6.1: Finding Eligible Migration Targets

Input: Node stats file

Output: List of eligible destinations

hosts← IP addresses of online hosts

E ← ϕ

for host ∈ hosts do
data← read host’s resource statistics file

train an ARIMA model on data (reduced hyperparameter search)

x̂, ŷ ← predicted CPU and memory availability

σ1, σ2 ← standard deviation over last 10 CPU and memory values

if (x̂− σ1 > rcpu) ∧ (ŷ − σ2 > rmem) then
E ← E ∪ {host}

end

end

return E

node. Nodes with higher network bandwidth are preferred to minimize the time taken to

transfer the dumped memory images to that node.

The ranked list of nodes obtained is written to a file for use by the migration executor.

This component is run once every 10 seconds to produce a new list of eligible targets. The

file is then updated to reflect the new eligibility information.

6.2 TRIGGER FOR MIGRATION

If we want to keep a container running smoothly, we have to initiate migration before

we reach a scenario where the current node can no longer sustain its resource needs. This

can be achieved by repeatedly forecasting the resource availability on the source node and

checking if it falls below the requirement.

To do this, we run the curve fitting algorithm on the 20 most recent resource statistics

recorded by the host monitor running at the source node. The algorithm is run on the last

20 samples to account for recent trends in the resource availability. Once the degrees of the

best fitting polynomials (for CPU and memory) are obtained, we use them to predict the

resource availability 2 seconds into the future. This is a safe margin that allows us enough

time to migrate and restore the container at the destination. Like the other nodes, we also

use the standard deviation over 10 most recent values to mitigate the effects of fluctuations
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on our predictions.

If x̂ and ŷ are the CPU and memory estimates; σ1 and σ2 are the standard deviations of

the CPU and memory availability; and rcpu and rmem are the container’s resource needs, we

trigger the migration if:

(x̂− σ1 ≤ rcpu) ∨ (ŷ − σ2 ≤ rmem) (6.2)

This process is repeated once every second on 20 recent data samples recorded by the host

monitor. This includes the most recent sample recorded by the host monitor running on

that node. If the aforementioned condition fails at any point, it indicates that the current

host node would not be able to meet the application’s resource requirements in the future,

in which case we initiate migration.

6.3 VALIDATING THE ELIGIBILITY SET

The eligibility sets are created by running the ARIMA model once every 10 seconds. The

trigger for migration might arrive anytime before the next invocation of the ARIMA model.

The data collection agent collects the runtime statistics from the other nodes, once every 5

seconds. So, depending on when the trigger arrives, we may or may not have received a new

batch of resource availability information. We consider 2 cases:

• Case 1: A new batch of data has been collected from the other nodes

The status of the nodes might have changed since we created the eligibility set. As a

result, the ranked lists of targets might be outdated. For each node, the curve fitting

algorithm is run on the 20 most recent data samples. We use the faster curve fitting

approach (instead of the ARIMA model) because this validation step is in the critical

path of the migration. The degrees of the best fit curves for CPU and memory are

computed and used to forecast the resource availability. We use these predictions and

the new standard deviations to recompute the eligibility set (as described in section

6.1). The nodes are ranked again to reflect their latest status.

• Case 2: No new data samples have been collected

In this case, the nodes in the eligibility set are still assumed to have resources to run

the container. However, the status of the network might have changed. For nodes in

the eligibility set, we check if they are online by analyzing the output of the liveness

monitor. Nodes that have gone offline are removed from the eligibility set. The online

nodes are re-ranked based on the latest bandwidth information collected by the network

bandwidth monitor.
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The newly created ranked list is then used by the migration executor. It selects a subset of

these eligible nodes as potential destinations for migration. The application is checkpointed

at the source node and the dumped memory pages are copied to each of the selected nodes.

This is done to ensure that the migration is fault-tolerant. Even if any of the potential

targets crash or a part of the network fails, migration proceeds to completion elsewhere.

The migration executor is notified when any migration attempt succeeds. The pending

attempts are killed to free the system resources.

