(©) 2022 Hsuan-Chi Kuo

ATTACK SURFACE REDUCTION IN CONTEMPORARY OPERATING SYSTEMS
VIA PRACTICAL KERNEL DEBLOATING

BY

HSUAN-CHI KUO

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of Illinois Urbana-Champaign, 2022

Urbana, Illinois

Doctoral Committee:

Associate Professor Sibin Mohan, Chair

Professor Ravishankar Iyer

Professor Vikram Adve

Assistant Professor Tianyin Xu

Assistant Professor Daniel Williams, Virginia Tech

ABSTRACT

This dissertation aims to address the problem of bloat in operating system (OS) kernels.
It explores the problem by postulating that modern operating systems have multiple sources
of bloat — from code to runtime overheads — that increases attack surfaces and negatively
affects performance: reduction of such bloat (”debloating”), in a practical way, can make
operating systems more robust and efficient. To validate this hypothesis, the work is divided

into the following three groups:
1. Evaluate the tradeoffs between kernel debloating and kernel redesign (e.g., unikernels)
2. Study kernel debloating techniques and validate their effectiveness
3. Develop a practical and effective kernel debloating framework

Previous work and this dissertation show that only a small part of a kernel is used by most
applications. The redundant parts introduce performance regression (e.g., prolonged boot
time and higher memory footprint) and enlarge attack surfaces (e.g., vulnerabilities due to
software bugs). A study on using kernel debloating to reduce attack surfaces is conducted
and shows that debloating is effective in reducing the redundancy as well as the kernel size
(e.g., more than 80% for most cloud applications). The study also identifies the limitations
that prevent the practical usage of a kernel debloating including the amount of manual
efforts and instability of produced kernels. This dissertation demonstrates the indispensable
benefits of commodity OS kernel debloating by studying other specialization techniques
(e.g., unikernels). Unlike unikernels that only runs a small subset of Linux applications,
the debloated Linux kernel not only runs every Linux application (full POSIX support)
but also outperforms unikernels in various dimensions (e.g., boot time, image size, memory
footprint and application performance). Motivated by the benefits of kernel debloating, this
dissertation explores debloating techniques by building a kernel orchestration framework
(MultiK) and kernel profiling tools (DKut and SKut). The experiment results confirm that
applications use only a small part of the kernel (e.g., 93% of the kernel can be reduced for
a web server). The results also show that aggressive and intrusive kernel debloating leads
instability and cause kernel crashes, therefore, hindering its practical adoption. Based on
the lessons learned, this dissertation further introduces an advanced and practical kernel
debloating framework (Cozart) which debloats kernels automatically and generates stable

kernels. I use Cozart as a vehicle to study how to make debloating more practical. I

i

share these insights and my experiences to shed light on addressing the limitations of kernel
debloating in future research and development efforts. Finally, I go beyond the traditional
definition of debloating and present KFuse that optimizes kernel extensions and reduce

inefficiency.

iii

to my wife, my family and those who have ever helped me in this wonderful journey.

v

ACKNOWLEDGEMENTS

This Ph.D. degree would have never happened without the help of many exceptional pro-
fessors, mentors, collaborators and friends. I would first like to express my gratitude toward
my fantastic advisor, Sibin. He admitted me to the Ph.D. program at University of Illi-
nois Urbana-Champaign(UIUC), marked the beginning of this surreal journey and provided
unlimited support to my study. I would also like to thank my doctoral committee, Profes-
sors Ravishankar Iyer, Vikram Adve, Daniel Williams and Tianyin Xu, for their insightful
comments and feedback, which significantly improved the quality of this work.

I want to express my special appreciation to Tianyin Xu, who played the role of a professor
and a friend at the same time. As a teacher, he treated me as his own student, providing
guidance on being a great researcher. As a friend, he was always there to help, and it always
felt great to hear from him.

[want to express my special thanks to Dan Williams, who was initially my mentor during
my internship at IBM Research and became my long-term collaborator. Dan is always a
nice person and a brilliant researcher. His contribution to this thesis is invaluable.

I would like to extend my gratitude to my collaborators and mentors, Xinyang Ge, Weidong
Cui, Ricardo Koller, Jianyan Chen, Akshith Gunasekaran, Yeongjin Jang, Rakesh B Bobba,
David Lie, Jesse Walker, Kai-Hsun Chen and Yicheng Lu for contributing to this thesis.
The days we worked together were terrific. In addition, I would like to thank my labmates,
Ashish Kashinath, Kyo Hyun Kim, Chaitra Niddodi and Bin-Chou Kao, for making this
journey not lonely.

Last but not least, I would like to thank my parents and family for their love and support.
Their unconditional support accompanied and comforted me throughout the days and nights
in this strange country. In particular, my wife has been giving her unconditional love and
commitment to supporting my study. My Ph.D. is not possible without you. I sincerely

thank you for being with me throughout the ups and downs.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 1

1.1 Research Goal and Challenges

1.2 Summary of Solutionso 3
CHAPTER 2 BACKGROUND AND RELATED WORK 6
CHAPTER 3 DEBLOATED KERNELS AND UNIKERNELS 8

3.1 Overview e 8

3.2 Introduction 8

3.3 Unikernels 10

3.4 Lupine Linux e 12

3.5 Evaluationo 19

3.6 Beyond Unikernels 28

3.7 Discussion 31

3.8 Conclusion 33
CHAPTER 4 KERNEL SPECIALIZATION ENFORCEMENT WITH TRADEOFFS 34

4.1 OVerview e 34

4.2 Background and Design Goals 37

4.3 MultiK: Orchestrating Specialized Kernels 43

4.4 Generating Application Kernel Profiles 48

4.5 Implementationo 52

4.6 Evaluation 52

4.7 Discussion 59

4.8 Conclusion L 61
CHAPTER 5 PRACTICAL AND EFFECTIVE DEBLOATING FRAMEWORK . . 62

5.1 OVerview e 62

5.2 Introduction 62

5.3 Kernel Configuration oo 66

5.4 Linux Kernels in the Cloud 70

5.5 Cozart 71

5.6 Study Methodology 7

5.7 Debloating Effectiveness Lo 78

5.8 Findings and Implications oL 80

5.9 Generality L 90

5.10 Conclusion L 92

vi

CHAPTER 6 BEYOND TRADITIONAL KERNEL DEBLOATING 93

6.1 OvVerview 93
6.2 Introduction 93
6.3 BPF Extension and The Chain Pattern 95
6.4 The Cost of Chaining Extensions 98
6.5 KFuse Design and Implementation 103
6.6 Evaluation 112
6.7 Conclusion and Discussion 118
CHAPTER 7 LIMITATIONS AND EXPERIENCE 119
7.1 Limitations e, 119
7.2 Experience e 119
CHAPTER 8 CONCLUSION s s . 121
REFERENCES o s, 122

vil

CHAPTER 1: INTRODUCTION

The complexity of general-purpose operating systems (OSes) has been increasing relent-
lessly. For example, the Linux kernel, Figure 1.1 shows the lines of code in the Linux kernel
for different versions. The initial release of Linux has only thousand of lines of code, and
Linux 4.19 already has more than 20 millions lines of code, and the number is still growing
rapidly.

The introduced complexity and code is to support a variety of users from individuals to
industries. Different software feature requests and hardware devices are emerging so the OS
kernels have to catch up with new software features (e.g., file systems, security mechanisms
and optimizations), hardware supports (e.g., peripheral device drivers) to various types of

hardware drivers.

Lines of code in the Linux kernel
Generated using https-//github.com/udoprog/kernelstats

arcn/i386

20.0M

15.0m

IMM ‘ ‘ ““‘ ‘}}}}
> 'y 9,9 >

SMV ““““‘ “ } }} }}

oom
D PN DD D DD o DD DS D P A OS> A h o 6 A B 9.0
O 6T e 6T 6 6 6t 6T T G Gh e T 6T g o "ib”b 5 5 80" 88 8 0

FUlR S R R G MEE LE W G Wl R G G i R G U U R R

Figure 1.1: Lines of code in the Linux kernel.

However, prior work [1, 2, 3] shows that applications only need a small subset of kernel
functionalities. For instance, often less than 100 system calls are used at a time by popular
applications such as Nginx and Apache HTTP servers. More than 90% of the kernel, from

the Ubuntu Linux distribution, size can be reduced, and a large part of the reduction comes

from sound/, drivers/ and net/. As the web server does not play sounds, not require
special hardware devices and only use a small subset of network protocols (i.e., TCP/IP).

A large part of the kernel become unnecessary because applications only use a small subset
of kernel functionalities. The unnecessary parts, bloat, in the kernel create serious security
threats because the OS kernels are often considered to be a part of the trusted computing
base (TCB) and the bloat creates new attack surfaces. Today, there exist many known
exploits that take advantage of kernel vulnerabilities [4] to create significant losses of money
or privacy. In addition to security issues, kernel bloat also imposes overheads and reduces
system efficiency [5].

Research efforts that address OS kernel bloat include kernel rearchitecture and kernel
debloating. Kernel rearchitecture builds a new kernel from scratch, and the new kernel
is specialized for specific application workloads such as unikernels [6, 7, 8, 9, 10, 11]. Al-
though kernel rearchitecture can achieve a highly specialized kernel, building a kernel from
scratch often requires tremendous amount of engineering efforts, including porting existing
applications and building missing features (network stacks or file systems), which hinder the
practical usage of such approach. On the other hand, kernel debloating, sometimes referred
as kernel specialization!, aims to remove the redundancy from the existing kernel.

