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Modern embedded real-time systems (RTS) are increasingly facing security threats than the past. A simplistic

straightforward integration of security mechanisms might not be able to guarantee the safety and predictability

of such systems. In this paper, we focus on integrating security mechanisms into RTS (especially legacy RTS).

We introduce Contego-C, an analytical model to integrate security tasks into RTS that will allow system

designers to improve the security posture without affecting temporal and control constraints of the existing

real-time control tasks. We also define a metric (named tightness of periodic monitoring) to measure the

effectiveness of such integration. We demonstrate our ideas using a proof-of-concept implementation on

an ARM-based rover platform and show that Contego-C can improve security without degrading control

performance.
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1 INTRODUCTION
Embedded real-time systems (RTS) are pervasive and are found in everyday use, e.g., automobiles,

industrial and process control systems as well as in critical infrastructures (such as electrical

grids, oil and gas infrastructures). RTS are also essential part of avionics and used in manned and

unmanned aerial vehicles such as airplanes, drones, spacecraft. Given their application in safety
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Table 1. Example of Security Tasks

Security Task Approach/Tools

File-system checking Tripwire [16], AIDE [17]

Network packet monitoring Bro [18], Snort [19]

Hardware event monitoring Statistical analysis based checks [20] using performance

monitors (e.g., perf [21], OProfile [22])

Application specific checking Behavior-based detection (see the related work [13, 23–25])

critical domains, successful attacks or failures in RTS can have catastrophic consequences for the

environment and/or to the human safety [2, 3].

Attack demonstrations by researchers on automobiles [3, 4] and medical devices [5] have shown

that systems composed of RTS might be vulnerable to cyber-attacks. A number of high-profile

attacks on real systems (e.g., Stuxnet [6], BlackEnergy [7]) have shown that the threat is real.

Traditional safety and fault-tolerance mechanisms used in RTS were designed to counter random

or accidental faults and failures and cannot deal with intentional cyber attacks orchestrated by

an intelligent and capable adversary. Further, the drive towards (i) use of standardized protocols

and common-off-the-shelf (COTS) components for interoperability reduced infrastructure and

maintenance costs, and (ii) smart and connected systems (e.g., smart and connected communities,

smart grids, smart or cyber manufacturing, smart transportation) is reducing any protection against

cyber attacks that the use of proprietary components and being air-gapped (i.e., unconnected to

external systems) might have provided.

Recognizing this emerging threat and urgent need, there has been a lot of focus on securing

RTS in the recent past including integrating communication confidentiality [8, 9], communication

integrity [10, 11] and monitoring and detection mechanisms [1, 12–14]. When integrating any

security mechanisms into RTS, the designers need to ensure that they do not perturb or impact the

real-time functions in any significant way while at the same time provide the necessary level of

security. Integrating security is especially challenging for those legacy RTS
1
where the schedule of

the existing tasks cannot easily be changed.

In this paper, we aim to improve the security posture of RTS through integration of “security tasks”

(e.g., tasks that are specific for intrusion monitoring and detection tasks purposes) into an existing

fixed-priority system while ensuring that the existing real-time/control tasks are not affected

by such integration. Security tasks could include protection, detection or response mechanisms,

depending on the system requirements – for instance, a sensor correlation task (to detect sensor

manipulation) or an anomaly detection task (that checks possible intrusions) [15]. In Table 1 we

present some examples of security tasks that can be integrated into legacy systems (again, this is by

no stretch meant to be an exhaustive list). In our experiments, we considered intrusion detection as

a monitoring mechanism and used Tripwire [16] (a data integrity checking tool) to demonstrate the

feasibility of our approach – the ideas presented here though apply more broadly to other security

mechanisms.

We proposed a design-time model (named Contego-C) that enables system designers to carefully

trade-off the effectiveness of security tasks with the control performance of some pre-selected low

priority real-time tasks without impacting the schedule and performance of high priority real-time

1
A legacy RTS is one where modification or perturbation of existing real-time tasks’ parameters (such as run-times, period

and task execution order) is not always feasible.
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tasks. For example, consider the integration of an intrusion detection system (IDS) in an existing

RTS (for instance Tripwire or AIDE from Table 1) that checks integrity of filesystems. For functional

correctness, the IDS task needs to execute at least once within a certain time period. If such a

task is scheduled less frequently or interrupted often before it can complete checking the entire

system (say by other, higher priority, real-time or control tasks), then an adversary could use that

opportunity to intrude into the system and modify sensitive file contents before the next invocation

of the detection task. In contrast, if the IDS task is executed more frequently, it may interfere the

operation of other low priority tasks. Our analysis engine takes the real-time task parameters and

periodicity requirements of the security tasks and then find the suitable periods and priority for the

security tasks without violating timing requirements (refer to Section 3 for a formal model). This

is different than criticality-monotonic priority scheduling [26] in mixed-criticality systems [27]

where task period and priority orders are already defined.

Contego-C generalizes our previous work [1] on opportunistic execution of security tasks in

two important ways. First, unlike prior work where security tasks can only run during slack

times (i.e., at the lowest priority relative to all the real-time tasks), Contego-C allows security

tasks to run at a priority higher than some pre-selected low priority real-time/control tasks. This

allows for improved effectiveness (performance) of security tasks while not degrading the control

performance of the real-time tasks below the required thresholds. Second, real-time tasks do not

have any specific assumption on deadlines (i.e., implicit deadlines as was the case in earlier work

[1]). When used with a legacy RTS with implicit deadlines and when the set of low priority tasks

whose schedule is allowed to be perturbed is set to empty, Contego-C falls back to opportunistic

execution. Otherwise, Contego-C provides the opportunity to improve the performance of security

tasks without degrading the system’s real-time/control performance – thus subsumes our earlier

work.