Conclusion. In this chapter, we described how the analysis engine uses the forecasts for

selecting potential targets and triggering the migration. This validates the part of the

hypothesis related to the use of forecasts from the predication framework. Section 6.1 of this

chapter answers the third research question raised in Chapter 1.
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CHAPTER 7: EVALUATION

7.1 SYSTEM SPECIFICATIONS

To evaluate the different components of our system, we conducted experiments using the

nodes listed in Table 7.1. The system consists of 5 nodes with different CPU and memory

capacities. The nodes are Ubuntu 20.04 virtual machines running on two servers.

Table 7.1: System Specifications

Host CPU(s) Memory
Operating
System

Processor Type

H1 8 48 GB Ubuntu 20.04 Intel Xeon E3-1270 v6 at 3.80 GHz

H2 4 12 GB Ubuntu 20.04 Intel Xeon E3-1270 v6 at 3.80 GHz

H3 4 16 GB Ubuntu 20.04 Intel Xeon E3-1220 v5 at 3.00 GHz

H4 4 6 GB Ubuntu 20.04 Intel Xeon E3-1270 v6 at 3.80 GHz

H5 2 4 GB Ubuntu 20.04 Intel Xeon E3-1220 v5 at 3.00 GHz

We used the progrium/stress image [26] to launch a podman container on node H1 (i.e.,

H1 is the source node). The container has 4 CPU stressors and 2 memory workers running

inside it.

7.2 CONTAINER RESOURCE NEEDS

A container might need different amounts of resources on different nodes. The number

of CPU cycles consumed might vary depending on underlying architecture. For example, if

there are more cache misses on a machine, the cycles needed to finish execution might be

more than on another machine with fewer cache misses.

We assume that the maximum resource usage of the container on each node is known

ahead of time. We have a closed system where no new nodes enter the system. For each

node in our system, we launched an instance of the container and used the container monitor

to collect 15 minute traces of the resource usage.

The observed mean, standard deviation (SD) and maximum value of the CPU and memory

usages are listed in Table 7.2. The analysis engine uses the maximum usage values listed

here while making migration decisions.
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Table 7.2: CPU and Memory Usage of the Container on Each Node

Host
CPU Usage (%) Memory Usage (MB)

Mean SD Max Mean SD Max

H1 5.499 2.59 9.98 133.477 52.215 256.8

H2 4.92 2.351 9.92 130.212 54.145 258.4

H3 5.457 2.602 9.98 130.125 54.199 257.7

H4 5.49 2.609 10 130.525 54.029 255.8

H5 5.526 2.603 10 127.086 56.223 258.1

7.3 LOAD CONFIGURATIONS

The nodes in the system may have a variety of different tasks running on them, consuming

different amounts of hardware resources. In order to simulate some workloads, we used the

stress-ng workload generator [27]. stress-ng has configurable parameters that allows

us to impose different CPU and memory stress on the nodes. We used 10 different load

configurations for evaluation. The purpose of these configurations is to obtain resource

statistics with different trends, which in turn allows us to evaluate if our prediction framework

can make good forecasts for the resource availability. The configurations are listed in Table

7.3. In the first configuration, we have 4 instances of the CPU stressors spinning on sqrt()

and 2 memory workers writing 256 MBs each. In configuration 2, we have an additional load

on the system towards the end of the observation period. In configurations 7 and 8, stress is

only applied at certain times. For the last 2 configurations, we used the stress-ng matrix

stressors that perform several matrix operations on large floating point arrays.

These loads were run on node H2. For each load configuration, we ran the host monitor

and collected the resource availability statistics. The data collection agent on node H1

obtains the data recorded by the host monitor running on H2. The raw data is processed to

obtain samples with equally-spaced time gaps.

