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Abstract

Operating system (OS) extensions are more popular than
ever. For example, Linux BPF is marketed as a “superpower”
that allows user programs to be downloaded into the kernel,
verified to be safe and executed at kernel hook points. So,
BPF extensions have high performance and are often placed
at performance-critical paths for tracing and filtering.
However, although BPF extension programs execute in

a shared kernel environment and are already individually
verified, they are often executed independently in chains. We
observe that the chain pattern has large performance over-
head, due to indirect jumps penalized by security mitigations
(e.g., Spectre), loops, and memory accesses.

In this paper, we argue for a separation of concerns. We
propose to decouple the execution of BPF extensions from
their verification requirements—BPF extension programs can
be collectively optimized, after each BPF extension program
is individually verified and loaded into the shared kernel.
We present KFuse, a framework that dynamically and

automatically merges chains of BPF programs by transform-
ing indirect jumps into direct jumps, unrolling loops, and
saving memory accesses, without loss of security or flexi-
bility. KFuse can merge BPF programs that are (1) installed
by multiple principals, (2) maintained to be modular and
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1 Introduction

Operating system (OS) extensions are more popular than
ever. Linux BPF is marketed as a “superpower” that allows
user programs to be downloaded into the kernel, verified to
be safe and executed at kernel hook points. Currently, BPF
extensions are used for system call security (e.g., seccomp-
BPF [24]), performance tracing (e.g., tracepoints [29] and
bcc [2]), and network packet processing (e.g., express data
path (XDP) [31, 50]); many other use cases are proposed
recently [2, 11, 13, 30, 31, 36–38, 40, 42–45, 51, 59, 63, 69–
71, 74, 76–78]. BPF extensions have high performance, be-
cause BPF code is highly optimized [20] and BPF programs
are executed entirely in the kernel. For example, sandboxing
system call with seccomp BPF filters is reported to be 2×
faster, compared with ptrace-based system call filtering [53];
using XDP [31, 50] to implement firewall rules improves
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network throughput by 11× compared to iptable-based im-
plementations [21].

Currently, BPF extensions are individually verified by an
in-kernel BPF verifier and then executed independently. A
common execution pattern for BPF extensions is to execute
a chain of independently-loaded BPF extensions that are at-
tached at the same hook point. The chain pattern is a natural
implementation choice to support BPF extensions that are
(1) installed by multiple principals [7, 24, 29]; (2) installed
at different points of time (e.g., for temporally-specialized
security policies [49, 60]), and (3) maintained to be modular
and separate (for maintainability and debuggability) [17].

More fundamentally, due to the limited scalability of BPF
program verification, the BPF verifier enforces each BPF
extension to be small in size—each BPF program is limited
to 4096 instructions with a maximum stack size of 512 bytes;
therefore, large BPF features need to be split into small BPF
programs, each of which can be verified in time [12].

However, we observe that the chain pattern has large per-
formance overhead, due to indirect jumps penalized by secu-
rity mitigations (e.g., Spectre), loops, and memory accesses.
The typical chain pattern is implemented by a sequence of
indirect jumps. The kernel maintains an array of pointers
of loaded BPF extensions which are called one by one via
indirect jumps to these pointers. While indirect jumps were
optimized in modern CPUs via branch prediction, recent se-
curity mitigations to speculative vulnerabilities [57] (Spectre,
specifically Variant 2) incur significant overhead to indirect
jumps, negatively affecting the execution of the chained BPF
execution. For example, the de facto software mitigation,
Retpoline [23], makes indirect jumps 13.3× slower [8, 67].
Besides loops, BPF extension chains can also be formed by
tail calls; a BPF program can tail-call another BPF program,
which takes a memory access and an indirect jump.

To make the matter worse, the overhead of BPF exten-
sion chains increases with the increase of the length of the
chain. We have seen real-world BPF use cases with long BPF
extension chains. For example, systemd [26] installs 19 sec-
comp BPF filters to its services. Our benchmark on Redis
initialized by systemd shows that the chained BPF exten-
sions can cause a 10% slowdown of Redis. We expect such
long chain to be commonplace in future BPF use cases for
fine-grained policies and richer features. The overhead of
the chains would be untenable.
In this paper, we argue that execution and verification

should be a separation of concerns. We propose to decouple
the execution of BPF extensions from their verification re-
quirements and limits—kernel extension programs can be
collectively optimized, after each extension is individually
verified and loaded into the shared kernel. We demonstrate
that the decoupling could lead to new opportunities for per-
formance optimizations, while maintaining the safety of the
verified extension programs.

We present KFuse, a framework that dynamically and
automatically optimizing chains of BPF extensions by trans-
forming indirect jumps into direct jumps, unrolling loops,
and saving memory accesses, without loss of security or flex-
ibility. Specifically, KFuse merges a chain of BPF extensions
into a fused BPF program by rewriting the return instruc-
tions into direct jump instructions and updating the jump
offsets. For loop-based chains, KFuse updates the return val-
ues based on the original loop semantics (tail calls do not
return).KFuse ensures that the fused BPF programmaintains
all the safety properties required by the BPF verifier. This can
be proved by induction-based on the safety properties of the
original BPF extension programs in the chain (ensured by the
BPF verifier). Lastly, KFuse is fully transparent to user space.
It achieves the transparency by maintaining the original ver-
ified BPF program and only performing the optimizations
for execution. We integrate KFuse into three Linux kernel
subsystems that adopt BPF: seccomp, tracepoint, and cgroup.
We show that KFuse can be easily integrated in existing BPF
use cases—it takes only 20, 28, and 34 lines of code changes
for the three subsystems respectively.
We evaluate the effectiveness of KFuse in optimizing ex-

ecution of BPF extension chains with real-world BPF use
cases (the systemd BPF filters) as well as synthetic BPF ex-
tensions for scalability analysis. KFuse demonstrates 85%
performance improvement of BPF chain execution and 7%
of application performance improvement over existing BPF
use cases (systemd’s seccomp BPF filters). When the chain
is long (160 BPF filters), KFuse is able to improve NGINX
performance by as much as 2.3 times.

This paper makes the following contributions:
• We propose a new perspective of optimizing a chain
of verified BPF extensions collectively;

• We benchmark the overhead of executing BPF exten-
sion chains, based onwhich we identify the root causes
and analyze their performance impacts;

• We present KFuse, an in-kernel framework for effec-
tively optimizing BPF extension chains.

We will release all the code and dataset in the paper.

2 BPF Extension and The Chain Pattern

In this section, we introduce BPF extensions for the Linux
kernel and identify how admitting extensions into the shared
kernel creates a common chain pattern where multiple ex-
tensions are attached to the same hook.

2.1 BPF extensions

Linux supports kernel extensions implemented in the BPF
(Berkeley Packet Filter) language [64]. BPF was originally
used for network packet filters; later, it is adopted by many
kernel subsystems, including security [14, 24], tracing [2,
3, 29], and process management [7]. Recent research has
proposed a variety of BPF use cases, including storage [81],
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for (; f; f = f->prev) {
u32 cur_ret =

bpf_prog_run(f->prog, sd);↩→
if (cur_ret < ret) {

ret = cur_ret; *match = f;
}

}

(a) Seccomp execution loop

u32 _ret = 1;
_item = &_array->items[0];
while ((_prog = _item->prog)) {

_ret &= func(_prog, ctx);
_item++;

}
return _ret;

(b) Tracepoint execution loop

while ((_prog =

READ_ONCE(_item->prog))) {↩→
...
_ret &= func(_prog, ctx);
...
_item++;

}

(c) Cgroup execution loop

Figure 1. Common patterns of executing BPF extensions: A chain of BPF programs are store in an array or a list and are
executed in loops of indirect jumps.

virtualization [35], hardware offloading [31, 54], and oth-
ers [40, 73]. Note that in Linux, “BPF” stands for extended
BPF (or eBPF in short). While some subsystems, such as sec-
comp, still use the classic BPF (cBPF) language, they are
converted into the eBPF bytecode at the execution time. So,
we focus our discussion on eBPF.