The main contributions of this work can be summarized as follows.

• A design-time tool: Contego-C, for fixed-priority RTS that allows security tasks to execute in

conjunction with real-time control tasks without degrading control performance. Contego-

C is suitable for legacy systems where designers have less flexibility to change system

parameters, perhaps due to control requirements.

• A mathematical model (Sections 3.1 and 3.2) and an iterative algorithm (Section 3.3) that

allows security tasks to execute with a frequency closer to the desired one without violating

real-time/control requirements of the other real-time tasks.

• A proof-of-concept implementation on an ARM-based surveillance rover that demonstrates

the trade-off between security and real-time requirements (Section 4.1).

We also evaluate Contego-C with synthetic workloads for schedulability and security (Section

4.2) and show the effectiveness of our security integration framework.

2 SYSTEM AND SECURITY MODEL
In the following, we introduce our system model (Section 2.1), clarify the threat model (Section 2.2),

give an overview of the problem that we address in this paper (Section 2.3) and present security

task parameters (Section 2.4). Key mathematical notations used in the paper are listed in Table 2.

2.1 Real-Time Task Model and Control Costs
2.1.1 Real-Time Tasks. Let us consider a single core platform where we schedule a set Γ𝑅 =

{𝜏1, 𝜏2, · · · , 𝜏𝑁𝑅
} of 𝑁𝑅 independent sporadic real-time/control tasks.

2
Each task 𝜏𝑟 ∈ Γ𝑅 is charac-

terized by the following parameters: (a) the real-time parameters – describe how the task interacts

2
We use the terms real-time task and control task interchangeably throughout the paper.
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Table 2. Mathematical Notations

Notation Interpretation

Γ𝑅 , Γ𝑆 Set of real-time and security tasks, respectively

𝑁𝑅 , 𝑁𝑆 Number of real-time and security tasks, respectively

𝐶𝑖 , 𝑇𝑖 Worst-case execution time, and period of (real-time and security)

task 𝜏𝑖 , respectively

𝑥𝑟 , 𝑢𝑟 , 𝑣𝑟 , 𝑦𝑟 State, input, disturbance and output of the plant for task 𝜏𝑟 , respec-

tively

𝐽𝑟 , 𝐽
𝑇𝐻
𝑟 Linearized control cost and cost threshold of the real-time task 𝜏𝑟 ,

respectively

Δ𝑟 Control delay of the real-time task 𝜏𝑟

𝜔𝑠 Weighting factor for security task 𝜏𝑠

[𝑙𝑆 , 𝑁𝑅] Allowable priority-level for security tasks

ℎ𝑝𝑅 (𝜏𝑖 ), ℎ𝑝𝑆 (𝜏𝑖 ) Set of real-time and security tasks that has higher and lower priority

than 𝜏𝑖 , respectively

ℎ𝑝𝑙
𝑅
(𝜏𝑠 ) Set of real-time tasks that has higher priority than security task 𝜏𝑠

(for a given priority-level 𝑙 )

𝑙𝑝𝑙
𝑅
(Γ𝑆 ) Set of real-time tasks that has lower priority than security tasks (for

a given priority-level 𝑙 )

𝑇𝑑𝑒𝑠𝑠 , 𝑇𝑚𝑎𝑥𝑠 Desired and maximum allowable period of the security task 𝜏𝑠 ,

respectively

𝜂𝑠 Tightness of the periodic monitoring for security task 𝜏𝑠

𝐼𝑠 Upper bound of the interference experienced by 𝜏𝑠

𝜉 Normalized difference between achievable and desired periods

𝑊𝑠 (𝐽𝑇𝐻 ) Weighted schedulability metric for a given cost threshold 𝐽𝑇𝐻

with the scheduler and the other tasks; (b) the control parameters – describe the plant, the controller

and the quality of the control (e.g., control cost). We represent each real-time task 𝜏𝑟 by the tuple

(𝐶𝑟 ,𝑇𝑟 , 𝐽𝑟 , 𝐽𝑇𝐻𝑟 ) where 𝐶𝑟 is the worst-case execution time (WCET), 𝑇𝑟 is the minimum separation

(e.g., period) between two successive invocations. The variables 𝐽𝑟 and 𝐽𝑇𝐻𝑟 represent the control cost

and cost threshold (for acceptable control performance), respectively. A preemptive fixed-priority

scheduler manages the tasks based on task priority. We use the variable ℎ𝑝𝑅 (𝜏𝑟 ) to represent the

set of real-time tasks that have a priority higher than 𝜏𝑟 . We assume that real-time task priorities

are distinct and the periods and the priorities are independent parameters (e.g., specified by the

system designer). We further assume that context switch overhead and cache-related preemption

delays are either (a) negligible compared to WCET of the task and/or (b) included in the WCET

measurements and independent of underlying scheduling policy [28, 29].