Kernel debloating [1, 2, 3, 12, 13, 14, 15] techniques can often been viewed as a two-
step process: (1) identify the necessary parts of kernel and (2) enforce the kernel to use
only the necessary parts. Due to the complexity and size of the kernel, kernel analysis on
identifying necessary code is often done by dynamic analysis such as tracing [3, 12, 14, 15].
A number of approaches are used to restrict the access to unnecessary kernel components
including removing them directly [3, 12, 13, 14], leveraging hypervisors to shadow the kernel
memory [2, 15] or applying control flow integrity (CFI) [16]. As shown by recent studies,
kernel debloating can effectively reduce the size of the kernel by 50%—-85% [3], attack surface
by 50%-85% [3], and security vulnerabilities by 34%-74% [17].

This dissertation firstly evaluates kernel debloating techniques with unikernels (kernel
rearchitecture) and concludes that kernel debloating has its irreplaceable advantages such
as the support from the huge Linux kernel community, the ability to run legacy applications
and better application performance compared with unikernel systems. Motivated by the
first study, this dissertation explores kernel debloating techniques and strives to find the best
trade-off for a practical and effective kernel debloating framework. Finally, this dissertation
presents an advanced kernel debloating framework, Cozart, that is automatic and produces

stable kernels, and I use Cozart as a vehicle to conduct the existing limitations of kernel

!This dissertation uses these two words interchangeably.

debloating and share these insights and experiences to shed light on future research and

development of kernel debloating.

1.1 RESEARCH GOAL AND CHALLENGES

The work in this dissertation starts off by making the following hypothesis:

There exists a practical kernel debloating technique that produces stable kernels, and such
technique is automatic and requires minimal human intervention.

The objectives of this dissertation are to explore debloating techniques and strive to find
the best tradeoffs among them to achieve the goal of a practical debloating framework. The

key questions I would like to answer are:

1. Is debloating commodity OS kernel still worth doing despite the existence of kernel

rearchitecture techniques (e.g., unikernels)?
2. What are the right tradeoffs when debloating a commodity kernel?

3. What are the existing limitations that hinder the practical adoption of kernel debloat-
ing?

The challenges to answering these questions reside in the complexity of commodity kernels,
for instance, the Linux kernel has more than 25 millions of lines of code. As discussed,
kernel debloating contains two steps (1) identify necessary parts and (2) enforce the kernel
to use only these necessary parts. For identifying necessary parts, ideally, program analysis
techniques can extract complete necessary parts from the kernel. However, the complexity
of the kernel makes it difficult to conduct program analysis techniques. For enforcing the
specialization, multiple approaches are proposed including binary rewriting [18], kernel con-
figuration options [3, 13, 14] and hypervisors [2]. Each approach has its pros and cons such
as the degree of reduction, the stability of debloated kernel and the required manual efforts.
Carefully weighing these tradeoffs is necessary to answer these research questions and build

a practical and effective debloating framework.

1.2 SUMMARY OF SOLUTIONS

Based on the aforementioned challenges, this dissertation is divided into three parts that

are introduced in Chapter 3, 4 and 5.

This dissertation firstly studies the comparison between kernel rearchitecture and kernel
debloating techniques to understand the pros and cons of these two approaches. Specifically,
this dissertation proposes Lupine. Lupine is a Linux system that is specialized for appli-
cations via configuration to mimic unikernels and attempt to achieve unikernels benefits
including small image, fast boot time, security, low memory footprint and great application
performance. Lupine is evaluated against a variety of unikernel systems such as rumprun [6]
and OSv [19]. The result suggests that Lupine, a specialized (debloated) Linux system,
can perform as good as unikernels or even better and that Linux systems are irreplaceable
because of its community and abundant applications.

From the first study, I learn that Linux is irreplaceable and has the potential to be de-
bloated to be lightweight, secure and performant. I was motivated to continue to explore
commodity kernel (Linux) debloating. This dissertation then presents MultiK and DKut.
MultiK is a in-kernel framework to orchestrate multiple specialized kernels for different ap-
plications. DKut is a kernel profiling technique that can collect necessary kernel parts for
an application at the basic-block granularity. Combing MultiK and DKut achieves highly
debloated kernels i.e., at the basic-block granularity. My experiment result shows that an
application only uses a small subset of kernel code e.g., only 7% is used for a Web server. I
also observe kernel instability during experiments when aggressive debloating is conducted.

Finally I learn that aggressive and intrusive kernel debloating leads instability and cause
kernel crashes, therefore, hindering the practical adoption of kernel debloating. To build
a kernel debloating framework that produces stable kernels, 1 use kernel configuration as
the mechanism for debloating and build Cozart. Cozart is a practical framework because it
is effective (more than 80% kernel reduction), automatic (no human intervention required)
and generates stable kernels (the debloated kernels are validated to work as expected). I use
Cozart as a vehicle to study how to make debloating more practical. My studies lead to the

following findings and results:

e Existing kernel debloating techniques initialize in-kernel tracing methods (e.g., ftrace)
too late and cannot observe the boot phase, which is critical to producing a bootable

kernel.

e Kernel debloating can be done within tens of seconds if the configuration options of

target applications are known.

e Using instruction-level tracing (instead of ftrace) can address kernel configuration

options that control intra-function features.

e An essential limitation of using dynamic-tracing based techniques for kernel debloating

(which are the de facto approach) is the imperfect test suites and benchmarks.

e Domain-specific information can be used to further debloat the kernel by removing the
kernel modules that were executed in the baseline kernel but are not needed by the

actual deployment.

e Application-oriented kernel debloating can lead to further kernel code reduction for

microkernels (e.g., L4) and extensively customized kernels (e.g., the Firecracker kernel).

In addition to validation of my research hypervisor, I expand the traditional definition
of kernel debloating. Besides removing redundant code from kernels, restricting access of
redundant code and reducing inefficiency can also be a mean of debloating. I present KFuse,
which reduces the inefficiency of existing kernel components (BPF).

[make the observation that extensions can be collectively optimized after they are verified

individually and loaded into the shared kernel.

CHAPTER 2: BACKGROUND AND RELATED WORK

I discuss and compare different kernel debloating approaches. They can be broadly classi-
fied into (1) feature-based debloating, (2) compiler-based debloating, (3) binary debloating

or (4) kernel rearchitecture.

Feature-based Debloating The Linux kernel provides the KConfig mechanism for con-
figuring the kernel. However, the complexity of KConfig makes it hard to tailor a kernel con-
figuration for a given application. Kurmus et al. [3] tried to automate KConfig based kernel
customization by obtaining a runtime kernel trace for a target application, then mapping the
trace back to the source lines and using source lines along with configuration dependencies
for arriving at an optimal configuration. While they were able to achieve 50-80% reduction in
kernel size, their approach still requires some manual effort for creating predefined blacklists
and whitelists of configurations [20]. Further, when multiple applications need to be run,
their approach creates a customized kernel for all of the applications together thereby limiting
the effectiveness of the attack surface reduction achieved [18]. More recently, Light VM [21]
tries to address bloat in the kernel by implementing a tool called TinyX that starts from
Linux’s tinyconfig and iteratively adds options from a bigger set of configuration options.

This involves maintaining a manually produced white-list or black-list.

Compiler-based Debloating Modern compilers are much better at code optimization
than humans are. A series of LWN.net articles [22, 23, 24, 25] discusses various cutting
edge efforts in compiler and link-time techniques that are being developed in the Linux
community that can eliminate significant amount of dead code and perform various other
code optimizations. Most of the work in this area is experimental and does not produce a
working kernel yet. They exist as out-of-tree patches [26]. The main challenge in applying
these techniques to the Linux kernel arises out of the complexities in the kernel itself. Hand-
written assembly, non-contiguous layout of functions, etc. do not make the kernel a good
candidate for compiler-based optimization/specialization as is. It requires manually going
through pieces of code and making careful changes without causing unexpected side effects.
The LLVM community in recent years has produced a suite of advanced compiler tools [27].
The Linux community hasn’t been able to take advantage of these due to its tight coupling
with the gee toolchain, making it hard to use other compilers like clang [28] from the LLVM
tool chain to build the kernel. These are being fixed one patch at a time [29].

Binary Debloating Binary debloating techniques do not require reconfiguring or rebuild-
ing the kernel. They work on the final kernel binary as is. KASR [2] specializes the kernel
binary using a VM-based approach wherein they trace all the pages in the memory that are
used by an application — for a few iterations until the trace doesn’t change. This data is used
to mark the unused pages in the extended page tables as non-executable, thus making the
memory region unavailable to the application. Face-Change [18], shadow kernels [30] create
specialized kernel text areas for each of the target applications and switch between them
using a hypervisor to support multiple applications running together. Their performance
is limited by the performance of the hypervisor. Face-Change reported performance over-
heads =~ 40% for I/O benchmarks and doesn’t support multithreading. KASR customizes

the kernel at a page level granularity.