BPF has ten registers and a 512-byte stack. Instructions are
9-byte long and implement a general-purpose RISC instruc-
tion set. When an extension is loaded into the kernel, Linux
compiles its BPF instructions “just in time” (JIT) into native
instructions for better performance. The JIT compilation is
optional. BPF programs maintain states via BPF maps. BPF
maps are kernel objects that are in the form of key-value
pairs, which can also be exposed to user space.

Every BPF program needs to pass an in-kernel BPF verifier;
BPF programs that fail the verification will be rejected. The
verifier ensures that the BPF extension program does not
have unbounded loops, unreachable code, or out-of-bound
jumps. So, a verified program is guaranteed to terminate,
never jump to invalid locations and never access invalid out-
of-bound memory [12]. To make sure the verification can be
done in time, a BPF extension is limited to 4096 instructions.

In order to support more complex, modular extension pro-
grams, BPF includes a tail call mechanism that allows one
program to call another one without returning. These pro-
grams are verified independently. The stack frame from the
old program is unwound and reused. A program array that
specifies available programs to tail call needs to be popu-
lated first. The program then reads the array and tail calls
the target program.

In this paper, we focus on three Linux kernel subsystems
that support BPF extensions, seccomp [24], tracepoint [29]
and cgroup [7]. Seccomp uses BPF extensions for system call
filters that restrict the system calls and their argument values
a process can invoke. Tracepoint enables BPF extensions to
observe the kernel states for profiling and debugging. Cgroup
(control groups) limits the resource usage of processes and
filters network traffic with BPF extensions.

2.2 Emergence of BPF chain patterns

A chain of BPF extensions is formed when multiple exten-
sions are attached to the same kernel hook point. This is
typically implemented in the form of loops. Figure 1 shows
three simplified examples from seccomp (Figure 1a), trace-
point (Figure 1b) and cgroup (Figure 1c). Another way to
form a chain is through tail calls—a BPF program (the caller)
can tail-call another BPF program (the callee), and the callee
can tail-call other BPF programs.

We categorize four reasons of the chain pattern: (1) exten-
sions are installed from different principals, (2) developers
enforce modularity of kernel extensions, (3) extensions are
installed at different points in time, and (4) extensions need
to be verified independently.

Extensions installed by different principals. Extensions
from different principals can not be combined together be-
fore being loaded to the kernel, because they may not trust
or even be aware of each other. These extensions are veri-
fied independently and stored in an array of extensions, and,
therefore, a chain is formed. Take seccomp-BPF as an exam-
ple. Seccomp BPF filters can also be installed from different
principals. In a cluster management system, host-specific
seccomp BPF filters are installed [72]; the container run-
time (e.g., Docker) can install container-wide BPF filters; and
applications can install application-specific BPF filters. All
these filters are attached at the same location (the system
call entry point). In tracepoint, multiple extensions can be
attached to the same tracepoint. Processes from different
principals collect performance statistics by installing their
own tracepoint extensions. Another example is infrared (IR)
decoding—decoding protocols are expressed as BPF exten-
sions that can come from different principals.

Modularity of extensions. Modularity is a reason why
developers maintain extensions to be single-purpose and
separate. A systemd developer writes in the mailing list [17]
regarding the usage of seccomp filters: “Keeping the filters
separate made things a lot easier and simpler to debug, and

our log output and testing became much less of a black box.

We know exactly what worked and what didn’t, and our test

validates each filter”. Cgroup firewall rules are also easier
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to maintain, debug and reuse when these rules are simple.
For instance, a common way to build a firewall is to have a
rule that denies all packets and rules to allow specific traffic.
Each rule is implemented as a BPF extension, which can be
reused and maintained for different policies. One use case
of the tail call is to separate big and complicated extensions
into smaller and modular ones and chain them together.

Extensions installed at different points in time. Not all
extension programs are known a priori so they can not be
combined before being loaded. For example, temporal system

call specialization [49, 60] is known for security benefits by
installing filters at different execution phases of the appli-
cation (e.g., the initialization phase and the serving phase).
Recent work shows that temporal system call specialization
can reduce 51% more of the attack surface, in terms of the
system call interface. Seccomp ensures that a BPF filter, once
installed, cannot be removed during the process lifecycle.
Therefore, temporal specialization leads to multiple seccomp
filters to be installed at different points in time, forming a BPF
program chain. Besides seccomp, tracepoint and cgroup also
allow BPF extensions to be dynamically installed at different
points in time, on demand.

Extensions that need to be verified individually. Amore
fundamental reason of the chain pattern comes from the
limited scalability of BPF verification. The verification time
depends on the size and complexity of the BPF program.
To make sure that a user-supplied BPF extension can be
verified in time, the verifier imposes limitations on the size
and complexity of the BPF extensions, including the number
of instructions, the number of jumps, the stack size, etc.
Therefore, to pass the verification, a large, complex BPF
extension need to be split into small-sized programs in a
chain.

3 The Cost of Chaining Extensions

In this section, we benchmark the overhead of executing a
BPF extension chain. The main overhead comes from the
indirect jumps that are invoked to switch extensions on the
chain and the loops that are used to iterate extensions.

3.1 Methodology

We design the benchmark for measuring the overhead of a
chain of BPF executions. A chain can be formed when multi-
ple extensions are attached to the same kernel hook point, or
when a extension tail-calls other extensions. When multiple
BPF extensions are attached to the same hook point, these
extensions are executed in a loop (exemplified in Figure 1).
The loop iterates a program array and indirectly jumps to
each item on the array. We measured call instruction as an
approximation of jump instruction (Figure 2) so the results
include jumping to the target address, setting up the stack
and pushing the return address on the stack.

Retpoline No Retpoline

Loop + Indirect jumps (Fig. 2a) 46.3 7.7
Unrolled + Indirect jumps (Fig. 2b) 32.6 2.6
Unrolled + Direct jumps (Fig. 2c) 2.6 2.6

Table 1. Cycles needed to call a BPF extension: Indirect
jumps incur 30 additional cycles with retpoline. Loops incur
13.7 additional cycles with retpoline and 5.1 without.

We firstly establish the baseline and measure a chain of 𝑁
extensions by calling indirect jumps to 3 different functions
in a loop via function pointers, as shown in Figure 2a. Then
we unroll the loop, as shown in Figure 2b, to obtain the loop
cost by comparing the results from Figure 2a and Figure 2b.
Finally, we convert indirect jumps to direct jumps, as shown
in Figure 2c to obtain the indirect jump cost by comparing
the results from Figure 2b and Figure 2c. A extension that
uses tail calls needs to load the target program from a pro-
gram array. This operation incurs memory access cost which
is also part of the cost of executing extensions by a loop.
Therefore, we reuse the benchmark and present the result in
Section 3.2.3

We conduct all the benchmarking experiments on a single
server with a 16 core Intel Xeon Silver 4110 CPU at 2.10GHz
and 64 GB of memory. We use the rdtscp instruction to
read the CPU cycles (i.e., get_timestamp). We use gcc1 to
compile our benchmark programs with optimization level
-O0.