2.1.2 Control System Preliminaries. We consider a linear-quadratic Gaussian (LQG) framework

[30] to model the control system where each plant 𝑃𝑟 is described as follows [31–34]:

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: March 2022.
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d𝑥𝑟 (𝑡)
d𝑡

= 𝐴𝑟𝑥𝑟 (𝑡) + 𝐵𝑟𝑢𝑟 (𝑡) + 𝑣𝑟 (𝑡)

𝑦𝑟 (𝑡𝑘 ) = 𝐶𝑟𝑥𝑟 (𝑡𝑘 ) + 𝑒𝑟 (𝑡𝑘 )
(1)

In Eq. (1), 𝑥𝑟 and 𝑢𝑟 are the plant state and controlled input, respectively and 𝑣𝑟 is the plant

disturbance (e.g., continuous-time white-noise process). The output 𝑦𝑟 is measured at 𝑡𝑘 and used

to produce the control signal 𝑢𝑟 . The measurement noise 𝑒𝑟 is modeled as a discrete-time Gaussian

white-noise process. The control performance is measured by the following quadratic cost function

[32]:

𝐽𝑟 = lim

𝑡→∞
1

𝑡
E

{∫ 𝑡

0

(𝑦2𝑟 (𝜎) + 𝜌𝑟𝑢2𝑟 (𝑡)) d𝜎
}

(2)

where E denotes the expectation operation and 𝜌𝑟 is a designer-provided weighting factor for the

magnitude of the plant states and the control signals. The variable 𝐽𝑟 can be used as a measure of

performance loss since the quality of a controller is degraded (i.e., cost is increased) if the delay
(task response time) is different from what was assumed during the control-law synthesis. For a

given period 𝑇𝑟 and control delay Δ𝑟 (e.g., due to execution of the task and preemption by other

high-priority tasks), the control cost in Eq. (2) can be approximated by the following linear function

[32, 34]:

𝐽𝑟 = 𝛼𝑟𝑇𝑟 + 𝛽𝑟Δ𝑟 (3)

where the parameters 𝛼𝑟 and 𝛽𝑟 are the weighting factors used for linearization and can be obtained

from the physical properties of the plant.
3

2.1.3 System Schedulability Conditions. We assume that the real-time tasks are schedulable (e.g.,
control cost is within an acceptable threshold) by a fixed-priority scheduling policy and that the

following condition holds
4
:

𝛼𝑟𝑇𝑟 + 𝛽Δ𝑟 ≤ 𝐽𝑇𝐻𝑟 (4)

where the control delay Δ𝑟 can be obtained by traditional response time analysis [29, 35] as follows.

Let us denote 𝑞 as an index to each job within the busy-window.5 The completion time of each

job of the task 𝜏𝑟 can be computed as follows:

𝛿𝑟 (𝑞) = (𝑞 + 1)𝐶𝑟 +
∑︁

𝜏ℎ ∈ℎ𝑝𝑅 (𝜏𝑟 )

⌈
𝛿𝑟 (𝑞)
𝑇ℎ

⌉
𝐶ℎ . (5)

where the summation term represents the interference from other high-priority tasks. The above

equation can be solved by recurrence, e.g.,

𝛿𝑟 (𝑞)𝑘 = (𝑞 + 1)𝐶𝑟 +
∑︁

𝜏ℎ ∈ℎ𝑝𝑅 (𝜏𝑟 )

⌈
𝛿𝑟 (𝑞)𝑘−1
𝑇ℎ

⌉
𝐶ℎ

with 𝛿𝑟 (𝑞)0 = (𝑞 + 1)𝐶𝑟 and 𝛿𝑟 (0)0 = 𝐶𝑟 . For a given 𝑞, the recurrence will terminate if 𝛿𝑟 (𝑞)𝑘 =

𝛿𝑟 (𝑞)𝑘−1 for some 𝑘 . The control delay (e.g., response time) of each job 𝑞 is calculated by:

Δ𝑟 (𝑞) = 𝛿𝑟 (𝑞) − 𝑞𝑇𝑟 . (6)

3
Table 7 presents these parameters for three automotive control systems.

4
Note that when 𝛼𝑟 = 0 and 𝛽𝑟 = 1, Eq. (4) can be mapped to the traditional real-time schedulability condition used in

real-time literature (e.g., 𝑅𝑟 ≤ 𝐷𝑟 where 𝑅𝑟 and 𝐷𝑟 are the response-time and deadline of the task 𝜏𝑟 , respectively).
5
A busy-window [35] of 𝜏𝑟 is the interval [𝑡0, 𝑡 ] within which jobs with priority higher than 𝜏𝑟 are processed throughout

[𝑡0, 𝑡 ] but no jobs with priority higher than 𝜏𝑟 are processed in 𝑡0 − 𝜖, 𝑡0) or (𝑡, 𝑡 + 𝜖) for a sufficiently small 𝜖 .
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Therefore the worst-case control delay is given by:

Δ𝑟 = max

∀𝑞={0,1, · · · }
{Δ𝑟 (𝑞)}. (7)

When the system is not overloaded (e.g.,
∑

𝜏𝑟 ∈Γ𝑅

𝐶𝑟

𝑇𝑟
≤ 1 ), the iteration of increasing values of 𝑞 will

stop when 𝛿𝑟 (𝑞) ≤ (𝑞 + 1)𝑇𝑟 .