Kernel Rearchitecture An orthogonal direction to specializing general purposes kernels
for attack surface reduction is to use unikernels or microkernels that define a completely new
architecture. Unikernels [10] get rid of protection rings and have the application code and
the kernel in a single ring to reduce performance overhead arising from context switches. But
this leaves kernel code that is required for the entire system including boot and termination
available to the application. Microkernels such as Mach [31] design the kernel in a very
modular manner such that the kernel TCB is minimal. This comes at the cost of performance
overhead from context switching. Moreover both these approaches require the application
to be re-built for the respective architectures. NOOKS [32] redesigns the kernel to isolate
device drives from the kernel core — to protect from vulnerable device drivers. It still leaves

active a major part of the kernel (for boot, shutdown and other OS tasks).

CHAPTER 3: DEBLOATED KERNELS AND UNIKERNELS

3.1 OVERVIEW

A unikernel is a specialized system stack constructed by library operating systems [10].
Unikernels are known for their promised performance characteristics such as small image
size, fast boot time, low memory footprint and application performance.

In this chapter, I intend to study the unikernels and debloated commodity OS kernels (e.g.,
Linux) to understand the advantage of debloating a commodity kernel against rebuilding a
specialized kernel from scratch. I present Lupine, in which I apply two-well known unikernel-
like techniques to Linux: configuration specialization and the elimination of system call
overhead. Lupine can achieve all benefits that unikernels enjoys including small image size,
fast boot time, low memory footprint and application performance.

I conduct evaluation for Lupine and various unikernel systems and conclude that debloated
commodity OS kernels can perform as good as unikernels. More importantly, Lupine exploits
Linux to eliminate the application compatibility issues of other unikernels; it can run any
application using Linux’s highly-optimized implementation, including those that do not fit

in the unikernel domain.

3.2 INTRODUCTION

Since the inception of cloud computing, the virtual machine (VM) abstraction has dom-
inated infrastructure-as-a-service systems. However, it has recently been challenged, as
both users and cloud providers seek more lightweight offerings. For example, alternatives
such as OS-level containers have begun to attract attention due (in part) to their relatively
lightweight characteristics in dimensions such as image size, boot time, memory footprint
and overall performance.

In response, the virtualization stack has been evolving to become more lightweight in
two main ways. First, modern virtual machine monitor designs, like lightVM [21] and
AWS Firecracker [33] (or in a more extreme case unikernel monitors [8]), have reduced the
complexity and improved the performance of the monitor. Second, alternatives to large,
general-purpose guest operating systems have begun to emerge—whether it is a change in
the userspace (e.g., from Ubuntu-based to Alpine-based), a change in the configuration of
the guest kernel (e.g., TinyX [21]) or in the case of unikernels [10], a specialized library OS.

Specializing the guest VM to the extent of running a library OS tailored to an application

Application (contalner Unikernel-like techniques App rootfs

‘ Application manlfest Specialization
via Kconfig

System Call
» Overhead
Elimination

via KML

Luplne Linux
“Unikernel”

Linux source

Figure 3.1: Overview

is a compelling prospect, especially when the application domain is limited. Language-based
unikernels, such as MirageOS [10] (in which the library OS and application are entirely
written in OCaml), have demonstrated a combination of security and lightweight properties.
In an effort to expand the applicability of unikernel ideas, however, several unikernel /library
OS projects, including HermiTux [34], Rumprun [6], Graphene [35] and OSv [19], have
attempted to become more general and POSIX-like; some even going so far as claiming Linux
binary compatibility [34]. Approaching some level of POSIX-like generality typically requires
either a great implementation effort or a clever way to reuse existing POSIX-compatible
kernel implementations (usually NetBSD [6, 19]). However, these approaches still fall short of
true compatibility because of arbitrary restrictions (e.g., not supporting fork) and suffer by
being unable to leverage the robustness, performance or, most importantly, the community
of Linux.

In this paper, I make the observation that Linux is already highly configurable and seek
to determine exactly how close it is to achieving the sought-after properties of unikernels. I
describe Lupine Linuz (Figure 3.1), in which I apply two well-known unikernel-like techniques
to Linux: specialization and the elimination of system call overhead. Though I do not
propose a general solution for specialization, I specialize Lupine through the kernel’s Kconfig
mechanisms by (1) eliminating functionality from the kernel that is not necessary for the
unikernel domain (e.g., support for hardware devices or multiprocessing) and (2) tailoring
the kernel as much as possible to the particular application. Lupine eliminates system call
overhead by running the application in the same privilege domain as the kernel via the
existing (but not upstream) Kernel Mode Linux (KML) [36] patch.

When evaluating Lupine against a state-of-the-art lightweight VM (AWS Firecracker’s
microVM) and three POSIX-like unikernels, I find that Lupine outperforms microVM and
at least one of the reference unikernels in all of the following dimensions: image size (4 MB),
boot time (23 ms), memory footprint (21 MB), system call latency (20 us), and application
performance (up to 33% higher throughput than microVM). While both unikernel techniques

played a role in improving performance, specialization had the largest effect: despite up to
40% reduction in system call latency due to KML on microbenchmarks, I found it improved
application performance on macrobenchmarks by only 4%.

Regarding specialization via configuration, I attempted to determine the most practical
degree of specialization for Lupine. To this end, I examined the effects of specialization in
Lupine by heuristically creating specialized configurations for the top 20 cloud applications—
that account for 83% of all downloads—as determined by popularity on Docker Hub. I
categorize 550 configuration options from the microVM kernel and find only 19 of them are
required to run all 20 applications, suggesting a tiny, application-agnostic kernel configura-
tion that achieves unikernel-like performance without the complications of per-application
specialization.

Lupine exploits Linux to eliminate the generality issues of other POSIX-like unikernels;
it can run any application using Linux’s highly-optimized implementation, including those
that do not fit in the unikernel domain. In this context, I examine how unikernel prop-
erties degrade in the face of generality and find a graceful degradation property. Where
other unikernels may crash on fork, Lupine continues to run. Moreover, I find virtually no
overhead for supporting multiple address spaces and at worst an 8% overhead to support

multiple processors, concluding that many unikernel restrictions are avoided unnecessarily
for POSIX-like unikernels.

3.3 UNIKERNELS

Unikernels [6, 7, 10, 19, 34, 37, 38, 39, 40, 41] have garnered widespread interest by
providing a lightweight, simple, secure and high-performance alternative to the complex,
conventional, general-purpose compute stacks that have evolved over many years. In this
section, I give a brief background and classification of unikernel projects and their benefits,
describing some of the techniques that they have used to achieve these benefits and identify

some common limitations.

3.3.1 Background

Unikernels are the most recent incarnation of library OS [35, 42, 43, 44] designs. They
are typically associated with cloud environments and consist of a single application linked
with a library that provides enough functionality to run directly on a virtual-hardware-like

interface. I organize unikernels into two categories: language-based and POSIX-like.

10

Language-based. Language-based unikernels are library OS environments that are tied
to a specific programming language runtime and libraries, for example, MirageOS [10] for
OCaml, IncludeOS [37] for C++, Clive [38] for Go, HalVM [39] for Haskell, runtime.js [7]
for JavaScript, Ling [40] for Erlang, and ClickOS [41] for Click router rules [45]. Language-
based unikernels typically do not need to implement or adhere to POSIX functionality,
which can lead to small images, suitability for compiler-based analyses and optimizations,
and reliability or security from the use of language features. For example, 39 out of 40 of all
bugs found in Linux drivers in 2017 were due to memory safety issues [46] that could have
been avoided by a high-level language. However, the requirement for applications to adhere

to a particular language and interface limits adoption.

POSIX-like. POSIX-like unikernels are library OS environments that use a single address
space and a single privilege level but attempt to provide some amount of compatibility with
existing applications. OSv [19] and HermiTux [34] are two unikernels that boast binary
compatibility with Linux applications but reimplement kernel functionality from scratch,
losing the opportunity to benefit from the maturity, stability, performance and community
of Linux. Unlike language-based unikernels and Rumprun [6], a POSIX-like unikernel that
leverages NetBSD to avoid reimplementation, OSv and HermiTux do not require the ap-
plication to be linked with the library OS which (mostly) eliminates the need to modify

application builds' and eases deployment at the cost of losing specialization opportunities.

3.3.2 Benefits and Techniques

Unikernels achieve benefits like low boot times, security, isolation, small image sizes, low
memory footprint and performance through a combination of optimizing the monitor [8, 21]

and construction of the unikernel itself.?

Lightweight monitors. Traditional virtual machine monitors like QEMU are general
and complex, with 1.8 million lines of C code and the ability to emulate devices and even
different CPU architectures. Recently, unikernel monitors [8] have shown that a unikernel’s
reduced requirement for faithful hardware emulation can result in a dramatically simpler,
more isolated and higher performing monitor (which may not even require virtualization

hardware [9]). As a result, unikernels have been shown to boot in as little as 5-10 ms, as

!These systems typically maintain a curated application list. While modifications to the applications on
the list are relatively minor, this approach severely limits what can run in practice, as I will see in Section 3.5.

2Some unikernels, especially language-based unikernels, use other techniques, discussed further in Sec-
tion 3.7.

11

opposed to hundreds of milliseconds for containers or minutes for VMs [8, 47], which is
important for new compute models like serverless computing [48, 49]. At the same time,
general-purpose monitors have also been reducing generality (such as forgoing some device
emulation) for performance: for example, AWS Firecracker [33] and Light VM [21] optimize
for boot time by eliminating PCI enumeration. Firecracker also improves the security posture

of monitors by using a memory-safe language (Rust).