3.2 Benchmark results

Table 1 summarizes our main results. In short, executing a
function directly with unrolled loops takes 2.6 cycles; exe-
cuting a function in loops with indirect jumps takes up to
46.3 cycles when retpoline is enabled, a 17.8× increase.

3.2.1 Indirect jump cost. The common pattern of execut-
ing a chain of BPF extensions is to execute indirect jumps

to locations where these extensions are loaded. An indirect
jump (as known as an indirect branch) is a jump instruc-
tion with an argument specifying where the target address
is located (e.g., jmp rax jumps to the location specified by
rax) instead of the argument being the target address as in
direct jumps (e.g., jmp 0xdeadbeef jumps to the address
0xdeadbeef). To measure the cost of indirect jumps com-
pared to direct jumps, we call functions indirectly by function
pointers as shown in Figure 2b.
Security mitigations for speculation vulnerabilities (e.g.,

Spectre [57]) significantly increase the cost of indirect jumps
and make it expensive to call a chain of BPF extensions
via a loop of indirect jumps. This is because indirect jumps
are typically optimized by speculation—modern CPU archi-
tecture speculates the target address for indirect jumps in
1https://gcc.gnu.org/
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void func1(){}
void func2(){}
void func3(){}
void (*funcs[3])() = {func1, func2,

func3};↩→
start = get_timestamp();
for(int i = 0; i < 3; i++) funcs[i]();
end = get_timestamp();

(a) Indirect jumps in a loop

void func1(){}
void func2(){}
void func3(){}
void (*fptr1)() = func1;
...
start = get_timestamp();
(*fptr1)(); (*fptr2)(); (*fptr3)();
end = get_timestamp();

(b) Indirect jumps with an unrolled loop

void func1(){}
void func2(){}
void func3(){}
start = get_timestamp();
func1();
func2();
func3();
end = get_timestamp();

(c) Direct jumps with an unrolled loop

Figure 2. Benchmarks for analyzing the cost of executing a chain of BPF extensions: (a) measures the cost of loops
and indirect jumps. (b) measures the cost of indirect jumps. (c) measures the cost of direct jumps. Comparing (a) and (b) to
obtain the cost of loops. Comparing (b) and (c) to obtain the cost of indirect jumps.

1. call retpoline_call_target
2. 2:
3. lfence /* stop speculation */
4. jmp 2b
5. retpoline_call_target:
6. lea 8(%rsp), %rsp
7. ret

Listing 1. Retpoline assembly

the pipeline for optimal performance; however, with Spec-
tre [57] and Meltdown [62] which exploit hardware design
flaws of speculation (to leak information from unintended
speculative paths via micro-architectural side channels), the
speculation is disabled. Fixing these vulnerabilities without
performance impact remains as an open problem.

We benchmark the de facto software mitigation for specu-
lation vulnerabilities—Retpoline [23], and discuss the other
alternative mitigations proposed by recent research as they
are not readily available for benchmarking.

Retpoline. Listing 1 shows the implementation of ret-
poline. The key idea of retpoline is to prevent CPUs from
speculating the target address of an indirect jump. Retpoline
works by placing the target address on top of the stack and
calls a thunk to jump to target by a return instruction (line 7).
The loop in the middle (line 2–4) is never executed, and the
purpose of it is to fill the instruction pipeline with dummy
values to prevent the CPU from speculating the actual target
address, effectively nullifying the substantial performance
benefits of speculation along with the risks.

As shown in Table 1, without retpoline, the indirect jump
with a function pointer takes 2.6 cycles which is as fast as
direct calls in Figure 2c. The is due to the high accuracy (up
to 98% [79]) of branch target predictors in modern CPUs.
We also observe that the branch miss rate is merely 0.01%.
However, with retpoline enabled, an indirect jump takes 30
extra cycles making it 12.5× slower because retpoline forces
a branch prediction miss on every indirect jump and stops
the CPU from speculatively executing more instructions
(i.e., 100% branch miss rate). Also, retpoline itself introduces

more instructions including jumping to the retpoline thunk,
moving the target function on the stack and returning to
the target function. In particular, jumping to the thunk takes
14.79% of the sampled cycles, moving the target function on
the stack takes 8.87% and returning to the target function
takes 76.33%.

Alternative mitigations. Recent work [16, 34, 58] pro-
poses to use control-flow integrity (CFI) to regulate specula-
tion targets, and to use indirect call promotion (ICP) as an
optimization to avoid indirect jumps. CFI-based approaches
need hardware supports to speculate only known targets
for protection against Spectre-like attacks. When misspec-
ulation happens, an expensive serializing instruction (e.g.,
lfence) is used.

Promoting indirect calls in the loopswe target (e.g., through
LLVM [28] or BOLT [4]) would produce different code. ICP
needs to predict the indirect branch target and convert an
indirect jump into a conditional jump i.e., a comparison and
a direct jump. Its performance depends on the prediction. An
indirect jump with retpoline is still taken for misprediction.
On the other hand, KFuse results in one indirect jump (to
the merged program) and unconditional jumps (internally
stitching together that program). Our narrowed scope (fo-
cusing on extensions rather than more general techniques)
enables an approach with unconditional jumps.

3.2.2 Loop cost. A loop for executing a BPF extension
chain includes the following operations. An index counter
represents the index in the current iteration. The counter
needs to be incremented by 1 to find the next program at
the end of each iteration. Within each iteration, the index
counter is used to retrieve the corresponding element in the
array. Components of a loop result in more instructions and
branches compared to the unrolled loop. To measure the cost
of the loop, we manually unroll the loop in Figure 2a and
call functions via function pointers as shown in Figure 2b.
We compare the two cases to obtain the extra cycles per
iteration that the loop contributes which are 13.7 (29.6%
of the extension call) with retpoline and 5.1 (66% of the
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extension call) cycles without. Therefore, the loop can cause
overheads for executing BPF extension chains. Note that
retpoline stalls CPU pipelines and magnifies the cost.

We further investigate and break down the cost of a loop.
The cost of a loop per iteration includes four parts, (1) check-
ing if the loop condition holds to determine if the loop is
over (usually on the index is less than the array size), (2)
incrementing the index counter, (3) loading the extension
pointer from the array based on the index counter, and (4)
jumping to the beginning of the loop. We use perf to pro-
file the loop by CPU sampling. Checking the loop condition
takes 28.91% of the sampled cycles. 51.76% of the cycles are
spent incrementing the index counter stored on the stack.
Loading extensions from the array takes 10.99% of the sam-
pled cycles. Finally, 8.34% of the cycles are spent jumping
back to the beginning of the loop. The common approach to
mitigate the cost is to unroll the loop. However, this obvious
solution of loop unrolling can not be done, if the execution
of BPF extensions are tightly coupled to the verification and
admission of them.

3.2.3 Memory access cost. To use tail calls, a program
needs to firstly look up the target program from a program
array and jump to the target. Looking up the target program
is essentially the same operation as one of the loop operations
– loading the extension from the array based on the index
counter (Section 3.2.2). These two operations both read the
target program address from an array and therefore, need
memory access. According to our measurement of loops, we
find that the memory access cost can take up 11% of the loop
cost which is 1.5 cycles with retpoline.