7.4 ARIMA MODEL

7.4.1 Comparing the Model Selection Methods

To evaluate the performance of the ARIMA model, we ran it on 10 minute traces obtained

from node H2. We tried three different methods for model selection to compare their accuracy

and run times.
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Table 7.3: Load Configurations

stress-ng Load

CPU
Workers

Memory
Workers

MB Written
per Memory
Worker

Configuration

1 4 2 256 default

2 4 2 256 additional load for the last 4s

3 2 4 256 default

4 3 6 256 default

5 6 3 256 default

6 4 8 512 default

7 4 2 256
alternating load/ no load
(1min period)

8 2 2 256
alternating load/ no load (ran-
dom times)

9 1 instance of matrix stressor

10 2 instances of matrix stressor

• Grid Search with Walk-Forward Validation. We did a 5 × 3 × 4 grid search

to find a good set of parameters for the ARIMA model. For each 3-tuple (p, d, q), the

ARIMA model is trained on 80% of the samples in the data file. The remaining 20%

are used for walk-forward validation. The model is iteratively refined by adding a new

element to the training set in every cycle as shown in Algorithm 5.1. We find the

model with the lowest value of the RMS error.

• Grid Search without Walk-Forward Validation. The model is trained on the

entire dataset. Akaike Information Criterion (AIC) is used as the metric to decide

which model suits the data best. We perform a 5× 3× 4 grid search and identify the

model with the lowest AIC.

• Reduced Hyperparameter Search. We follow the approach discussed in the chap-

ter 5. We first determine the order of differencing using the ADF test in Algorithm

5.2. The lag order p is determined from the partial autocorrelation (PAC) of the data

as described in Algorithm 5.3. Figure 7.1 is the PAC plot showing the partial autocor-

relation values for the first 20 lags of the CPU availability data from node H2 (under

load configuration 1). The X-axis is the lag and the Y-axis is the PAC value. The

significance level for this dataset is computed using Equation 5.3. The PAC of lag 0 is
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Figure 7.1: Partial autocorrelation plot for the CPU available on node H2 (under load 1)

Table 7.4: Training the ARIMA Model on CPU Data from Node H2

Method
Search Space

Best Params Time (s)
p d q

Walk-Forward Validation,
Minimizing RMSE

0,1,2,
3,4

0,1,2
0,1,2,
3

p: 0, d: 1, q: 3 1178.169

No Walk-Forward Valida-
tion, Minimizing AIC

0,1,2,
3,4

0,1,2
0,1,2,
3

p: 3, d: 1, q: 3 11.819

Reduced Search (for q),
Minimizing AIC

- -
0,1,2,
3,4

p: 4, d: 1, q: 3 1.772

always 1. The next 4 lags are below the lower significance level −0.082 (shown in red).

Lag 5, however, is not significant. So, the lag order for this time series is taken to be

4. For q, we do a reduced 1-dimensional grid search. The models obtained during this

process are ranked based on their AIC value. Lower the value of the AIC, the better

the model.

The results obtained on training the ARIMA using these 3 methods are summarized in

Table 7.4. The time recorded in the table is the total time taken for finding the best

parameters. It is observed that performing a grid search with walk-forward validation is

computationally expensive and takes about 20 minutes for a dataset containing 600 data

points. Without walk-forward validation, the optimal model can be selected about 100

times faster. The model selection is even quicker when we do a reduced grid search - it took
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Table 7.5: RMSE and AIC for the Models Selected by the 3 Methods

Model RMSE AIC

ARIMA(0,1,3) 10.105 3686.441

ARIMA(3,1,3) 10.521 3667.859

ARIMA(4,1,3) 10.76 3669.609

only 1.772 seconds to find the best model for the CPU data.

In order to compare the accuracy of the models selected by these 3 methods, we computed

their root mean square error and AIC. The experiment is performed using the CPU data

from node H2, under load 1. For finding the RMSE, the models are trained on 80% of the

data. The remaining 20% is used in the computation of the RMSE. The results are shown

in Table 7.5. It is observed that there is no large disparity between the accuracies of the 3

models. The first approach yields the model with the lowest RMSE. Among these 3 models,

the one chosen by the reduced grid search had the highest RMSE.

The performance of the model selected by the reduced grid search is shown in figure 7.2.