Specialization. Unikernels embody a minimalist philosophy, where they only require those
code modules that are needed for a particular application to run on virtual hardware.
This leads to smaller image sizes, lower memory footprint, and smaller attack surfaces.
In language-based unikernels, like MirageOS, the relatively tight integration between the
language, package manager and build process implements this philosophy well. POSIX-like
unikernels, like Rumprun, OSv or HermiTux, balance how much they specialize with com-
patibility and reuse of legacy code, but typically attempt to provide at least coarse-grained

specialization.

System Call Overhead Elimination. Unikernels contain, by definition, a single appli-
cation. Therefore, logically, the library OS and the application exist in the same security and
availability domain. As a result, unikernels typically run all code in the same CPU privilege
domain and in the same address space in order to improve performance over traditional

systems. There is no need to switch context between application and kernel functions.

3.3.3 The Ideal Unikernel

Unfortunately, existing unikernels face challenges in terms of generality; applications may
need to be written from scratch, potentially in an unfamiliar language (e.g., language-based
unikernels). Those that do try to address generality (e.g., POSIX-like unikernels) find them-
selves in the unenviable position of trying to reimplement Linux, at least in part.

The ideal unikernel would enjoy all of the benefits that they are known for while also being

able to support Linux applications and share its community.

3.4 LUPINE LINUX

I make Linux behave like a unikernel by specialization and system call overhead elimina-
tion. I specialize Lupine according to both applications and the unikernel constraints such as

the single-process nature or expected deployment environments (Section 3.4.1). I eliminate

12

Application- app binary libm.so

Application-specific requirements Container image (alpine)
(manifest) ; _
l Unmodified libraries

specific o

S Lupi?\e config Application- ; _
+ e .
; S entrypoit
g Linux kernel startup script env variables
3 source (“init”)
(%]
= c

el
Sg2 KML-enabled
g << musl libc
= QO
5 = E
A %%

4

Application-specific : “ 7
Lupine kernel binary Lupine app “rootfs

Figure 3.2: Specialization and system call overhead elimination in Lupine.

the system call overheads by applying KML patches to Linux that allow applications to run
in kernel mode (Section 3.4.2).

Like some POSIX-like unikernels (e.g., HermiTux [34] and OSv [19]), but unlike others
(e.g., Rumprun [6]), Lupine is not a single, statically-linked binary. Instead, a Lupine
unikernel consists of a kernel binary that dynamically loads the application code from a root
filesystem (rootfs) as in other Linux-based systems. Figure 3.2 shows the specifics of the
generation of Lupine kernel binary and root filesystem. Lupine kernel binary is configured to
be a small, special-purpose Linux kernel image, obtained via the specialization highlighted
in orange in Figure 3.2. Also, the kernel is enhanced with Kernel Mode Linux (KML) so
that Lupine runs the target application as a kernel-mode process, thereby avoiding context
switches. An application manifest informs the application-specific kernel configuration.

I leverage Docker container images to obtain minimal root filesystems with applications
and all their dependencies such as dynamically-linked libraries (e.g., 1ibc, 1ibm, etc.)?. As
the root filesystem is specialized, Lupine does not employ a general-purpose init system.
Instead, Lupine creates an application-specific startup script based on container metadata.
For example, the entrypoint describes the parameters with which to invoke the application,
and the env variables describe how to set up the environment. Like the kernel image, the
script is informed by the application manifest; for example, it may initialize the network
device, mount loopback devices or the proc filesystem, generate entropy, set ulimits, set en-
vironment variables, or create directories before executing the application. Finally, I convert
the container images that include the application binary, a KML-enabled 1ibc (described in
Section 3.4.2) and the application-specific startup script into an ext2 image that the spe-

3Tools such as Docker Slim [50] help ensure a minimal dependency set.

13

10000 g

7

total
2 1000 < microvm E=Z]
9 % lupine base =—1
Q
o
> 100
5
8 10

e s o

%, ‘9/'0/) ’76/ % /é ’fe, ”7// Cn, ’77/)7 Seg, b/oo Yiry Sa/,}‘/S/-
y

Figure 3.3: Linux kernel configuration options (log scale)

cialized Lupine kernel will use as its root filesystem. At runtime, a standard virtual machine
monitor (e.g., Firecracker) launches the Lupine kernel and rootfs.

The concrete details of the application manifest are out of scope for this paper. At its
simplest, an application manifest could be a developer-supplied kernel configuration and

startup script.

3.4.1 Specialization

The Linux kernel contains considerable facilities for specialization through its Kconfig
configuration mechanism. In total, there are 15,953 configuration options for Linux 4.0.
Configuration options determine whether features should be included in the kernel by com-
piling the source code for the feature and either linking it into the kernel image or into a
module that can be dynamically loaded into a running kernel. Kernel configuration options
empower users to select or enable (for example) support for a variety of hardware (e.g.,
device drivers), a variety of services to applications (e.g., filesystems, network protocols)
and algorithms governing management of the most basic compute resources (e.g., memory
management, scheduling).

Figure 3.3 shows the total number of available configuration options (by directory) in
the Linux source tree. Unsurprisingly, almost half of the configuration options are found in
drivers to support the wide range of devices that Linux runs on. Figure 3.3 also shows the
breakdown of configuration options selected by AWS Firecracker’s microVM configuration.
This is a Linux configuration that allows a general-purpose workload to specifically run on
the Firecracker monitor on the x86_64 architecture. This configuration can safely omit a
vast majority of configurable functionality because of the known constraints of Firecracker,
as shown in Figure 3.4. For example, the vast majority of the driver and architecture-specific
options are not necessary since the virtual I/O devices and architecture are pre-determined.

Even more configurable functionality can be safely omitted for Lupine because of the

14

All 16000 Linux microvm 833
configurations (5%)

lupine-base 283 Application s| nd 550

ecessary options (66%)

89 150
(56%) (16%) (28%)

M Application specific ™ Multiprocessing " HW management

Figure 3.4: Breakdown of kernel configuration options down to unnecessary ones by unikernel
property.

known constraints of the unikernel domain. As depicted in Figure 3.4, starting from Fire-
cracker’s microVM configuration, I manually removed approximately 550 (66%) of the se-
lected options that I deemed potentially unnecessary for the unikernel domain as further
described below. I refer to the remaining 283 (34%) configuration options as lupine-base.

I further manually classified the 550 removed options into categories based on features
or design properties of unikernels and not based on the Linux kernel’s structure as in Fig-
ure 3.3. Application-specific options are only necessary for certain applications and may be
reintroduced on top of lupine-base to create an application-specific configuration. Others are
not necessary for any unikernel application, either because of the single-process nature of
unikernels or the predictable runtime environment of virtual machines in the cloud. I now

describe these categories (Figure 3.4) and provide examples.

3.4.1.1 Application-specific options.

Unikernels are driven by a minimalist philosophy where they only contain functionality
that the application needs. While compatibility with Linux often implies some compromises,
an application-centric approach can be applied towards Linux kernel configuration. To this
end, I categorize certain configuration options as application-specific, which may or may not
appear in any Lupine unikernel’s kernel configuration. I also discuss various granularities at
which an application manifest could inform kernel configuration, but leave the generation of
such a manifest (which could utilize static or dynamic analysis [3, 51, 52]) to future work.

Unikernels embody DevOps industry trends, in which system configuration and runtime

operations tasks are tightly integrated with application development. I identified approx-

15

Option Enabled System Call(s)
ADVISE_SYSCALLS | madvise, fadvise64

AIO io_setup, io_destroy, io_submit, io_cancel, io_getevents
BPF_SYSCALL bpf

EPOLL epoll_ctl, epoll_create, epoll_wait, epoll_pwait
EVENTFD eventfd, eventfd2

FANOTIFY fanotify_init, fanotify_mark

FHANDLE open_by_handle_at, name_to_handle_at
FILE_LOCKING flock

FUTEX futex, set_robust_list, get_robust_list
INOTIFY_USER inotify _init, inotify_add_watch, inotify rm_watch
SIGNALFD signalfd, signalfd4

TIMERFD timerfd_create, timerfd_gettime, timerfd_settime

Table 3.1: Linux configuration options that enable/disable system calls.

imately 100 network-related options, including a variety of less popular protocols and 35
filesystem-related configuration options that represent system configuration tradeoffs that
depend on the (single) application. At a finer granularity, if I assume the application or
container manifest details exactly which system calls an application will use,* then I can
configure Linux to include some necessary system calls. For example, Table 3.1 lists config-
uration options that dictate whether one or more system calls (and their implementations)
are compiled into the kernel binary. As an example of application-specific configuration,
the redis key-value store requires EPOLL and FUTEX by default, whereas the nginx web
server additionally requires AIO and EVENTFEFD. A Lupine kernel compiled for redis does
not contain the AIO or EVENTFD-related system calls.

In addition to the above, some applications expect other services from the kernel, for in-
stance, the /proc filesystem or sysctl functionality. Moreover, the Linux kernel maintains
a substantial library that resides in the kernel because of its traditional position as a more
privileged security domain. Unikernels do not maintain the traditional privilege separation
but may make use of this functionality directly or indirectly by using a protocol or service
that needs it (e.g., cryptographic routines for IPsec). I marked 20 compression-related and
55 crypto-related options from the microVM configuration as application-specific. Finally,
Linux contains significant facilities for debugging; a Lupine unikernel can select up to 65
debugging and information-related kernel configuration options from microVM’s configura-
tion.