2.2 Threat Model
We assume that an adversarymay destabilize the system. For example, an attacker could compromise

the file system (resulting in corrupted information/system log), change the of control/actuation

commands or infer side-channel information (e.g., user tasks, cache information, thermal profiles,

etc.) to launch further attacks (say denial of service). While there exist mechanisms (such as

Simplex [36, 37]) that guarantee (hardware/software) fault tolerance, we consider the cases where

an attacker intentionally induces faults (i.e., adversarial artifacts) that may jeopardize the safety

of the system (e.g., results in miss deadlines). Our focus is on threats that can be dealt with by

integrating additional security tasks into the host. The addition of such tasks may necessitate

changing the schedule or increasing the WCET of real-time tasks as was the case in earlier work

[8, 9, 38–40]. In this research, we consider situations where additional security tasks (see Table 1

for related examples) are only allowed to have minimal or no impact on the schedule of existing

real-time tasks and are not allowed to modify real-time/control parameters. While we use specific

intrusion detection mechanisms (e.g., Tripwire) to demonstrate our approach, Contego-C is agnostic

to the specific monitoring mechanism. The design of Contego-C and the design of the specific

security tasks are orthogonal problems. Since we aim to maximize the frequency of execution of

security tasks, security mechanisms whose performance improves with the frequency of execution

(e.g., intrusion monitoring and detection tasks or logging/tracing mechanisms) benefit from our

model.

2.3 Considerations for Integrating Security Mechanisms
We consider incorporating security mechanisms by implementing them as separate sporadic tasks.
In order to provide the best protection, these security tasks may need to be executed quite often.

If the interval between consecutive monitoring events is too large, the adversary may harm the

system (and remain undetected) between two invocations of the security task. On the other hand, if

the security tasks are executed very frequently then it may impact the schedulability of the real-time

tasks – herein lies an important trade-off between monitoring frequency and schedulability of real-

time/security tasks. Specifically, this brings up the challenge of determining the right periods (viz.,
minimum inter-execution time) for the security tasks [41]. For instance, some critical security tasks

may be required to execute more frequently than others. However, if the period is too short (e.g., the
security task repeats too often) then it will use too much of the processor time and eventually lower

the overall system utilization (and consequently the performance of the underlying control system).

As a result, the security mechanism itself might prove to be a hindrance to the system and reduce

the overall functionality or worse, safety. In contrast, if the period is too long, the security task may

not always detect violations since attacks could be launched between two instances of the security

task. Besides, if the security tasks execute with lower priority, they suffer more interference (i.e.,
preemption from high-priority control tasks) and the longer detection time (due to poor response

time) will make the security mechanisms less effective.
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Real-Time Tasks

Security Task 
Tsdes

Tsmax

Priority-level 0 
(highest priority)

0 1 2

Priority-level 2 
(lowest priority)

Priority-levels
(2 real-time tasks, 3 priority-levels)

Contego-C finds period and priority-
levels of the security task from a 
designer-given range

Tsdes ≤ T ≤ Tsmax

Contego-C

Fig. 1. High-level overview of Contego-C. In this illustration, we consider that one security task is integrated
into the system consisting of two real-time tasks where the security task can execute up to priority-level 1.
Contego-C finds the appropriate period and priority-level for security task in a way that timing requirements
of real-time tasks are not violated (refer to Section 3 for a formal description).

2.4 Security Tasks
In this research, we focus on legacy systems where designers may not have enough flexibility to

modify system parameters to integrate security mechanisms. Hence we want to ensure security
without any modification of real-time/control task parameters and have minimal impact on the task
schedule. Figure 1 presents a high-level schematic of Contego-C. In this illustration, we integrate

one security task and finds the suitable period and priority-level such that the timing constraints

of two existing real-time tasks are not affected. As we mentioned earlier, we integrate security

tasks as independent sporadic tasks. Let us consider additional 𝑁𝑆 security tasks denoted by the

set Γ𝑆 = {𝜏1, 𝜏2, · · · , 𝜏𝑁𝑆
}. We follow the sporadic security task model [1] and characterize each

security task 𝜏𝑠 by the tuple (𝐶𝑠 ,𝑇𝑑𝑒𝑠𝑠 ,𝑇𝑚𝑎𝑥𝑠 , 𝜔𝑠 ) where 𝐶𝑠 is the WCET, 𝑇𝑑𝑒𝑠𝑠 is the best period

(minimum inter-arrival time) between successive releases (i.e., 𝐹𝑑𝑒𝑠𝑠 = 1

𝑇𝑑𝑒𝑠
𝑠

is the desired frequency

for 𝜏𝑠 for effective security monitoring and/or intrusion detection), 𝑇𝑚𝑎𝑥𝑖 is the maximum period

beyond which security monitoring will not be effective, and 𝜔𝑠 > 0 is a weighting factor (where∑
𝜏𝑠 ∈Γ𝑆

𝜔𝑠 = 1) represents the severity of the security tasks (more critical task could have higher

weight). We assume that security tasks follow a designer specified fixed-priority order and have

implicit deadlines (e.g., they are required to complete execution before its period).