The X-axis shows the data samples and the Y-axis is the CPU availability. The model is

trained on 80% of the samples and tested on the remaining 20%. The blue, orange and

green lines represent the training data, test data and predictions respectively. It is observed

that the predictions follow the test data closely. However, the CPU data fluctuates a lot

resulting in a worse RMSE. 3-dimensional grid search results in a model with a lower root

mean square error, but the algorithm takes significantly more time to complete. In other

words, we tradeoff a small amount of accuracy for a much better run time.
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Figure 7.2: Plot showing the performance of the ARIMA(4,1,3) model (load 1)
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7.4.2 Estimating the Total Time Taken for CPU and Memory Data

In order to estimate the average time taken for predicting both CPU and memory avail-

ability of H2, we performed a reduced grid search on 10 traces collected from H2. For each

trace, we ran the experiment 20 times to mitigate the impact of fluctuations in run times

due to external factors. The results of this experiment are shown in Table 7.6. It is observed

that reduced grid search for CPU and memory data takes about 2.713 seconds (average over

10 traces).

Table 7.6: Results Obtained on Running the Reduced Grid Search on 10 Minute Traces

Load
CPU Available Memory Available

Avg. Time (s)
Model AIC Model AIC

1 (4,1,3) 3669.609 (2,0,1) 13410.081 2.499

2 (6,1,1) 2292.084 (4,1,0) 14060.276 4.977

3 (1,0,4) 1789.687 (3,0,0) 13354.52 1.724

4 (1,0,0) -103.119 (3,0,4) 12843.014 1.824

5 (3,0,0) -553.191 (2,0,4) 13001.752 3.069

6 (1,0,0) -844.225 (4,1,0) 13356.485 2.911

7 (2,0,2) 4154.31 (1,0,3) 14309.965 2.17

8 (2,0,3) 3848.253 (2,0,4) 14523.773 3.926

9 (3,0,0) 2930.596 (1,0,0) 13293.29 1.883

10 (1,0,0) 2465.667 (1,0,1) 12636.381 2.15

Mean : 2.713

7.5 CURVE FITTING

The curve fitting algorithm was run on the last 20 samples from 10 minute traces generated

at H2. Table 7.7 provides a summary of the results obtained in the process. In addition

to the Root Mean Square Error (RMSE), the table lists the Root Mean Square Percentage

Error (RMSPE) for the memory data. Let x̂19 and x̂20 be the predictions. The RMSPE is

computed over the last 2 values (say, x19 and x20) as:

RMSPE =

√
(x19− ˆx19

x19
)2 + (x20− ˆx20

x20
)2

2
(7.1)

For each trace, we ran the experiment 20 times and computed the average time over
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Table 7.7: Results Obtained on Fitting 2 Curves on 20 Recent CPU and Memory Samples

Load
CPU Available (%) Memory Available (KB)

Avg. Time (ns)
Deg. RMSE Deg. RMSE RMSPE

1 1 22.512 7 816.774 0.000019 298300

2 1 2.926 9 30916.63 0.000714 304167

3 2 0.051 1 364.43 0.000008 282833

4 1 0 1 112.616 0.000003 333058

5 1 0 2 746.913 0.000017 283806

6 2 0 3 69.253 0.000002 279172

7 2 13.52 2 35706.169 0.000831 328186

8 1 0.056 2 260.489 0.000006 294470

9 1 0.266 1 2780.728 0.000064 287055

10 9 2.915 1 33328.497 0.000772 296233

Mean : 298728

these 20 runs. For configurations 4, 5 and 6, the node was overloaded and 0% of CPU

was available for use by new processes. The curve fitting algorithm predicted this trend

accurately, resulting in no error.

It is observed that fitting 2 curves for CPU and memory data takes about 298728 nanosec-

onds (average over 10 traces). This is significantly faster than the ARIMA model.

7.6 RANKING POTENTIAL DESTINATIONS

We set up four different scenarios to check if the node ranking algorithm works as intended.

For all scenarios, data collected over 10 minutes was used for training the ARIMA models.