3.3 Discussions and Implications

The chain overhead can be significant when the BPF exten-
sions are placed at a performance-critical path. For instance,
54% performance regression is reported for XDP packet filter-
ing when there are only two indirect function calls (jumps)
per packet [32]. When the chain is long, the overhead will
be accumulated and impact application performance. Some
real-world use cases have much longer BPF extension chains
than the three-extension chain used in our measurement. For
example, systemd [26] installs tens of seccomp BPF filters for
different system services, which has significant performance
overhead (as shown in Section 5.1.1).
The chain overheads come from the fact that BPF exten-

sions are individually verified and loaded into the kernel. We
argue that the execution of these extensions should not be
constrained by how they are verified and loaded. Instead, the
execution of the chained BPF programs can be collectively
optimized in the kernel. Specifically, we can see that replac-
ing indirect jumps with direct jumps, unrolling loops, and
saving memory accesses, and each leads to in remarkable
performance improvements (Table 1). Therefore, in KFuse,
we start from supporting these three optimizations.

4 KFuse Design and Implementation

4.1 Overview

KFuse is a in-kernel framework for collectively optimizing
verified BPF extensions that are installed at the same hooking
point, in the pattern of chains. In essence, it separates the
concerns of verification and execution of BPF extensions.
BPF extensions that are installed by different principals or at
different points of time are verified independently to ensure
safety. KFuse is invoked after the verification to optimize
the execution performance.

Currently, KFuse supports three generic optimizations: (1)
converting indirect jumps into direct jumps, (2) unrolling
loops, and (3) saving memory accesses by rewriting BPF tail
calls. It can be easily extended to incorporate other optimiza-
tions, such as domain-specific ones.
A BPF extension is loaded from user space, verified by

the kernel, and optionally just-in-time (JIT) compiled to
native machine code. Then, the target kernel subsystems (e.g.,
seccomp, tracepoint, and cgroup) can install it by attaching
it to the corresponding hook points. KFuse can be invoked
dynamically with the input of a chain of BPF extensions;
it generates one optimized BPF extension that “fuses” the
original BPF extension chain and replaces it with the fused
extension at the hook point. Currently, we invoke KFuse
after a new BPF extension is loaded and verified. KFuse
fuses BPF programs at the BPF-instruction level, rather than
native machine code—the fused BPF extension can still be
(optionally) JITed.

Listing 2 shows how KFuse is invoked in seccomp. It in-
vokes the currently-attached BPF filter (current_filter)
with the newly-admitted BPF filter (prepared). The current
filter can be a fused BPF program.

1. prepared = seccomp_prepare_user_filter(filter);
2. if (current_filter != NULL)
3. merge_bpf_progs(current_filter->prog,
4. prepared->prog, SECCOMP_RETURN_POLICY);

Listing 2. KFuse for BPF seccomp system call filters

Figure 3 further illustrates the process, where Figure 3a
illustrates the original BPF chains at different hook points
and Figure 3b illustrates the fused BPF extensionwhenKFuse
is used. KFuse first fused b, c, and d at the hook point H2
into an optimized program, bcd, and f and g at H3 into fg.
When a new BPF extension E is loaded and hooked at H3, it
fuses fg and E into fgE.
The fused program maintains the safety properties en-

forced by the BPF verifier, which can be proved by induction-
based on the safety properties of the original BPF program
(ensured by the verifier). On the other hand, the fused pro-
gram is not limited by the size or complexity constraints
required by the BPF verifier to bound the verification time.
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Figure 3. Illustration of KFuse: (a) the original BPF exten-
sions; (b) the optimized BPF extensions with KFuse.

KFuse is an in-kernel mechanism that are transparent to
user space. It preserves the original extension structure and
creates the illusion of a chain of multiple BPF extensions.
BPF extensions are loaded and installed in exactly the same
way and no user-space change is needed.

Why not fuse at user space? Fusing the BPF extensions
at user space is not an option. The fused BPF extension could
be difficult for the existing BPF verifier to verify due to the
increased complexity. Furthermore, certain BPF use cases
(e.g., seccomp) do not allow dynamic updating installed BPF
extensions for security reasons.

4.2 Optimizing a loop of BPF extensions

As discussed in Section 3, using a loop to iteratively execute
loaded BPF extensions is the most common implementation
pattern to support BPF extension chains. KFuse optimizes
such patterns by merging the BPF extension chain into one
large BPF extension by unrolling the loop and converting
indirect jumps into direct jumps.
Conceptually, such an optimization is as simple as con-

catenating two BPF extensions. Two important issues need
to be taken care of: return instructions and jump offsets.

4.2.1 Rewriting return instructions into direct jumps.

A return instruction terminates the execution of a BPF pro-
gram. To merge two BPF programs A and B into A+B, KFuse
needs to automatically rewrite the return instructions in A
into two conceptual instructions, one “jump” instruction des-
tined to the first instruction in B and one “update” instruction
for updating an aggregated return value. The “jump” instruc-
tion can be implemented using a direct jump. The “update”
instruction may need multiple instructions to implement.

KFuse locates every return instruction in the BPF program
and replaces it with a direct jump instruction destined to the
start of the next BPF program. If the BPF program is the last
one in the chain, KFuse replaces the return instructions with

direct jumps to a global return instruction (which is the last
instruction of the merged program, created by KFuse).

Figure 4 shows an example of merging two BPF programs
for seccomp, FILTER_1 and FILTER_2. KFuse replaces each
return instruction in FILTER_1 with a direct jump instruc-
tion destined to FILTER2_START, and replaces each return
instruction in FILTER_2 with a direct jump destined to END.

4.2.2 Updating return values. Updating return values
needs to follow the loop semantics to ensure the fused pro-
gram has the same semantics as the original loop. Different
applications aggregate the return value of individual BPF
programs in the loop differently, as shown in Figure 1. We
refer to the aggregation semantics as a return value policy.
Currently, KFuse supports all the loop semantics of BPF

use cases in Linux, including returning the minimal value
(seccomp, Figure 1a), returning the bitwise-AND of the val-
ues (tracepoint and cgroup, Figures 1b and 1c), and returning
the first non-zero values (tc and lsm-bpf). We discuss the
return value policies of seccomp, tracepoint, and cgroup:

• Seccomp. A seccomp filter returns an action such as
allowing the system call or killing the process. The
more restrictive the action is, the smaller the return
value is. Consequently, we implemented a return value
policy that initializes the return value to the maximum
integer value and only updates the new return value
only if it is smaller than the current value to match
the semantics of seccomp (Figure 1a).

• Tracepoint. The final return value of tracepoint BPF
programs is calculated by performing an AND opera-
tion on each return value of the individual programs.
The return value policy is implemented by initializ-
ing the return value to 1 and updating it via an AND
operation on the current and new values.

• Cgroup. When a network packet arrives to a process
in a cgroup, programs attached to the cgroup will be
executed to determine the action for the packet based
on the return values of BPF programs. The final value
is also calculated by an AND operation like tracepoint.
Therefore, the return value policy is the same as the
one for tracepoint (initializing the return value to 1
and updating it via an AND operation on the current
and new values).