In total, I classified approximately 311 configuration options as application-specific as

shown in Figure 3.4. In Section 3.5, I will evaluate the degree of application specialization via

4While generating the manifest is, in general, an open problem, several products and projects like
DockerSlim[50] and Twistlock[53] rely on similar system-call information.

16

Linux kernel configuration (and its effects) achieved in Lupine for common cloud applications.

3.4.1.2 Unnecessary options.

Some options in microVM’s configuration will, by definition, never be needed by any
Lupine unikernel so they can be safely eliminated. I categorize these options into two
groups: (1) those that stem from the single-process nature of unikernels and (2) those that

stem from the expected virtual hardware environment in the cloud.

Unikernels are not intended for multiple processes. The Linux kernel is intended to
run multiple processes, thus requiring configurable functionality for synchronization, schedul-
ing and resource accounting. For example, cgroups and namespaces are specific mechanisms
that limit, account for and isolate resource utilization between processes or groups of pro-
cesses. 1 classified about 20 configuration options related to cgroups and namespaces in
Firecracker’s microVM configuration.

Furthermore, the kernel is usually run in a separate, more privileged security domain
than the application. As such, the kernel contains enhanced access control systems such as
SELinux and functionality to guard the crossing from the application domain to the kernel
domain, such as seccomp filters, all of which are all unnecessary for unikernels. More impor-
tantly, security options with a severe impact on performance are also unnecessary for this
reason. For example, KPTI (kernel page table isolation [54]) forbids the mapping of kernel
pages into processes’ page table to mitigate the Meltdown [55] vulnerability. This dramat-
ically affects system call performance; when testing with KPTI on Linux 5.0 I measured a
10x slowdown in system call latency. In total, I eliminated 12 configuration options due to
the single security domain.

Linux is well equipped to run on multiple-processor systems. As a result, the kernel
contains various options to include and tune SMP and NUMA functionality. On the other
hand, since most unikernels do not support fork, the standard approach to take advantage
of multiple processors is to run multiple unikernels.

Finally, Linux contains facilities for dynamically loading functionality through modules.
A single application facilitates the creation of a kernel that contains all functionality it needs
at build time.

Overall, I attribute the removal of 89 configuration options to the single-process— “uni”—
characteristics of unikernels as shown in Figure 3.4 (under ”Multiple Processes”). In Sec-

tion 3.6, I examine the relaxation of this property.

17

Unikernels are not intended for general hardware. default configurations for Linux
are intended to result in a general-purpose system. Such a system is intimately involved in
managing hardware with configurable functionality to perform tasks, including power man-
agement, hotplug and driving and interfacing with devices. Unikernels, which are typically
intended to run as virtual machines in the cloud, can leave many physical hardware manage-
ment tasks to the underlying host or hypervisor. Firecracker’s microVM kernel configuration
demonstrates the first step by eliminating many unnecessary drivers and architecture-specific
configuration options (as shown in Figure 3.3). Lupine’s configuration goes further by clas-
sifying 150 configuration options—including 24 options for power management that can be

left to the underlying host—as unnecessary for Lupine unikernels as shown in Figure 3.4.

3.4.2 Eliminating System Call Overhead

Kernel Mode Linux [36] is an existing patch to Linux that enables normal user processes
to run in kernel mode, and call kernel routines directly without any expensive privilege
transitions or context switches during system calls. Yet they are processes that, unlike kernel
modules, do not require any change to the programming model and can take advantage of
all system services for normal processes such as paging or scheduling.

While KML was designed for multiple applications to run, some as kernel-mode processes
(identified by the path to the executable rooted at /trusted) and some as normal user-mode
processes, the goal for Lupine is to mimic a unikernel that, by definition, only contains a
single—privileged—application. As a result, I modify KML for Lupine so that all processes
(of which there should be one) will execute in kernel mode. Note that, despite running
the application with an elevated privilege level via KML, no kernel bypass occurs. Kernel
execution paths enumerated due to system calls by an application remain identical regardless
of whether KML is in use or not.

For the implementation of KML in Lupine, I applied the modified KML patch to the
Linux kernel. I also patched musl 1libc, the 1ibc implementation used by Alpine, for the
distribution of Linux that I chose for the container images that form the basis of Lupine
unikernel images. The patch is minimal: it replaces the syscall instruction used to issue
a system call at each call site with a normal, same-privilege call instruction. The address

of the called function is exported by the patched KML kernel using the vsyscall®. For

5The original KML design took advantage of the 32-bit kernel and dynamic behavior in glibc to entirely
avoid modifications to glibc. In 32-bit mode, some versions of glibc would dynamically select whether to
do the newer, faster sysenter x86 instruction to enter the kernel on a system call or use the older, slower
int 0x80 mechanism. The decision was made based on information exported by the kernel via the vsyscall
mechanism (a kernel page exported to user space). KML introduced a third option, call

18

Name monitor kernel | kernel conf | userspace
ver

MicroVM | Firecracker | 4.0 microVM Alpine 3.10

Lupine Firecracker | 4.0 lupine-base Alpine 3.10

Table 3.2: Systems used to evaluate the Lupine unikernel.

most binaries that are dynamically linked, the patched 1ibc can simply be loaded without
requiring the recompilation of the binary. Statically linked binaries running on Lupine must
be recompiled to link against the patched 1ibc. Note that this is far less invasive than the
changes required by many unikernels including not only recompilation but often a modified
build.

3.5 EVALUATION

The purpose of this evaluation is to show that Lupine can achieve most benefits of uniker-
nels: small image size, fast boot time, small memory footprint, no system call overheads, and
application performance. I compare several unikernel and non-unikernel systems as summa-
rized in Table 3.2. Micro VM is a baseline, representing a state-of-the-art VM-based approach
to running a Linux application on the cloud. OSv, HermiTuz and Rump are unikernels that
(partially) recreate Linux functionality inside their library OS. They provide comparison
targets to define unikernel-like functionality for the purposes of the evaluation. All systems
use the Firecracker monitor, except for HermiTux and Rump that use specialized unikernel
monitors [8].°

I use the same Linux kernel version for all cases. I use Linux 4.0 with KML patches
applied.” MicroVM uses AWS Firecracker’s microVM configuration adapted to Linux 4.0.
Lupine uses an application-specific configuration atop the microVM-derived lupine-base con-

figuration, as described in Section 3.4.1, with 2 variants:

e -nokml is used to highlight the contribution of eliminating context switches versus
specialization. Lupine-nokml differs from lupine in two ways: (1) it uses a kernel that
does not have the KML patch applied, and (2) contains CONFIG_PARAVIRT, as also
present in microVM, which unfortunately conflicts with KML despite being important

for performance (as I will see).

e -tiny indicates Lupine is optimized for size over performance. Lupine-tiny differs from

lupine in that it (1) is compiled to optimize for space with -0s rather than for perfor-

6Both uhyve and solo5-hvt are descendants of ukvm.
"Linux 4.0 is the most recent available version for KML.

19

mance with -02 and (2) has 9 modified configuration options that state clear space/per-
formance tradeoffs in Kconfig (e.g., CONFIG_BASE FULL).®

A third variant is not application-specific:

e -generalis a Lupine kernel with a configuration derived from the union of all application-
specific configurations from the most popular 20 applications as described in Table 3.3
in Section 3.5.1.

All experiments were run on a single server with an 8 core Intel Xeon CPU (E3-1270 v6) at
3.80GHz and 16 GB of memory. For a fair comparison, the unikernel (or guest) was limited
to 1 VCPU (pinned to a physical core) as most unikernels are single-threaded and 512 MB
of memory (except the experiment for memory footprint). This was done for all performance
tests. The VM monitor could also make use of 3 additional CPUs and the benchmark client
used the remaining 4 physical CPUs if a client was needed.

I present three main conclusions from the evaluation. First, I confirm that kernel spe-
cialization is important: Lupine achieves up to 73% smaller image size, 59% faster boot
time, 28% lower memory footprint and 33% higher throughput than the state-of-the-art
VM. However, I find that specialization on an application-level granularity may not be im-
portant: only 19 application-specific options cover the 20 most popular applications (83%
of all downloads) and I find at most 4% reduction in performance by using a common con-
figuration. Second, I find that, while running the application in the same privilege domain
improves performance up to 40% on microbenchmarks, it only has a 4% improvement in
macrobenchmarks, indicating that system call overhead should not be a primary concern
for unikernel developers. Finally, I show that Lupine avoids major pitfalls of POSIX-like
unikernels that stem from not being Linux-based, including both the lack of support for

unmodified applications and performance from highly-optimized code.

3.5.1 Configuration Diversity

Lupine attempts to mimic the only-what-you-need approach of unikernels in order to
achieve some of their performance and security characteristics. In this subsection, I evaluate
how much specialization of the Linux kernel occurs in practice when considering the most
popular cloud applications. My primary finding is that many of the same configuration
options are required by the most popular applications, and they are relatively few (19 options

for the 20 most popular applications).

8Determining exactly which options should be selected for a tiny kernel is difficult, but studies have shown
that tinyconfig is a good starting point [56].