A 1-step prediction (1 second ahead) is made and used along with the standard deviation

to determine the eligibility set. Nodes in the eligibility set are ranked on the basis of the

bandwidth available. stress-ng [27] has been used to generate different loads on the hosts.

The four scenarios are:

• Scenario 1. H2, H3, H4 and H5 are online and have enough resources to host the

container. It is observed that all 4 nodes are part of the eligibility set. Also, the nodes

are seen to be ranked in the descending order of their available bandwidth, with H3

being the best target.

• Scenario 2. Scenario 2 has been set up similar (loads) to Scenario 1, except for
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that fact that one of the nodes is offline and does not communicate with the source

node. H2, H4 and H5 are online and have enough resources for container. H3 is offline

and so, the source node H1 does not have any information about its CPU or memory

availability. We observe that H3 is not part of the eligibility set. The other nodes are

ranked as expected.

• Scenario 3. All 4 nodes are online. However, node H4 is overloaded and does not

have enough CPU available to host the migrating container. So, it is not part of

the eligibility set for migration. The other 3 nodes have enough resources to run the

container and so, are part of the eligibility set. H2, H3 and H5 are ranked according

to their bandwidths.

• Scenario 4. H2 is offline. The other 3 are online. However, H5 is fully overloaded

and has no spare CPU available. It is observed that only 2 nodes - H3 and H4 are part

of the eligibility set and they are ranked accordingly.

Table 7.8 presents the results of this experiment. The resource availability values listed

in the table are the estimates (obtained by running the ARIMA model) after 1 second.

The table also contains the standard deviations computed over the last 20 samples. The

bandwidth was the value (in MB/s) recorded by the network bandwidth monitor when the

experiment was run. Rank 1 corresponds to the most preferred target node, while rank 4 is

the least preferred one.

For each scenario, the node selection and ranking algorithm work as expected. Nodes that

are offline or overloaded are not part of the eligibility set. It is also observed that the nodes

in the eligibility set are ranked according to the descending order of the bandwidth from H1

to that node. Nodes with higher network bandwidth are given a higher priority to reduce

the time taken to transfer the dumped memory pages.

7.7 VALIDATING THE ELIGIBILITY SET

Node H2 was stressed with the load configuration 2. The data collection agent on node

H1 collects the availability information from H2 once every 5 seconds. The ARIMA model

is run on 592 samples (after interpolation) collected from H2. A 1-step prediction using the

best ARIMA model suggests that the container can be run safely on H2. Over the course of

the next 5 seconds, H2 is stressed with an additional load, decreasing the CPU availability.

If the trigger for migration arrives after these samples are collected at H1, the curve fitting

algorithm would be run on 20 recent samples.
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Table 7.8: Eligibility Sets and Ranking Produced by the Analysis Engine

Host
CPU (%) Memory (GB)

Bandwidth Eligible? Rank
Avail. SD Avail. SD

1

H2 73.554 0.316 10.274 0.001 70.722 ✓ 2

H3 32.678 3.615 14.119 0.0004 71.883 ✓ 1

H4 23.665 0.13 4.182 0.0004 69.584 ✓ 3

H5 49.602 0.557 2.2 5.09e-6 69.169 ✓ 4

2

H2 73.722 0.331 10.266 0.0001 63.898 ✓ 3

H3 - - - - offline ✕ -

H4 23.821 0.259 4.169 0.0001 73.404 ✓ 2

H5 49.04 0.271 2.136 0.0001 73.784 ✓ 1

3

H2 23.907 0.631 10.25 0.0001 71.963 ✓ 2

H3 73.686 0.278 6.706 0.092 71.181 ✓ 3

H4 0.127 0.451 4.155 0.0003 71.302 ✕ -

H5 49.078 0.246 2.185 4.83e-6 74.178 ✓ 1

4

H2 - - - - offline ✕ -

H3 73.977 0.309 13.854 0.012 75.691 ✓ 1

H4 48.27 0.113 3.656 0.0006 74.631 ✓ 2

H5 0 0 2.646 0.01 74.412 ✕ -
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Figure 7.3: Plot showing the best fit curve obtained from curve fitting
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Figure 7.3 shows the recent CPU usage values and the best fit curve. The CPU usage

is predicted using this best fit curve and used to check if H2 is capable of hosting the

container. The validation module figures out that H2 does not have enough CPU available

for the container and so, removes it from the eligibility set. The results of this experiment

are summarized in Table 7.9.