KFuse initializes the global return value stored in temporal
storage, and we use BPF_REG_AX in our implementation. It
updates the return value at the locations of the original return
instructions based on the return value policy (which is an
input of KFuse). The global return value will be returned
by the fused BPF program. In Figure 4, the return values are
updated based on seccomp’s return value policy that returns
the smallest value (the most restrictive policy).
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if (nr == SYS_NR_execve)
jump ERROR1; // offset: 3

else
jump ALLOW1; // offset: 1

ALLOW1:
return ACTION_ALLOW;

ERROR1:
return ACTION_ERROR;

FILTER_1

if (nr == SYS_NR_mmap)
jump ERROR2; // offset: 3

else
jump ALLOW2; // offset: 1

ALLOW2:
return ACTION_ALLOW;

ERROR2:
return ACTION_ERROR;

FILTER_2

1 init_return_value();
2 if (nr == SYS_NR_execve)
3 jump ERROR1;
4 else
5 jump ALLOW1;
6 ALLOW1:
7 update_return_value();
8 jump FILTER2_START;
9 ERROR1:
10 update_return_value();
11 jump FILTER2_START;
12

13 FILTER2_START:
14 if (nr == SYS_NR_mmap)
15 jump ERROR2;
16 else
17 jump ALLOW2
18 ALLOW2:
19 update_return_value();
20 jump END;
21 ERROR2:
22 update_return_value();
23 jump END;
24

25 END:
26 return ret

MERGED_FILTER
ret = ACTION_ALLOW;

if ACTION_ALLOW < ret:

ret = ACTION_ALLOW

(introduce 2 extra instructions)

offset: 3 -> 5

offset: 3 -> 5

Figure 4.KFusemerges two seccompBPF filters by rewriting
the return instructions and updating jump offsets. Dotted
boxes: the actual instructions of the conceptual instruction.

4.2.3 Recalculating jump offsets. Jump offsets need to
be recalculated based on return instructions because replac-
ing one single return instruction with multiple instructions
changes the extension size and misaligns the original jump
offsets. KFuse calculates the new offset by counting the num-
ber of return instructions between a jump and its destination.
For instance, at line 3 in Figure 4, the jump offset is updated
to 5 from 3 because there is a return instruction between the
jump and its destination in the original program, assuming
that updating the return value takes 2 additional instructions.

4.3 Optimizing tail calls

A BPF program can tail-call other BPF programs to form a
chain (e.g., Prog A, B, C, D and E in Figure 5a). To do so, the
caller first reads the address of callee from a program array
and then performs an indirect jump to the target address.
Given the high cost of indirect jumps with retpoline, the
JIT compiler, if enabled, will try to optimize the tail call by
rewriting the indirect jumps into direct jumps if possible.
Note that it is not always possible, e.g., on x86, the target
address of the direct jump instruction is stored in a 32-bit
signed integer so jumping further than a 32-bit signed integer
can only be indirect. Also, this requires to enable JIT, which
is not always available or secure [68].

Entry

Prog A

Prog B

Prog C

Prog D

Prog E

(a) Original programs with tail calls

Entry

Prog A

Prog B

Prog C

Prog D

Prog E

(b) Merged program

Figure 5. KFuse rewrites tail calls into direct jumps to merge
BPF programs that are connected by tail calls. Note that (a)
can be reduced to a DAG because B-C-D is a bounded loop—
each node can be treated as a different node.

Prog A Prog B Prog C Prog D Prog E

Chain 1 Chain 2

Prog A+B+C Prog C+D+E

Figure 6. Extension is decoupled from the execution.

BPF programs can use tail calls to form a bounded call
loop by tail-calling back to the caller (e.g., Prog B, C and
D in Figure 5a). BPF verifier imposes a constraint on the
number of tail calls (MAX_TAIL_CALL_CNT) to ensure that the
program does not execute infinitely by a call loop.

KFuse eliminates the need of a memory access that reads
the jump target from the extension array by merging the
target extension into the caller. Moreover, KFuse converts
the indirect jumps to direct jumps if any. Note that this
optimization is done independently from JIT, and is before
JIT if it is enabled. Therefore, it is available to architectures
without a JIT compiler implementation.

KFuse performs a depth-first search to figure out all target
programswhen a program that uses tail calls is loaded.KFuse
then merges them into one single program and converts the
original tail calls to direct jumps to the offset at which the tar-
get program is in the merged program, as shown in Figure 5b.
A backward jump is permitted in the merged program. The
merged program still always terminates and is a directed
cyclic graph (Section 4.5.1), because KFuse enforces the con-
straint of tail-call count (MAX_TAIL_CALL_CNT)—calling re-
peated programs can be seen as an edge to a new node (i.e.,
MAX_TAIL_CALL_CNT nodes are allowed at maximum). So, it
is equivalent to unrolling the bounded loops.
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Property Purpose Maintained

Directed acyclic graph (DAG) Safety ✓

No unreachable code Safety ✓

No invalid memory access Safety ✓

No invalid jump Safety ✓

Constraint

MAX_BPF_STACK Size ✓

MAX_CALL_FRAMES Size ✓

MAX_TAIL_CALL_CNT Complexity ✓

BPF_COMPLEXITY_LIMIT_JMP_SEQ Complexity ✗

BPF_COMPLEXITY_LIMIT_INSNS Complexity ✗

MAX_USED_MAPS Size ✗

BPF_MAX_SUBPROGS Complexity ✗

Table 2. Properties and constraints imposed the verifier.

KFuse preserves all the safety properties.

4.4 Transparency to user space

KFuse is fully transparent to user space, by maintaining the
original BPF extension structures. It decouples the execu-
tion from other operations and only adds a pointer to the
fused extensions, as illustrated in Figure 6. Therefore, user
space APIs, such as looking up, dumping or removing an
extension, are not affected. From the user space view, these
BPF extensions are still maintained as a chain but only the
fused extension is executed when the chain is invoked. On
the other hand, the fused extension needs to be regenerated
whenever the chain is updated.

KFuse also supports sharing of BPF extensions, when a
BPF extension needs to be attached to different chains (e.g.,
Prog C in Figure 6). For example, seccomp BPF filters can
be shared by different processes. KFuse merges the shared
extension to generate different fused extensions. In our ex-
perience, BPF extensions are small in size and the additional
memory usage is not concerned, as measured in Section 5.6.

4.5 Maintaining Safety Properties

Since kernel extension programs are provided from the less
privileged user space, the verifier imposes various constraints
on them ((f) Section 2.1). The BPF verifier ensures the safety
properties listed in Table 2 hold, including that programs are
directed acyclic graphs (DAG), that programs have no loop-
s/unreachable code and that programs have no invalid mem-
ory accesses or jumps. These properties ensure the safety of
the kernel when loading user-supplied BPF programs. The
verifier imposes a number of constraints to satisfy these
properties, also shown in Table 2.

4.5.1 Satisfying safety properties. The fused BPF pro-
gram maintains all safety properties enforced by the verifier
on every original BPF program. This can be proven by in-
duction. We sketch the ideas below.

• Directed acyclic graph (DAG). Instructions of a BPF
program can only be a DAG (no backward jumps or
unbounded loops). The DAG property guarantees the

Program 1

A

B C

DE

Program 2

F

G H

IJ

(a) Original programs

Merged program

A

B C

DE

F

G H

IJ

(b) Merged program

Figure 7. KFuse merges two BPF programs (Programs 1 and
2) that have been already verified to be a DAG by connecting
the exits of Program 1 (vertices with 0 outdegree, i.e., D and
E) to the entry of Program 2 (the vertex with 0 indegree, i.e.,
F). The merged program is still a DAG.

termination of the program and also ease the detection
of unreachable code. KFuse merges two programs by
connecting the exits of one program to the start of the
other. The fused BPF program is proven to be a DAG—
a graph is a DAG iff it can be topologically ordered;
the fused program can be topologically ordered by
appending the topological order of the second program
to the topological order of the first program.