20

Options
Name Downloads | Description at(.)p
lupine-
base
nginx 1.7 Web server 13
postgres 1.6 Database 10
httpd 1.4 Web server 13
node 1.2 Language runtime)
redis 1.2 Key-value store 10
mongo 1.2 NOSQL database 11
mysql 1.2 Database 9
traefik 1.1 Edge router 8
memcached 0.9 Key-value store 10
hello-world 0.9 C program “hello” 0
mariadb 0.8 Database 13
golang 0.6 Language runtime 0
python 0.5 Language runtime 0
openjdk 0.5 Language runtime 0
rabbitmq 0.5 Message broker 12
php 0.4 Language runtime 0
wordpress 0.4 PHP /mysql blog tool 9
haproxy 0.4 Load balancer 8
influxdb 0.3 Time series database 11
elasticsearch 0.3 Search engine 12

Table 3.3: Top twenty most popular applications on Docker Hub (by billions of downloads)
and the number of additional configuration options each requires beyond the lupine-base
kernel configuration. °

Unlike other unikernel approaches, Lupine poses no restrictions on applications and re-
quires no application modifications, alternate build processes, or curated package lists. As
a result, I were able to directly run the most popular cloud applications on Lupine uniker-
nels. To determine popularity, I used the 20 most downloaded container images from Docker
Hub [57]. I find that popularity follows a power-law distribution: 20 applications account
for 83% of all downloads. Table 3.3 lists the applications.

For each application, in place of an application manifest, I carried out the following process
to determine the minimal viable configuration. First I ran the application as a standard
container to determine success criteria for the application. While success criteria could

include sophisticated test suites or achieving performance targets, I limited ourselves to

9T exclude the Docker daemon in this table because Linux 4.0 does not support layered file systems, a
prerequisite for Docker.

21

the following tests. Language runtimes like golang, openjdk or python were tested by
compiling (when applicable) a hello world application and testing that the message was
correctly printed. Servers like elasticsearch or nginx were tested with simple queries or
health status queries. haproxy and traefik were tested by checking the logs indicating
that they were ready to accept traffic. I discuss the potential pitfalls of this approach in
Section 3.7.

Once I had determined success criteria, I attempted to run the application on a Linux
kernel built with the lupine-base configuration as described in Section 3.4.1. Recall that
the base configuration is derived from microVM but lacks about 550 configuration options
that I classified as hardware management, multiprocessing and application-specific. Some
applications require no further configuration options to be enabled beyond lupine-base. For
others, I added new options one by one while testing the application at each step. I expected
all new options to be from the set classified as application-specific.

The process was manual: application output guided which configuration options to try.
For example, an error message like “the futex facility returned an unexpected error code”
indicated that I should add CONFIG_FUTEX, “epoll_createl failed: function not implemented”
suggested I try CONFIG_EPOLL and “can’t create UNIX socket” indicated CONFIG_UNIX. Some
error messages were less helpful and required some trial and error. Finally, some messages
indicated that the application was likely not well-suited to be a unikernel. For example,
postgres in Linux is made up of five processes (background writers, checkpointer, and
replicator). It required CONFIG_SYSVIPC, an option I had classified as multi-process related
and therefore not appropriate for a unikernel. Lupine can run such an application despite
its obvious non-unikernel character, which is an advantage over other unikernel-based ap-
proaches. I will discuss the implications of relaxing unikernel restrictions in Section 3.6.

I conservatively estimate the time spent per application for a knowledgeable researcher
or graduate student as 1 to 3 hours. However, I found knowledge of kernel options and
experience accelerated the process. For example, I no longer need to perform trial and
error for certain options, as I have learned that CONFIG_FUTEX is needed by glibc-based
applications, and CONFIG_EPOLL is used by applications that utilize event polling.

Table 3.3 shows the number of configuration options (beyond lupine-base) deemed nec-
essary to reach the success criteria for each application. Figure 3.5 depicts overlapping
options thus showing how the union of the necessary configuration options grows as more
applications are considered. The union of all configuration options is 19; in other words, a
kernel (lupine-general) with only 19 configuration options added on top of the lupine-base
configuration is sufficient to run all 20 of the most popular applications. The flattening of

the growth curve provides evidence that a relatively small set of configuration options may

22

20 T T T T T LI B
18 S
16
14
12
10

8 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
Support for top x apps

Number config options

Figure 3.5: Growth of unique kernel configuration options to support more applications.

}g T T T T T
8 12r j
> - -
| 8t]
g of :
s i]
4 | EE :
Mic, lup; lup; herpy,., — Osy U,
o Wy he Ne. 0 ene,a/’n/tu x o

Figure 3.6: Image size for hello world.

be sufficient to support a large number of popular applications.

As I show later in the evaluation, a kernel containing all of these common options, lupine-
general, performs similarly to a manually configured kernel, an observation that matches
recent results from building a systematic kernel debloating framework [13]. As a result,
general users will likely not need to perform the manual process described in this section
and can use [upine-general directly. It is an open question, however, to provide a guarantee

that lupine-general is sufficient for a given workload.

3.5.2 Image Size

Most unikernels achieve small image sizes by eschewing generality. Similarly, Lupine uses
the Linux kernel’s configuration facilities for specialization. Figure 3.6 compares the kernel
image size of Lupine to microVM and several unikernels—all configured to run a simple
hello world application in order to measure the minimal possible kernel image size. The
lupine-base image (sufficient for the hello world) is only 27% of the microVM image, which
is already a slim kernel image for general cloud applications. When configuring Lupine to
optimize for size over performance (-tiny), the Lupine image shrinks by a further 6%.

Figure 3.6 shows Lupine to be comparable to my reference unikernel images. All config-
urations except Rump utilize dynamic loading, so I report only the size of the kernel. To

avoid unfairly penalizing unikernels like Rump, that statically link large libraries (like libc,

23

(2] /]

-CCJ B0 /</‘: \/:// -
g A0 - 25 :
g 20 /</// ~E% /;/ </§ </<,//]
g 10 | [0 %% X o5 KKK 3]

0 - 2 o D [5

Micry , Ming. Wing. Merm,;, Os Os r,
Na. Na. g Vr, V. m
Oy gy S Noggy M Tols s

“Ger,
Sray

Figure 3.7: Boot time for hello world.

which consists of 24M), I configure them to run a trivial hello world application without
libc.

I also examined the effect on application-specific configuration on the Lupine kernel image
size. I found that the image size of lupine kernels varied from 27—33% of microVM’s baseline.
Compared to lupine-base, this corresponds to an increase of up to 19 percent. Even with the
largest Lupine kernel configuration (lupine-general, that is capable of running all of the top
20 applications) the resulting image size remains smaller than the corresponding OSv and
Rump image sizes. I note that lupine-general is an upper bound for kernel image size for

the kernels associated with any application in Table 3.3, including redis, nginx, etc.

3.5.3 Boot Time

Figure 3.7 shows the boot time to run a hello-world application for each configuration.
Firecracker logs the boot time of all Linux variants and OSv based on an I/O port write from
the guest. I modified the unikernel monitors solo5-hvt and uhyve respectively to similarly
measure boot time via an I/O port write from the guest.

As shown in Figure 3.7, use of a unikernel monitor does not guarantee fast boot time.
Instead, unikernel implementation choices dominate the boot time. The OSv measurements
show how dramatic the effects of unikernel implementation can be: when I first measured it
using zfs (the standard r/w filesystem for OSv), boot time was 10x slower than the numbers
I had seen reported elsewhere. After investigation, I found that a reduction in unikernel
complexity to use a read-only filesystem resulted in the 10x improvement, thus underscoring
the importance of implementation.

Lupine’s configuration shows significant improvement over microVM and comparable boot
time to the reference unikernels. In Figure 3.7, I present the boot time without KML (lupine-
nokml). A primary enabler of fast boot time in Linux comes from the CONFIG_PARAVIRT con-
figuration option which is active in microVM and lupine-nokml, but currently incompatible
with KML. Without this option boot time jumps to 71 ms for Lupine. I believe that the

24

50 T T T T T T
@ 40 F hello =52 nginx 2220 redis =1 i
3 30 [
2 20 RSN RIEE N N
> 10 H BN =
0 . N\ / 5 XK\ H 1 Fj
Meroyy, e Moine., ermy, Oy Tump

Mergy

Figure 3.8: Memory footprint.

incompatibilities with KML are not fundamental and could be overcome with engineering
effort and would result in similar boot times to lupine-nokml. I do not find an improvement
in Lupine’s boot time when employing space-saving techniques (-tiny) with or without KML.
In other words, the 6% reduction in image size described in Section 3.5.2 does not affect boot
time thus implying that boot time is more about reducing the complexity of the boot process
than the image size. For lupine-general, I measured an additional boot time of 2 ms. Note
that this is still faster than HermiTux and OSv (with zfs). I note that, similar to image
size, lupine-general conveys an upper bound in kernel boot time for the kernels associated

with any application in Table 3.3, including redis, nginx, etc.

3.5.4 Memory Footprint

Unikernels achieve low memory footprint by using small runtime images that include
only what is needed to run a particular application. I define the memory footprint for an
application as the minimum amount of memory required by the unikernel to successfully run
that application as defined by success criteria described in Section 3.5.1. I determine the
memory footprint by repeatedly testing the unikernel with a decreasing memory parameter
passed to the monitor. My choice of applications was severely limited by what the (non-
Lupine) unikernels could run without modification; I only present the memory footprint for
three applications as shown in Figure 3.8. Unfortunately, HermiTux cannot run nginx, so I
omit that bar.