We assume that security tasks are allowed to execute with a priority higher than certain low-

priority real-time tasks. Since the task priorities are distinct, there are𝑁𝑅 priority-levels for real-time

tasks (indexed from 0 to 𝑁𝑅 − 1 where level 0 is the highest priority). Among the 𝑁𝑅 priority-levels,

we assume that security tasks can execute up to priority-level 𝑙𝑆 (0 < 𝑙𝑆 ≤ 𝑁𝑅), 𝑙𝑆 ∈ N. Notice that
𝑙𝑆 = 𝑁𝑅 implies that the security tasks execute with the lowest priority and are allowed to run only
during slack times when other real-time tasks are not running.

One fundamental problem in integrating security tasks is to determine which security tasks will

be running when [41]. Although any period𝑇𝑠 within the range𝑇𝑑𝑒𝑠𝑠 ≤ 𝑇𝑠 ≤ 𝑇𝑚𝑎𝑥𝑠 and priority-level

𝑙 ∈ [𝑙𝑆 , 𝑁𝑅] would be acceptable, the actual period 𝑇𝑠 and priority-level 𝑙 however, is not known a

priori. Therefore our goal is to find suitable periods as well as priority-levels for the security tasks
without violating the real-time constraints.

One may wonder why we cannot assign the desired period (e.g.,𝑇𝑠 = 𝑇𝑑𝑒𝑠𝑠 ) set the priority-level as

𝑙 = 𝑙𝑆 so that the security tasks can always execute with the desired frequency 𝐹𝑑𝑒𝑠𝑠 and experience

less interference (e.g., preemption) from real-time tasks. However, without careful schedulability

analysis if we set 𝑙 = 𝑙𝑆 (or arbitrarily from the range [𝑙𝑆 , 𝑁𝑅]) and 𝑇𝑠 = 𝑇𝑑𝑒𝑠𝑠 , ∀𝜏𝑠 this may violate

real-time constraints for the control tasks – thus the main safety requirements of the system will

be threatened.
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3 PERIOD AND PRIORITY SELECTION
Since the actual period as well as the priority-levels of the security tasks are unknown, these values

need to be calculated; we must also ensure that they fall within acceptable ranges. Let 𝑇𝑠 be the

period of the security task 𝜏𝑠 ∈ Γ𝑆 that needs to be determined. Since our goal is to run the security

tasks with a period as close to the desired period (𝑇𝑑𝑒𝑠𝑠 ) as possible, without impacting the real-time

tasks (i.e., control system performance), we use the following metric [1]:

𝜂𝑠 =
𝑇𝑑𝑒𝑠𝑠

𝑇𝑠
, (8)

that denotes the tightness of the frequency of periodic monitoring for the security task 𝜏𝑠 . Thus 𝜂 =∑
𝜏𝑠 ∈Γ𝑆

𝜔𝑠𝜂𝑠 denotes the cumulative tightness of the achievable periodic monitoring. This monitoring

frequency metric, for instance, provides one way to measure the trade-offs between security and

schedulability – since this metric 𝜂 will allow us to execute the security routines with a frequency

closer to the desired one while respecting the temporal and control constraints of the real-time

tasks.

3.1 The Formulation as an Optimization Problem
Recall from our earlier discussion that our goal is to ensure that security tasks can execute with a

period close to what the designers’ expect (i.e., 𝑇𝑑𝑒𝑠𝑠 ). In doing so, we also need to ensure that (a)
security tasks are schedulable (i.e., the finish execution before their next periodic invocation), (b)
the timing requirements of real-time tasks are satisfied and (c) the periods of the security tasks are

within designer-specified bound (i.e., [𝑇𝑑𝑒𝑠𝑠 ,𝑇𝑚𝑎𝑥𝑠 ]). We formulate this as an optimization problem

that maximizes our tightness metric with respect to the three constraints listed above. In particular,

for a given priority-level
6 𝑙 ∈ [𝑙𝑆 , 𝑁𝑅], we can represent the period selection as a constrained

optimization problem as we describe in the following.

3.1.1 Objective Function. The objective of the period selection is to minimize the perturbation

(e.g., maximize the tightness 𝜂𝑠 ) for all the security tasks. Mathematically the objective function

can be defined as follows:

max

T

∑︁
𝜏𝑠 ∈Γ𝑆

𝜔𝑠
𝑇𝑑𝑒𝑠𝑠

𝑇𝑠
(9)

where the vector T = [𝑇1,𝑇2, · · · ,𝑇𝑁𝑆
]T represents the periods of the various security tasks that

need to be determined.

3.1.2 Schedulability Constraints for Security Tasks. Since the security tasks are executed with a

priority lower than some real-time tasks, they will suffer interference from real-time and other

high-priority security tasks. For a given priority-level 𝑙 , let us denote ℎ𝑝𝑙
𝑅
(𝜏𝑠 ) ⊂ Γ𝑅 the set of

real-time tasks that are with a priority higher than 𝜏𝑠 . Also, let ℎ𝑝𝑆 (𝜏𝑠 ) ⊂ Γ𝑆 denote the set of

higher-priority security tasks than 𝜏𝑠 . The worst-case release pattern of 𝜏𝑠 occurs when 𝜏𝑠 and all

high-priority (real-time and security) tasks are released simultaneously [42]. Using response time

analysis [43] we can determine an upper bound on the interference experienced by 𝜏𝑠 as follows:

𝐼𝑠 =
∑︁

𝜏𝑟 ∈ℎ𝑝𝑙𝑅 (𝜏𝑠 )

(
𝑇𝑠

𝑇𝑟
+ 1

)
𝐶𝑟 +

∑︁
𝜏ℎ ∈ℎ𝑝𝑆 (𝜏𝑠 )