• No unreachable code A BPF program cannot contain
unreachable code—it needs to be a connected graph.
By connecting the exits of the first program (vertices
D and E) to the start of the second program (vertex F),
the merged program (Figure 7b) is still connected and
contains no unreachable code: every vertex in program
1 is reachable from A, every vertex in program 2 is
reachable from F, and F is reachable from D or E.

• No invalid memory access or malformed jumps A BPF
program cannot access invalid memory region (e.g.,
memory beyond the stack) or includemalformed jumps
(e.g., backward or out-of-bound jumps). Every program
is individually verified before being merged by KFuse.
KFuse does not change its memory access and only
adds jumps to well-specified destination.

4.5.2 Ignoring constraints for bounding verification

time. KFuse is not limited to the constraints imposed by the
BPF verifier, if the constraints are solely purposed for bound-
ing the verification time. This is because each individual
BPF program is already verified and the fused BPF program
does not need to be verified again. The safety properties are
maintained by construction.
Table 2 shows those constraints that are used by the

verifier. Specifically, BPF_COMPLEXITY_LIMIT_JMP_SEQ and
BPF_COMPLEXITY_LIMIT_INSNS are used to bound the pro-
gram size and complexity; MAX_USED_MAPS is used to limit
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the number of maps, and BPF_MAX_SUBPROGS is used to limit
the subprograms in a BPF program.

4.5.3 Domain-specific constraints. Some kernel subsys-
tems also impose domain-specific constraints. For exam-
ple, cgroups and tracepoints both limit the number of BPF
programs that can be attached to the same hook point by
BPF_CGROUP_MAX_PROGS and BPF_TRACE_MAX_PROGS. These
constraints are agnostic to KFuse and KFuse always respect
them. This is because the constraints are placed on the orig-
inal program structure (Section 4.4). If the constraints are
not satisfied, KFuse will not be invoked. We note that these
constraints are not for safety but for performance purposes
as they bound the total execution time.

4.6 Implementation

KFuse is implemented in around 500 lines of C code, on top
of the Linux kernel (v5.9). As discussed in Section 4.1, the
main interface is merge_bpf_progs(), which takes three
input parameters, the pointers of the original BPF programs,
and a policy flag that specifies the return value policy, and
returns a pointer of the fused program, as shown below.
1. struct bpf_prog* merge_bpf_progs(
2. struct bpf_prog* old_prog,
3. struct bpf_prog* new_prog,
4. enum return_policy);

KFuse uses BPF_REG_AX (a special register reserved for the
kernel) to hold the temporal return value, which is updated
according to the return value policy. The merged program
has two-instruction prologue that initializes the return value.
Each return instruction is replaced with 5 instructions for the
Seccomp return policy and 3 instructions for the tracepoint
and cgroup return policy. Finally, the merged program is
appended with a two-instruction epilogue which loads the
return value from BPF_REG_AX to BPF_REG_A and returns.

Integrating KFuse. Kernel subsystems can choose to in-
tegrate KFuse. The integration is straightforward with a few
lines of code. We integrate KFuse in three kernel subsystems,
including seccomp, tracepoint, and cgroup. We apply KFuse
to seccomp with 20 lines of code (LoC), tracepoint with 28
LoC and cgroup with 34 LoC. We implement a sysctl con-
figuration to allow users to enable/disable KFuse.

5 Evaluation

We measure the effectiveness of KFuse in optimizing perfor-
mance, as well as its overhead in terms of the time it takes for
optimization and additional memory cost. To measure per-
formance, we run performance benchmarks using the three
Linux subsystems that integratesKFuse (seccomp, tracepoint
and cgroup). All experiments are run on a single server with
a 16 core Intel Xeon Silver 4110 CPU at 2.10GHz and 64 GB of
memory. We run the experiments in KVM virtual machines.
Each VM is configured with 2 VCPUs and 8 GB memory, and

the kernel is compiled with the microVM configuration. We
use wrk [15] and memtier_benchmark [18] as benchmark
clients for NGINX and Redis. We also evaluate the cases
where the kernels are compiled without retpoline, which
gives a lower bound of the KFuse effectiveness.
Overall, KFuse effectively improves the performance for

real-world workloads (7% throughput increase for Redis de-
ployed by systemd). The performance benefits of KFuse
grows linearly along with the length of chains.

5.1 Seccomp

We measure the effectiveness of KFuse in improving the sys-
tem call performance under seccomp BPF filters. We conduct
three experiments:

• We use KFuse to optimize the seccomp BPF filters
launched by systemdwhich provides application sand-
boxing using seccomp. We run Redis and NGINX as
real-world applications to assess the benefit of using
KFuse on existing applications and BPF use cases.

• We conduct a scaling analysis on both system call per-
formance and application performance, with increas-
ing numbers of seccomp BPF filters

• We present the benefit of KFuse for incremental tight-

ening which installs seccomp filters during application
execution to tighten the system call policy. Incremen-
tal tightening is meant to be one of the new BPF use
cases that lead to a long chain of BPF extensions and
motivate the need to reduce the cost.

5.1.1 Systemd BPF filters. Systemd provides a sandbox-
ing feature that restricts the system calls the sandboxed
applications can invoke. We benchmark Redis launched by
systemd. Redis is shipped on Ubuntu with a systemd con-
figuration that installs 19 seccomp BPF filters sandboxing
the service including loading kernel modules, gaining new
privileges and modifying control groups. Systemd also in-
stalls filters for supporting 32-bit systems (i.e., i386). These
filters are sized from 6 instructions to 58 instructions with an
average 19.6 instructions. Figure 8a shows the throughput of
Redis, with the original 19 filters and with the fused filter by
KFuse. The results are normalized by the Redis throughput
with no BPF filter. We can see that the 19 filters installed by
systemd lead to non-negligible overhead (≈ 10% throughput
decrease). KFuse can significantly reduce the overhead (with
only 3%) by speeding up the end-to-end BPF execution time
from 957 to 148 nanoseconds (reducing 85%) with the same
security policy of original filters.

5.1.2 Scaling analysis. We conduct a scaling analysis to
measure the performance overhead of different number of
seccomp filters and the benefit of using KFuse. We create a
simple BPF filter with 4 instructions: checking if the system
call number equals 450, if true, kill the process. Otherwise,

292



Verified Programs Can Party: Optimizing Kernel Extensions via Post-Verification Merging EuroSys ’22, April 5–8, 2022, RENNES, France

 0.9

 0.95

 1

 1.05

 1.1

Retpoline No-Retpoline

R
ed

is
 t

h
ro

ug
h

pu
t

0 filters
19 filters

19 filters merged

(a) Redis throughput

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0  20  40  60  80  100  120  140  160

C
P

U
 c

yc
le

s

# seccomp filters

kfuse-retpoline
kfuse-noretpoline
nokfuse-retpoline

nokfuse-noretpoline

(b) Latency of getpid

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 0  20  40  60  80  100  120  140  160

R
eq

u
es

t 
pe

r 
se

co
nd

# seccomp filters

kfuse-retpoline
kfuse-noretpoline
nokfuse-retpoline

nokfuse-noretpoline

(c) NGINX throughput

Figure 8. (a) The throughput of Redis with 19 seccomp filters installed by systemd. (b)(c) The latency of getpid and NGINX
with different numbers seccomp filters installed for scaling analysis. The results are normalized to baseline, 0 seccomp filters
and retpoline enabled.

fd = open("example");
...
read(fd);
...
write(fd);
...
close(fd);
...