Figure 3.8 shows the memory footprint for each application. In both application-specific
and general cases, Lupine achieves a comparable memory footprint that is even smaller than
unikernel approaches for redis. This is due in part to lazy allocation. While each of the
unikernels shows variation in memory footprint, the Linux-based approaches (microVM and

Lupine) do not.!® There is no variation because the Linux kernel binary (the first binary to

1008y is similar to Linux in this case in that it loads the application dynamically, which is why nginx
and hello exhibit the same memory footprint; I believe redis exhibits a larger memory footprint because
of how the OSv memory allocator works.

25

A1
0.1 2%

Pt null
0.08 F read £ Y i
m write E=—1
O
= 0.06F a
2
o 0.04 i
©
-
0.02 f i
0

~
(7
Mo

Figure 3.9: System call latency via lmbench.

be loaded) is more or less the same size across applications. The binary size of the application
is irrelevant if much of it is loaded lazily and even a large application-level allocation like
the one made by redis may not be populated until later. However, an argument can be
made in favor of eliminating laziness and upfront knowledge of whether sufficient resources
will be available for an application. I further discuss this issue in the context of immutable

infrastructure in Section 3.7.

3.5.5 System call latency microbenchmark

Unikernels claim low system call latency due to the fact that the application is directly
linked with the library OS. Using Lupine, a Linux system, can achieve similar system call
latency as other POSIX-like unikernel approaches. Figure 3.9 shows the 1mbench system call
latency benchmark for the various systems. '! The results show that Lupine is competitive
with unikernel approaches for the null (getppid), read and write tests in lmbench. OSv
shows the effects of implementation choices as getppid (issued by the null system call test)
is hardcoded to always return 0 without any indirection. Read of /dev/zero is unsupported
and write to /dev/null is almost as expensive as the microVM case.

Experimentation with lupine-nokml shows that both specialization and system call over-
head elimination play a role. Specialization contributes up to 56% improvement (achieved
during the write test) over microVM. However, I found no differences in system call latency
between the application-specific and general variants (lupine-general) of Lupine. KML pro-
vides Lupine an additional 40% (achieved during the null test) improvement in system call

latency over lupine-nokml.

1T only use the system call latency benchmark in 1mbench due to lack of support in some unikernels for
more complex benchmarks.

26

KML improvement
o
N
1T 17T 17T 17T 1T
L1 1 1 1 11

0 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160

Iterations between system calls

Figure 3.10: Relationship of KML syscall latency improvement to busying-waiting iterations
(the more busy-waiting iterations the less frequent of user-kernel mode switching).

To better understand the potential performance improvements of KML on Lupine, I de-
signed a microbenchmark in which I issued the null (getppid) system call latency test in a
loop, while inserting a configurable amount of CPU work via another tight loop to control
the frequency of the switching between user and kernel mode: the frequency of switching
decreases as the number of iterations increases.

In an extreme case where the application calls the system call without doing anything else
(0 iterations) KML provides a 40% performance improvement. However, Figure 3.10 shows
how quickly the KML benefits are amortized away: with only 160 iterations between the
issued system calls the original 40% improvement in latency drops below 5%. I find similarly

low KML benefits for real-world applications in Section 3.5.6.

3.5.6 Application performance

Name redis-get | redis-set | nginx-conn | nginx-sess
microVM 1.00 1.00 1.00 1.00
lupine-general 1.19 1.20 1.29 1.15

lupine 1.21 1.22 1.33 1.14
lupine-tiny 1.15 1.16 1.23 1.11
lupine-nokml 1.20 1.21 1.29 1.16
lupine-nokml-tiny | 1.13 1.13 1.21 1.12
hermitux .66 .67

oSV .87 .53

rump 99 . 1.25 .53

Table 3.4: Application performance normalized to MicroVM (Note: higher value is better).

Unikernels boast good application performance due to lack of bloat and the elimination of
system call latency. Table 3.4 shows the throughput of two popular Web applications: the

nginx web server and the redis key-value store, normalized to microVM performance. As

27

in the memory footprint experiment in Section 3.5.4, I were severely limited in the choice of
applications by what the various unikernels could run without modification.

For clients, I used redis-benchmark to benchmark two common redis commands, get
and set, measuring requests per second. For nginx, [used ab to measure requests per second.
Under the connection-based scenario (nginz-conn), one connection sends only one HTTP
request. Under the session-based scenario (nginz-sess), one connection sends one hundred
HTTP requests.'? I ran the clients on the same physical machine to avoid uncontrolled
network effects.

As shown in Table 3.4, Lupine outperforms the baseline and all the unikernels. A gen-
eral kernel (lupine-general) that supports 20 applications in Section 3.3 does not sacrifice
application performance. 1 note that, as a unikernel-like system with a single trust domain,
Lupine does not require the use of many recent security enhancements that have been shown
to incur significant slowdowns, oftentimes more than 100% [5]. I attribute much of Lupine’s
20% (or greater) application performance improvement (when compared to baseline) to dis-
abling these enhancements. The poor performance of the unikernels is most likely due to
the fact that the implementation of kernel functionality in Linux has been highly optimized
over many years thanks to the large Linux community, beyond what other implementations
can achieve. I would like to have more data points, but the inability to run applications on
the unikernels is a significant challenge: even with these two extremely popular applications,
OSv drops connections for redis and nginx has not been curated for HermiTux.

Within the Lupine variants, optimizing for space (e.g., -tiny) can cost up to 10 percentage
points (for nginz-conn), while KML adds at most 4 percentage points (also for nginz-conn).
As in the other experiments, KML and optimizing for size affects performance only a small

amount relative to specialization via configuration.

3.6 BEYOND UNIKERNELS

Unikernel applications (and their developers) are typically restricted from using multiple
processes, processors, security rings and users. These restrictions are often promoted as a
feature (e.g., a single address space saves TLB flushes and improves context-switch perfor-
mance [19, 34]) and justified or downplayed in certain contexts (e.g., many microservices do
not utilize multi-processing [9]). Unfortunately, there is no room for bending the rules: as a
unikernel, an application that issues fork will often crash or enter into an unexpected state

by a stubbed-out fork implementation (e.g., continuing as a child where there is no parent).

12T yuse the ——keepalive option in ab.

28

KML Null =>— KML Write —&— NOKML Read
KML Read —&=— NOKML Null NOKML Write —6—

006 1 1 L} 1
0.055 .
0.05 .
0.045 — &
0.04
0.035 f , y
008¢—8— o 55— 95— 55—
0.025 a
0.02 _—
1 4 16 64 256 1024
Control Processes

Microseconds

Figure 3.11: System call latency with different number of background control processes for

KML and NOKML.

0.4
. 035 KML Thread —>— NOKML Thread —&—
- 03F KML Process —=— NOKML Process
oy
o 025
& 02F -
s 01rF o
005F = —
0 1 1 1
1 2 4 8
Groups (10 senders and 10 receivers per group)

Figure 3.12: Perf context switch benchmark with threads and processes.

Such rigidity leads to serious issues for compatibility: as I encountered in my evaluation, it
is unlikely that an existing application will run unmodified on a unikernel, even if the library
OS is more-or-less binary compatible. Furthermore, there are situations where relaxing the
unikernel restrictions is imperative. As a trivial example, building the Linux kernel with a
single processor takes almost twice as long as with two processors.

Lupine is, at its core, a Linux system, and relaxing its unikernel properties is as simple
as re-enabling the relevant configuration options. This results in a graceful degradation of
unikernel-like performance properties. For example, rather than crashing on fork, Lupine
can continue to execute correctly even if it begins to experience context switch overheads.
Next, I investigate what the cost would be for Lupine to support applications that use mul-
tiprocessing features and whether including this support would adversely affect applications
that do not.

I first consider the use of multiple address spaces and experiment with two different scenar-
ios. First, I consider auxiliary processes that spend most of their time waiting either waking
up or running in a frequency that does not interfere or create contention on resources with

the application. I refer to such processes as control processes, i.e., processes that are respon-

29

sible for monitoring the application for multiple purposes (e.g., shells, environment setup,
recovery and analysis, etc.). In practice, it is extremely common, for example, to find a script
that forks an application from a shell after setting up some environment variables. Lack of
support for this case from existing POSIX-compliant unikernel implementations severely
limits their generality. I design an experiment to show that such uses of multiple address
spaces are not harmful to unikernel-like performance. Specifically, I measure the system call
latencies after launching 2° (i = 0,1,...,10) control processes, using sleep as the control
process. As shown in Figure 3.11, in all cases, there is no latency increase; all measurements
(averaged over 30 runs) are within one standard deviation.

Second, I consider co-existing processes that contend resources with each other and may ex-
perience context switch overheads. To quantify these overheads, I compare the context switch
overheads for threads that do not switch address spaces (to approximate unikernel behav-
ior) versus processes. I use the messaging benchmark in perf [58] where 2° (i = 0,1,2,3,4)
groups (10 senders and 10 receivers per group) of threads or processes message each other
via UNIX sockets. The benchmark implements threads with pthread and processes with
fork. For each configuration, I average the results of 30 runs. As shown in Figure 3.12, sur-
prisingly, in all numbers of groups, switching processes is not slower than switching threads
as the maximum time increase is 3% (in the KML case) when there is 1 group. In some
cases, | even see process switching outperforming thread switching by 0 — 4%. This finding
matches prior work [59]. Since no performance is lost, I conclude that the adherence to a
single address space is unfounded from a performance perspective

Next, I investigate the effects of Linux’s symmetric multiprocessing (SMP) support as
configured by the CONFIG_SMP kernel configuration option. I devised three experiments,
sem_posix, futex and make -7, to show the worst-case scenario for supporting SMP: a system
with one processor running applications that frequently context switch. I expect to see an
overhead from a kernel that supports SMP versus a more unikernel-like kernel that does
not. sem_posiz and futex spawn up to 512 workers that rapidly exercise futex and POSIX
semaphore wait and post operations. Each worker starts 4 processes sharing a futex or
semaphore. make -7 builds the Linux kernel using up to 512 concurrent processes. I found
sem_posiz incurs up to 3%, futex incurs up to 8%, and make incurs up to 3% overhead over
a kernel without SMP support. In most cases, where there would be fewer context switches,
I would expect even less overhead, so the choice to use SMP—rejected by unikernels—will

almost always outweigh the alternative.