(
𝑇𝑠

𝑇ℎ
+ 1

)
𝐶ℎ (10)

where the first and second terms represent the amount of interference from real-time and high-

priority security tasks, respectively. In order to ensure that each security task 𝜏𝑠 will complete

6
Selection of security tasks’ priority-level is described in Section 3.3.
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execution before its next invocation, the following constraint needs to be satisfied:

𝐶𝑠 + 𝐼𝑠 ≤ 𝑇𝑠 , ∀𝜏𝑠 ∈ Γ𝑠 . (11)

Notice that for a given priority-level 𝑙 ∈ [𝑙𝑆 , 𝑁𝑅] the set of high-priority real-time tasks (e.g.,
ℎ𝑝𝑅 (𝜏𝑠 )) is fixed. Therefore 𝑇𝑠 is the only variable in Eqs. (10) and (11).

3.1.3 Schedulability Constraints for Low-Priority Real-Time Tasks. Asmentioned earlier, the security

tasks can be executed at any priority within the range [𝑙𝑆 , 𝑁𝑅]. For a given priority-level 𝑙 ∈ [𝑙𝑆 , 𝑁𝑅],
there are 𝑁𝑅 − 𝑙 real-time tasks that have a lower priority than the security tasks and will suffer

interference from other high-priority real-time and security tasks. Note that control delay of the

real-time tasks that are with a priority higher than security tasks will not be affected and hence

schedulability conditions of those tasks are ensured by assumption. However, we need to ensure

that the control cost is within the allowable threshold (e.g., the condition in Eq. (4) is satisfied) for

the real-time tasks that are executing with a priority lower than the security tasks. For a given

priority-level 𝑙 , let us denote 𝑙𝑝𝑙
𝑅
(Γ𝑆 ) as the set of real-time tasks that have a lower priority than

the security tasks. Hence we define the following constraints to ensure the schedulability of the
low-priority real-time tasks7:

𝐽𝑟 = 𝛼𝑟𝑇𝑟 + 𝛽𝑟 Δ̂𝑟 ≤ 𝐽𝑇𝐻𝑟 , ∀𝜏𝑟 ∈ 𝑙𝑝𝑙𝑅 (Γ𝑆 ). (12)

In the above constraints Δ̂𝑟 is the control delay and defined as:

Δ̂𝑟 = max

∀𝑞={0,1, · · · }
{𝛿𝑟 (𝑞) − 𝑞𝑇𝑟 } (13)

where

𝛿𝑟 (𝑞) = (𝑞 + 1)𝐶𝑟 +
∑︁

𝜏ℎ ∈ℎ𝑝𝑅 (𝜏𝑟 )

⌈
𝛿𝑟 (𝑞)
𝑇ℎ

⌉
𝐶ℎ + I(𝜏𝑟 ) ×

∑︁
𝜏𝑠 ∈Γ𝑆

⌈
𝛿𝑟 (𝑞)
𝑇𝑠

⌉
𝐶𝑠 (14)

and the binary variable I(𝜏𝑟 ) = 1 if 𝜏𝑟 ∈ 𝑙𝑝𝑙𝑅 (Γ𝑆 ). The last summation term in Eq. (14) represents

the additional interference introduced by the security tasks.

The constraints in Eq. (12), in the current form, require us to solve a recurrence with unknown

period 𝑇𝑠 for all the security tasks 𝜏𝑠 ∈ Γ𝑆 . Such constraints make the optimization problem

intractable to solve. We address this issue by considering an upper bound of control delay and

rewrite the constraints in Eq. (12) as follows:

𝐽𝑟 = 𝛼𝑟𝑇𝑟 + 𝛽𝑟Δ𝑟 ≤ 𝐽𝑇𝐻𝑟 , ∀𝜏𝑟 ∈ 𝑙𝑝𝑙𝑅 (Γ𝑆 ). (15)

where the control delay Δ𝑟 is given by:

Δ𝑟 = 𝑞𝑟𝐶𝑟 +
∑︁

𝜏ℎ ∈ℎ𝑝𝑅 (𝜏𝑟 )

⌈
Δ̃𝑟
𝑇ℎ

⌉
𝐶ℎ + I(𝜏𝑟 ) ×

∑︁
𝜏𝑠 ∈Γ𝑆

(
Δ̃𝑟
𝑇𝑠

+ 1

)
𝐶𝑠 . (16)

In the above equation 𝑞𝑟 =

⌈
Δ̃𝑟

𝑇𝑟

⌉
and Δ̃𝑟 denotes an upper bound of response time (e.g., the

maximum size of the busy-window)
8
. We can calculate this upper bound Δ̃𝑟 by using Eq. (13) and

by setting 𝑇𝑠 = 𝑇
𝑑𝑒𝑠
𝑠 , ∀𝜏𝑠 ∈ Γ𝑆 in Eq. (14) – however this may cause response time unbounded for

some 𝑇𝑠 (e.g., if the total system utilization greater than unity for 𝑇𝑠 = 𝑇𝑑𝑒𝑠𝑠 ). Note that for any

schedulable system the control cost is upper bounded by 𝐽𝑇𝐻𝑟 (see Eq. 15). We therefore calculate

7
Note that if 𝑙 = 𝑁𝑅 (e.g., security tasks are running with the lowest priority), the constraints in Eq. (12) are no longer

necessary.