Table 7.9: Eligibility of Node H2 per the ARIMA and Curve Fitting Models

Model Samples
CPU (%) Memory (GB)

Bandwidth Eligible?
Avail. SD Avail. SD

ARIMA 1-592 23.054 2.265 10.002 0.0003 68.421 ✓

Curve
Fitting

578-597 11.601 5.821 10.343 0.154 71.421 ✕
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CHAPTER 8: RELATED WORK

There have been a wide range of efforts aimed at supporting live migration of virtual

machines in large cloud data centers. The paper by Choudhary et al. [28] provides a com-

prehensive review and comparison of several live VM migration techniques using performance

metrics like migration time, application downtime and the amount of data transferred as a

result of the migration. Container migration efforts are far fewer in number.

Govindaraj et al. [29] proposed a live migration scheme called redundancy migration and

demonstrated it using linux containers (LXC, LXD) for factory automation applications.

The redundancy migration scheme proposed in the paper includes a replay phase where the

destination node replays the packets after the checkpoint, to catch up to the state of the

application at the source. This approach has a lower downtime than stock LXD migration.

Sinha et al. [30] proposed a new live migration approach for an intra-host scenario where

the source and destination nodes are virtual machines residing on the same physical device.

This paper exploits the fact that the memory pages for the two containers co-reside on the

same host and relocates the ownership of these pages, instead of actually copying them over

the network. They show that this approach reduces the overall service downtime for the

application.

Souza Junior et al. [31] proposed a migration scheme that snapshots the memory and

exploits the layered nature of the filesystem to transfer them over to the destination. They

identified parts of the container layer that are not currently being modified (at the source)

and transferred them ahead of time. They evaluated their approach on a fog computing

testbed for geo-distributed applications and showed a reduction in downtime over migration

without a layered approach.

Our approach differs in a few ways. First, in order to make the migration more resilient

to network-related failures or system crashes (at the destination), we migrate to multiple

destinations simultaneously. This is better suited for real-time applications that have strict

response time requirements as there is no time lost retrying a migration. Second, we use

the resource availability forecasts to select potential targets for migration. This allows the

framework to account for trends in resource availability better.
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CHAPTER 9: CONCLUSION

Real-time containers have strict response time requirements. When the source node of a

container cannot sustain its computational needs, we can migrate the container to another

node to ensure that it continues to meet the timing requirements. In this work, we presented

the design and implementation of a framework for supporting reliable container migration.

We have shown how it is possible to plan the migration by monitoring, forecasting and

analyzing the resource availability trends of nodes in the system. There are three main

components developed as part of this work: (1) a monitor to track the resources and network

status, (2) a prediction framework to forecast the resources available and (3) an analysis

engine to make migration-related decisions. These are important components of a real-time

container migration framework. We have shown that the prediction framework can make

good forecasts of the resource availability. The least squares curve fitting algorithm (on the

critical path of migration) is able to process the data and predict future trends in a timely

manner. Our results indicate that the analysis engine works as intended and is able to select

the correct subset of nodes as destinations for migration.

Limitations and Future Work.

• In the current state, the prediction models do not perform well when the CPU and

memory data fluctuate rapidly. We plan to explore other prediction strategies that

can handle fluctuations better.

• The current framework assumes that the system is closed and all hosts are known in

advance. We would like to expand this framework to support non-closed systems where

new nodes may enter the system.

• The container monitor used in our framework supports only podman containers. In

a future work, we would like to expand this to handle other container engines and

evaluate our framework on a network with heterogeneous nodes.
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