30

3.7 DISCUSSION

The evaluation in Section 3.5 and the opportunity to gracefully degrade for non-unikernel
workloads described in Section 3.6 make a compelling case for Lupine over other general-
purpose unikernel approaches. Here I discuss the robustness of my analysis of Lupine and

some benefits that unikernels achieve that Lupine does not.

3.7.1 Threats to validity

The conclusions drawn from my evaluation of Lupine rely on the correctness of my method-
ology, mainly in how the Linux kernel configuration—a notoriously messy part of Linux—is
treated. The main risk is that Lupine has underestimated the necessary kernel configuration
options for each application.

First, when determining the lupine-base configuration in Section 3.4, I may have misclas-
sified certain kernel options as unnecessary rather than application specific. Moreover, the
minimum set of configuration options that make up lupine-base may not be unique espe-
cially when considering options that provide similar functionality with different performance
or space tradeoffs such as different compiler flags: -02 and -0s. Even if I were to find a
different, more minimal lupine-base, the conclusions would hold.

Deriving an application-specific kernel configuration is more concerning. While not a focus
of this paper—I assume its existence in the form of an application manifest—the evaluation
of Lupine depends on an accurate application-specific kernel configuration. I determined
configurations for the top 20 applications on Docker Hub based on a manual process based on
simple success criteria and benchmarks that allowed us to quickly evaluate the configurations
for many applications. When considering applications that do one thing and do it well (e.g.,
microservices), it may be more feasible to have a complete test suite to ensure that all
configuration options are accounted for. In general, the problem is difficult: a large body
of ongoing work attempts to derive kernel configuration from an application [3, 51, 52].
However, I believe the risk to be low: I noticed that many applications perform a series
of checks when they start up, reducing the importance of complex success criteria. In my
experience, in all cases, a weaker success criteria based on console output matched the
configurations derived based on benchmark success.

Finally, T note that language-based unikernels, such as MirageOS [10], while unable to
run existing POSIX applications, can use language-level analyses and package management
techniques to determine application dependencies on OS functionality (e.g., networking),

essentially removing the need for a manifest as needed by Lupine.

31

3.7.2 Unachieved unikernel benefits

Two of the unikernels I evaluated Lupine against (HermiTux [34] and Rump [60]) run
on unikernel monitors [8] that are slim and optimized for unikernel workloads. Beyond
boot times, unikernel monitors have been demonstrated to require such a small amount
of host functionality that they can be implemented even as processes, thereby increasing
performance while maintaining isolation [9, 61]. Linux does not currently run on a unikernel
monitor, but it may possibly in the future given the fact that Linux can run in a variety of
limited hardware environments (e.g., even with no MMU) or in environments that are not
hardware like (e.g., User Mode Linux [62]).

The concept of immutable infrastructure has been associated with unikernels—especially
language-based unikernels—in part because they push tasks that are traditionally done at
deploy-time or later (like application configuration) to build time. As a result, the unikernel
is specialized not just for an application but for a particular deployment of an application.
However, general-purpose systems and applications often have dynamic or lazy properties—
such as those seen when measuring the memory footprint in Section 3.5.4—that limit how
immutable deployments can be. For example, interpreted code like JavaScript has become
popular in the cloud but is dynamically loaded and interpreted. Dynamic behavior—which
is pervasive in existing cloud applications and programming models—and immutability will
continue to participate in a fundamental tussle as the cloud landscape evolves.

Another benefit of language-based unikernels that Lupine does not enjoy is the ability to
perform language-based analyses or compiler optimizations that span both the application
and kernel domain. For instance, MirageOS can employ whole-system optimization tech-
niques on the OCaml code—from application to device drivers. POSIX-like unikernels tend
to have less opportunity for this type of compiler optimization due to practical deployment
and compatibility concerns when attempting to support legacy applications without com-
pletely changing their build processes. In the case of Linux, while link-time-optimization
(LTO) exists for the kernel, it does not include the application in the analyses. Special-
izing the kernel via configuration, as shown for Lupine, may improve the results of LTO,
but kernel routines or system calls cannot be inlined into the application without modifying
both the kernel and application build processes. While some interesting new approaches are
attempting this in the context of Linux [63], simultaneously maintaining full generality, or

the ability to run any application (as Lupine can), remains a challenge.

32

3.8 CONCLUSION

While unikernels and library OS designs seem like a reasonable, lightweight alternative to
more traditional virtual machines, the desire to increase the generality of unikernels along
with an underestimation of the versatility of Linux has led us to stray too far from the
potential benefits of unikernels. I show that Lupine, a pure Linux system, can outperform
such unikernels in all categories including image size, boot time, memory footprint and
application performance while maintaining vital properties, e.g., the community and engi-
neering effort in the past three decades. Future research efforts should focus on making

Linux specialization more effective and accessible.

33

CHAPTER 4: KERNEL SPECIALIZATION ENFORCEMENT WITH
TRADEOFFS

4.1 OVERVIEW

In this chapter, I intend to explore specialization techniques by developing DKut and
SKut— two methods to profile and eliminate unwanted kernel code at different granularities.
In order to support multiple specialized copies of kernel to run in the same operating system,
I present MultiK. MultiK is a Linux-based framework that orchestrates multiple kernels that
are specialized for individual applications in a transparent manner.

I evaluate the framework against benchmarks (STREAM [64] and perf [58]) and applica-
tions (Apache httpd [65]). The results reveal that MultiK incurs virtually zero performance
overheads. When the kernel the specialized aggressively (e.g., basic-block granularity), the
amount of kernel code reduction in size is as high as 93% for httpd when the baseline is
the ubuntu vanilla kernel. With a such aggressive kernel reduction, the produced kernel
is highly unstable and likely to crash because necessary code is not captured during the
profiling phase such as error-handling code. When reducing the kernel more inclusively at
system call granularity, the amount of reduction drops 82%. The produced kernel is more
stable than the one debloated at basic-block granularity although it still crashes sometimes.

In the next section, I introduce my study methodology including the framework, Multik,
that orchestrates specialized kernels and two kernel profiling techniques (DKut and SKut).

General-purpose operating systems (OSes) have, over time, bloated in size. While this
is necessitated by the need to support a diverse set of applications and usage scenarios,
a significant amount of the kernel code is typically not required for any given application.
For example, Linux supports more than 300 system calls and contains code for supporting
different filesystems, network protocols, hardware drivers, etc. all of which may not be
needed for every application or deployment. While a minimal off-the-shelf install of Ubuntu
16.04 (running kernel 4.4.1) produces a kernel binary with an 8 M B text section, many of
the applications that I profiled (refer to Section 4.6 for more details) only use about 800K B
of it.

In addition to performance issues, unused kernel code (when mapped into an application’s
process memory) represents an attack surface — especially if vulnerabilities exist in the unused
parts of the kernel code. Such vulnerabilities, while less common than those in applications,

are still found with regular frequency.! Since OS kernels are often considered to be a part of

LOver 2500 vulnerabilities have been found in the Linux Kernel since 2010 (https://nvd.nist.gov/).

34

the trusted computing base (TCB) for many systems, this attack surface poses a significant
risk. Today, there exist many known exploits that take advantage of kernel vulnerabilities
(e.g., CVE-2017-16995%).

Researchers have explored different techniques to reduce kernel code (e.g., [2, 3, 10, 18, 66]).
For example, (1) building application specific unikernels [10], (2) tailoring kernels through
build configuration editing [3, 66], (3) providing specialized kernel views for each applica-
tion [2, 18] among others. These approaches, either need application level changes [10], or
need expert knowledge about (and manual intervention in) the selection of configurations
— they also sacrifice the amount of kernel reduction achieved to support multiple applica-
tions [3, 66], or incur significant performance overheads [18] or can only specialize the kernels
at a coarse page level granularity [2]. Note: “granularity”, in this context, refers to sizes of
code chunks that are considered for elimination; some techniques eliminate kernel code at
the page level [2] while others may choose to do it at a basic block level [18]. T show that my
framework can evaluate systems with different levels of code reduction granularity (with the
obvious result that with a finer granularity of code reductions, a greater amount of kernel

code can be eliminated (Section 4.6.1)).

)
Application | m—) Sta%
Stage 1 l,
)
Application
- £ ~N
D-KutEQ Stage 2 I ~—
~——)
—_— Custom
Vanilla pra— Kernel
= | s | el
e 1
— Base Kernel
. (Kernel0)

L[]
N~ Pick one (or more)/
profiling methods

Figure 4.1: High level architecture of MultiK. Stage 1: an application is profiled to identify
necessary kernel code using techniques