8
Note that if Δ̃𝑟 ≤ 𝑇𝑟 (e.g., constrained deadline systems), then �̃�𝑟 = 1 and Δ𝑟 in Eq. (16) becomes an upper bound [43] of

standard response time expression [42].
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Δ̃𝑟 by using the minimum of
𝐽𝑇𝐻
𝑟 −𝛼𝑟𝑇𝑟

𝛽𝑟
(e.g., by rearranging Eq. 15) and the expression in Eq. (13)

(where we set 𝑇𝑠 = 𝑇
𝑑𝑒𝑠
𝑠 in Eq. (14)). Note that this delay bound Δ𝑟 in Eq. (16) could be pessimistic,

especially for lower-priority real-time tasks, however as we show in Section 4 this allows us to

integrate security tasks with reasonable performance while not degrading control performance

beyond an acceptable limit.

3.1.4 Period Bound Constraints. In order to guarantee the restrictions on monitoring frequency

(e.g., the periods are within the designer specified bounds), the following inequality needs to be

satisfied for all the security tasks:

𝑇𝑑𝑒𝑠𝑠 ≤ 𝑇𝑠 ≤ 𝑇𝑚𝑎𝑥𝑠 ∀𝜏𝑠 ∈ Γ𝑆 . (17)

Remark. For a feasible solution, the periods of the security tasks could be any value within the
range [𝑇𝑑𝑒𝑠𝑠 ,𝑇𝑚𝑎𝑥𝑠 ], ∀𝜏𝑠 ∈ Γ𝑆 that respect all the constraints. Therefore, the mathematical formulation
of period selection with objective function in Eq. (9) and constraints in Eqs. (11), (15) and (17) is a
constrained combinatorial optimization problem (e.g., for a given priority-level 𝑙 , there are 𝑁𝑆 variables
and 2𝑁𝑆 + (𝑁𝑅 − 𝑙) constraints).

3.2 Solution to the Period Selection Problem
We solve the period selection problem introduced in Section 3.1 by transforming it into a geometric

program (GP) [44]. The key idea is to transform the objective function and the constraints into

equivalent GP form that can be solved using existing techniques (e.g., known algorithms such as the

interior-point method [45, Ch. 11] or standard convex optimization solvers [46, 47]). We now first

briefly introduce GP (Section 3.2.1) and then describe our approach to solve the period selection

problem (Sections 3.2.2 and 3.3).

3.2.1 Preliminaries of Geometric Program. A constrained optimization problem can be solved by

GP if the problem is formulated as follows [44]:

min

Y
𝑓0 (y),

Subject to: 𝑓𝑖 (y) ≤ 1, 𝑖 = 1, · · · , 𝑧𝑝 , and
𝑔𝑖 (y) = 1, 𝑖 = 1, · · · , 𝑧𝑚

where y = [𝑦1, 𝑦2, · · · , 𝑦𝑧]T denotes the vector of 𝑧 optimization variables. The functions𝑔1 (y), · · · , 𝑔𝑧𝑚 (y)
aremonomial and 𝑓0 (y), 𝑓1 (y), · · · , 𝑓𝑧𝑝 (y) are posynomial functions, respectively. A monomial func-

tion is expressed as

𝑔𝑖 (y) = 𝑐𝑖
𝐾𝑖∏
𝑘=1

𝑦
𝑎𝑘
𝑘
, (19)

where 𝑐𝑖 ∈ R+ and 𝑎𝑘 ∈ R. Note that the coefficient 𝑐𝑖 must be non-negative but the exponents 𝑎𝑙
can be any real number including fractional and negative. A posynomial function (i.e., the sum of

the monomials) can be represented as

𝑓𝑖 (y) =
𝐾𝑖∑︁
𝑘=1

𝑐𝑘𝑦
𝑎1𝑘
1
𝑦
𝑎2𝑘
2

· · ·𝑦𝑎1𝑘𝑧 , (20)

where 𝑐𝑘 ∈ R+ and 𝑎 𝑗𝑘 ∈ R, 1 ≤ 𝑘 ≤ 𝐾𝑖 . We can maximize a non-zero posynomial objective function

by minimizing its inverse. In addition, we can express the constraint 𝑓 (·) < 𝑔(·) as 𝑓 ( ·)
𝑔 ( ·) ≤ 1.

Observation. The period selection problem can be reformulated as a standard geometric program.
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3.2.2 Solving Period Section Problem as a GP. In order to represent the period selection problem as

a GP, we rewrite the objective function in Eq. (9) as:

min

T
(𝜔𝑠𝑇𝑑𝑒𝑠𝑠 )−1𝑇𝑠 . (21)

The schedulability constraints for security tasks (Section 3.1.2) can then be expressed as:

(𝐶𝑠 + 𝐼𝑠 )𝑇 −1
𝑠 ≤ 1 (22)

where

𝐼𝑠 =
∑︁

𝜏𝑟 ∈ℎ𝑝𝑙𝑅 (𝜏𝑠 )

(𝑇𝑠 +𝑇𝑟 )𝑇 −1
𝑟 𝐶𝑟 +

∑︁
𝜏ℎ ∈ℎ𝑝𝑆 (𝜏𝑠 )

(𝑇𝑠 +𝑇ℎ)𝑇 −1
ℎ
𝐶ℎ .