Allowed system calls: open, read ,write, close

Block open()

Block read()

Block write()

Block close()

Figure 9. Incremental tightening blocks system calls during
program execution. This simplified program only uses 4
system calls once, open, read, write, and close. The system
call is blocked when it will not be again.

allow the call. The system call numbered 450 does not exist,
so all the system calls will be allowed.

Figure 8b shows the execution time of getpid with differ-
ent numbers of BPF filters. With 20 filters, KFuse can speed
up getpid performance by 1.8× and 1.2× with and with-
out retpoline. With 160 filters, KFuse can speed up getpid
performance by 8.8× and 4.9× with and without retpoline.
We also compare the two cases with retpoline disabled

(kfuse-noretpoline and nokfuse-retpoline). We find that the
execution without the KFuse has 4.7× more instructions,
2.6× more branches and 7.8× more branch misses. The addi-
tional instructions and branches come from the loops and
branch-misses come from retpoline.

Figure 8c shows the throughput of NGINX with different
numbers of seccomp filters installed. The throughput drops
linearly in both cases with and without retpoline. With 20 fil-
ters, KFuse increases throughput by 1.3× with retpoline and
1.1× without. With 160 filters, KFuse increases throughput
by 2.3× with retpoline and 1.6× without.

5.1.3 Incremental tightening. Incremental system call
tightening is a fine-grained temporal system call specializa-
tion [49], illustrated in Figure 9. It installs multiple BPF filters
based on the application’s execution phases.

We generate the seccomp BPF filters for different phases
of NGINX and Memcached by dynamically tracing their run-
time behavior continuously. There are non-deterministic
system calls such as those related to timer or signals. We
always allow non-deterministic system calls and only incre-
mentally tighten deterministic system calls. We modify the
C library to load the profile and install a seccomp filter when
a system call will no longer be needed.
We install 18 seccomp filters for NGINX and and 22 for

Memcached. Figure 11b shows the number of allowed system
calls over time for each application. Figure 11a shows that
the application performance drops 7%–16% due to the chain
of filters. By merging these filters, KFuse eliminates the
overheads of calling extensions by 45%–66%.

5.2 Tracepoint

Tracepoint enables live kernel debugging and profiling. Mul-
tiple BPF programs can be attached to a single tracepoint
and all of them are executed when an event is triggered. To
experiment with realistic workloads, we use a tracepoint
BPF program that not only performs arithmetic instructions
but also write data to a BPF map. The program counts the
number of times that a system call, getpid, is called and
write the counter to a map. Figure 10a shows the latency of
getpidwith various numbers of programs attached. With 20
programs, KFuse can speed up latency by 1.71× with retpo-
line and 1.12×without. With 160 programs, KFuse can speed
up latency by 5.19× with retpoline and 1.82× without. In the
average case of 80 programs, KFuse can speed up latency by
4.09× with retpoline and 1.7× without.

5.3 Cgroup

Cgroup provides the mechanism for users to attach multiple
BPF programs to implement firewall rules. We attach multi-
ple BPF programs with type BPF_CGROUP_INET_INGRESS to
experiment with the scenario where multiple firewall rules
are applied. The BPF programs simply permit the packet for
performance evaluation. We use iPerf3 [10] to measure the
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Figure 10. Performance measurement of (a) getpidwith different numbers of Tracepoint programs and (b) IPerf with different
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Figure 12. Time to call different numbers of tail calls. Tail
calls are optimized to direct jumps unless specified.

TCP bandwidth with various numbers of programs attached.
When attaching less than 60 programs, we do not observe ob-
vious performance enhancements. With 60 programs, KFuse
improves the bandwidth by 10% with retpoline and 3% with-
out. With 160 programs, KFuse improves the bandwidth by
31% with retpoline and 11% without.

5.4 Tail call

To measure KFuse’s saving of tail call rewriting, we use the
benchmark used by Joly et al. [52] for evaluating tail call over-
head, in which a BPF program tail-calls various number of
other BPF programs and forms chains with different lengths,
from 1 to 32. We verify that these tail calls are optimized
to direct calls and thus are not slowed down by retpoline.
We also evaluate the case when tail calls are not optimized
and are indirect jumps. Figure 12 shows the average of 50
iterations in three cases. When tail calls are optimized to
direct jumps, KFuse saves memory access cost. The average
speed-up (16 tail calls) is 1.4× with the minimum (1 tail call)
and maximum (32 tail calls) being 1.1× and 1.7×. When tail
calls are indirect jumps, KFuse saves both memory access
and indirect jump cost. The average speed-up (16 tail calls) is
16.1× with the minimum (1 tail call) being 2× and maximum
(32 tail calls) being 32.88×.

5.5 Cost of updating a chain

We measure the time KFuse takes to fuse a BPF program
chain into an optimized BPF program. KFuse works dynami-
cally by fusing the existing program (the merged chain) with
the new program. Specifically, KFuse needs to combine the
new program with existing one, reallocate memory for the
merged program and generate JITed image for the merged
program so the time to merge depends on the length of chain
(the size of existing program) and the new program. We mea-
sure the time by loading up to 160 programs. As shown in
Figure 10c, the latency starts from ≈ 27 microseconds when
there are only 1 program on the chain and grows to ≈ 138mi-
croseconds when there are 160. When there are 80 programs
on the chain, the merging time is ≈ 85 microseconds.

5.6 Memory usage

KFuse needs to keep the original BPF bytecode to support
sharing of BPF programs and maintain transparency to the
user space (Section 4.4). This could lead to additional mem-
ory overhead. To quantify the overhead, we measure the
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size of 366 real-world BPF programs from six projects col-
lected by [48] (including ovs, linux, prototype-kernel, suri-
cata, bpf_cilium_test and cilium). The average BPF exten-
sion size is merely 4.3 KB, with the median and the 90-th
percentile being 0.9 KB and 13.8 KB, respectively. Given
the abundant memory of modern computers, the additional
memory usage is acceptable.

6 Related work

BPF extensions have achieved phenomenal adoptions in re-
cent years, including security [36, 40, 44, 45] , storage [30,
59, 70, 76], profiling [2, 13, 42] and networking [11, 31, 37,
38, 43, 51, 63, 69, 71, 74, 77, 78]. Recent advances on safe BPF
infrastructures and implementations [33, 47, 48, 55, 56, 61, 65,
66, 75, 78] further eliminate the barrier of adoptions. KFuse
respects the safety properties ensured by BPF verifiers, while
optimizing the performance of BPF extension chains.

A main optimization of KFuse is to convert indirect jumps
into direct jumps. The costs of indirect jumps come from
the mitigation of Spectre [57], a recent class of hardware
vulnerabilities, which degrades the efficiency of conditional
branches. In addition to retpoline [23], recent research pro-
posals for Spectre mitigation includes control-flow harden-
ing [46, 58], page table separation [39] or cache isolation [54]
to remove the side channels. Recently, Intel released indi-
rect branch restricted speculation (IBRS) [25] and enhanced
IBRS [25], new hardware features to prevent less-privileged
processes from controlling the branch target predictor in a
more-privileged mode. However, these features either incur
huge performance overheads or are only available on new
CPUs. We expect the overhead of indirect jumps to remain
high in the near future, because free speculation is no longer
an option [41, 67].
A few efforts have been made to reduce the overhead

of indirect jumps. JumpSwitch [34] optimizes retpoline by
indirect call promotions (ICP), which depends on an effective
target predictor. JumpSwitch also requires dynamic kernel
patching. However, JumpSwitch has not been adopted by
the Linux kernel, due to its frequent kernel patching that
breaks instruction decoding [22]. KFuse does not bear those
limitations as it only acts on BPF extensions.

A few Linux patches [1, 27] try to convert unnecessary in-
direct jumps to direct jumps to improve XDP performance [32].
The BPF JIT compiler optimizes tail calls to direct jumps [19]
if the target address is within an offset that can be expressed
as a 32-bit integer. BPF trampoline [5, 9] is a mechanism to
directly call BPF programs from kernel by a dynamically gen-
erated code image which needs to be regenerated when an
extension program is added or removed. Optimizations such
as trampoline [9] or converting tail calls to direct jumps [19]
require BPF programs to be JIT-compiled, which may not
be available. Differently, KFuse focuses on eliminating the
indirect jumps across the chained BPF extensions. As we

shown in the paper, the overhead of chained extension can
be significant as the BPF programs are typically small in size.
KFuse does not rely on JIT compilation.

7 Conclusion and Discussion

We demonstrate that multiple BPF programs in a chain can be
collectively optimized after each of them is verified. Such op-
timization can lead to remarkable performance gains. Specif-
ically, when the BPF programs are small in size and the chain
is long, the overhead of indirect jumps and loops can be as
high as 85% of the end-to-end execution time, leading a 7%
application performance loss. We have already seen long
chains of BPF extensions in real deployments (e.g., 19 Sec-
comp BPF filters deployed by systemd) and we expect such
long chains to be even more common in future use cases,
given the explosion of BPF use cases in recent years and the
need of fine-grained, domain-specific policies.
We believe that more advanced cross-optimizations for

verified BPF programs (such as application-specific optimiza-
tions) can be implemented, beyond the basic optimizations
currently supported by KFuse. For example, redundant code
(e.g., checks [80]) across the BPF extension programs can
be removed, in the scope of the entire BPF chain, to further
improve the performance; BPF instructions can be reordered
across the BPF extension chain (e.g., by placing hot code
early in the fused BPF program to save subsequent computa-
tion). Those optimizations can be supported in the current
KFuse framework. Further, multiple BPF programs at dif-
ferent hooking points are often orchestrated to collectively
implement a feature (e.g., socket filters hooked at cgroup and
traffic control [6]). Those BPF programs can potentially be
optimized together, while maintaining the safety properties.
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A Artifact Appendix

A.1 Abstract

This document provides step-by-step instructions to repro-
duce KFuse’s experiment results including seccomp, trace-
point, cgroup, and tail-call. All experiments are running in
QEMU virtual machines. We provide compiled kernel bina-
ries with KFuse enabled and file system images (20GB for
each) with all benchmarks installed. We also provide scripts
to automate the process.

A.2 Description & Requirements

A.2.1 How to access. The artifact is available at https:
//doi.org/10.5281/zenodo.6360914.

A.2.2 Hardware dependencies. The experiments requires
an amd64 machine with virtualization capability because
they are run in a KVM virtual machine. We run the experi-
ments on a server with 16 core Intel Xeon Silver 4110 CPU at
2.10GHz and 64 GB of memory. In addition, 60GB disk space
is required for file system images and kernel binaries.

A.2.3 Software dependencies. We attach a script that
install software dependencies. scripts/install_deps.sh
installs necessary software packages for our experiments
on Ubuntu 20.10. Furthermore, this artifact needs a native
Ubuntumachine that supports KVM. That is, installing Ubuntu
on a VM on a Mac will not work.

A.2.4 Benchmarks. None

A.3 Set-up

Run scripts/install_deps.sh in the artifact directory to
install software dependencies.

A.4 Evaluation workflow

A.4.1 Major Claims.

• (C1): KFuse can significantly reduce the overhead caused

by seccomp BPF filters installed by systemd. This is

shown by the experiment (E1) described in Section 5.1.1

whose results are illustrated in Figure 8 (a).

• (C2): KFuse can improve the latency of system calls by

merging their seccomp BPF filters. This is shown by the

experiment (E2) described in Section 5.1.2 whose results

are illustrated in Figure 8 (b)(c).

• (C3): KFuse can improve the performance of tracepoint

by merging its BPF filters. This is shown by the exper-

iment (E3) described in Section 5.2 whose results are

illustrated in Figure 10 (a).

• (C4): KFuse can improve the performance of iPerf3 by

merging cgroup BPF filters. This is shown by the ex-

periment (E4) described in Section 5.3 whose results are

illustrated in Figure 10 (b).

• (C5): KFuse can improve the performance of our tail-call

prototype benchmark. This is shown by the experiment

(E5) described in Section 5.4 whose results are illustrated

in Figure 12.

A.4.2 Experiments. All the experiment instructions and
expected results are in the experiment_docs directory in the
artifact repository.We describe the details of the benchmarks
in the following sections.

• Experiment (E1): systemd [30 human-minutes + 1 compute-
hour]: This experiment uses KFuse to optimize the
19 seccomp BPF filters launched by systemd which
sandboxes applications with seccomp. We run Redis
to assess the benefits of using KFuse on existing appli-
cations and their BPF use cases.

• Experiment (E2): seccomp [30 human-minutes + 1
compute-hour]: We create a seccomp BPF filter with 4
instructions: checking if the system call number equals
450, if true, kill the process. Otherwise, allow the call.
The system call numbered 450 does not exist, so all
the system calls are allowed. This experiment installs
different number of filters, from 0 to 160, with four ker-
nel configurations (kfuse-retpoline, kfuse-noretpoline,
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nokfuse-retpoline, and nokfuse-noretpoline). Then, we
run getpid for each configuration.

• Experiment (E3): tracepoint [1 human-hours + 1 compute-
hours]: We design a tracepoint BPF program that per-
forms arithmetic instructions and writes data to a BPF
map. The program counts the number of times that
the system call, getpid, is called and writes the counter
to a map. This experiment will install different number
of this filter, from 0 to 160, with four kernel configu-
rations (kfuse-retpoline, kfuse-noretpoline, nokfuse-
retpoline, and nokfuse-noretpoline). Then, we call get-
pid and measure the CPU cycle for each configuration.

• Experiment (E4): cgroup [1 human-hours + 1 compute-
hours]: We creates a BPF program that allows ev-
ery packet. This experiment attaches this filter with
type BPF_CGROUP_INET_INGRESS to define our net-
work traffic rules. To elaborate, the experiment will
install different number of this filter, from 0 to 160,
with four kernel configurations (kfuse-retpoline, kfuse-
noretpoline, nokfuse-retpoline, and nokfuse-noretpoline).
Next, we use iPerf3 2 to measure the TCP bandwidth
for each configuration.

• Experiment (E5): tail-call [30 human-minutes + 2 compute-
hours]: This tail-call benchmark makes BPF programs
tail-call one another BPF program and forms chains
with different lengths, from 1 to 32. This experiment
shows that the overhead of indirect jumps of tail calls
are optimized away.

2https://iperf.fr/iperf-download.php
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