Similarly, we rewrite the schedulability constraints for real-time tasks that are with a priority lower

than 𝑙 (Section 3.1.3) as follows:

𝛼𝑟𝑇𝑟 + 𝛽𝑟Δ𝑟
𝐽𝑇𝐻𝑟

≤ 1, ∀𝜏𝑟 ∈ 𝑙𝑝𝑙𝑅 (Γ𝑆 ) (23)

where Δ𝑟 =

⌈
Δ̃𝑟

𝑇𝑟

⌉
𝐶𝑟 +

∑
𝜏ℎ ∈ℎ𝑝𝑅 (𝜏𝑟 )

⌈
Δ̃𝑟

𝑇ℎ

⌉
𝐶ℎ + I(𝜏𝑟 ) ×

∑
𝜏𝑠 ∈Γ𝑆

(
Δ̃𝑟 +𝑇𝑠

)
𝑇 −1
𝑠 𝐶𝑠 . Finally the period bound

constraints (Section 3.1.4) can be represented as:

𝑇𝑑𝑒𝑠𝑠 𝑇𝑠
−1 ≤ 1, ∀𝜏𝑠 ∈ Γ𝑠 (24)

(𝑇𝑚𝑎𝑥𝑠 )−1𝑇𝑠 ≤ 1, ∀𝜏𝑠 ∈ Γ𝑠 . (25)

Using logarithmic transformations (e.g., representing𝑇𝑠 = log𝑇𝑠 and hence𝑇𝑠 = 𝑒
𝑇𝑠
, and replacing

inequality constraints of the form 𝑓𝑖 (·) ≤ 1with log 𝑓𝑖 (·) ≤ 0), we can convert the above formulation

into a convex optimization problem (refer to [1, 44] for details). This transformed problem can be

solved using standard algorithms
9
(such as interior-point method) in polynomial time [45, Ch. 11].

3.3 Algorithm
We develop an iterative scheme (Algorithm 1) to jointly obtain the periods and priority-level of the

security tasks. The workflow of the algorithm is as follows.

We first solve the period selection problem (Section 3.2) for each of the allowable priority-levels

(Line 2-9). If there exists a solution for any priority level 𝑙 ′ ∈ [𝑙𝑆 ,𝑚] (e.g., the optimization problem

is feasible with the given constraints), we store the periods in a candidate solution list (Line 6). If

the candidate solution list is non-empty (i.e., the problem is feasible for at least one priority-level),

we then find the best priority-level (say 𝑙∗) from the candidate list that maximizes the cumulative

tightness (Line 12) and return the tuple {𝑙∗,T(𝑙∗)}, i.e., priority-level and periods for security tasks

(Line 14). If no candidate solutions are found (e.g., the boolean flag Schedulable is false), the task-set
is reported as unschedulable (Line 16) since it is not possible to integrate the given security tasks

with desired requirements. This unschedulability result will provide hints to the engineers to modify

the system parameters/requirements (e.g., desired/maximum period of security tasks, number of

security tasks, allowable priority-level) for integrating security mechanisms.

4 EVALUATION
We evaluate the performance of our security integration framework on two fronts: (a) a proof-of-
concept implementation on an ARM-based surveillance rover – to demonstrate the viability of

the proposed scheme in a practical cyber-physical system (Section 4.1) and (b) experiments with

synthetically generated workloads – for a broader design-space exploration (Section 4.2).

9
There also exist open-source software packages [46, 47] that can solve this GP problem efficiently.
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Algorithm 1 Feasibility Checking and Parameter Selection

Input: Set of real-time and security tasks, Γ𝑅 and Γ𝑆 , respectively, and allowable priority ranges [𝑙𝑆 , 𝑁𝑅 ]
Output: The tuple {𝑙∗,T(𝑙∗) }, e.g., priority-level and periods of the security tasks if the task-set is schedulable;

Unschedulable otherwise

1: Schedulable := false /* A boolean flag */
2: for each priority-level 𝑙′ ∈ [𝑙𝑆 , 𝑁𝑅 ] do
3: Solve the period selection problem (Section 3.2)

4: if SolutionFound then
5: /* store the periods T∗ (obtained by solving the optimization problem) for priority-level 𝑙′ */
6: T(𝑙′) := T∗

7: Schedulable := true
8: end if
9: end for
10: /* Select periods and priority-level that provide maximum tightness */
11: if Schedulable then
12: Find the priority-level 𝑙∗ from T(𝑙′)∀𝑙′∈[𝑙𝑆 ,𝑁𝑅 ] | tasks at 𝑙′ is schedulable that gives the maximum cumulative tightness

𝜂 =
∑

𝜏𝑠 ∈Γ𝑆
𝜂𝑠

13: return 𝑙∗, T(𝑙∗) /* return the parameters */
14: else
15: return Unschedulable /* not possible to integrate security tasks */
16: end if

4.1 Security Applications in a Cyber-Physical System
4.1.1 Platform Overview and Customization. We implemented our ideas on a rover platform (Fig.

2) manufactured by Waveshare [48]. The rover hardware/peripherals (e.g., wheel, motor, servo,

sensor, etc.) are controlled by a Raspberry Pi 3 (RPi3) Model B [49] SBC (single board computer).

The RPi3 is equipped with a 1.2 GHz 64-bit quad-core ARM Cortex-A53 CPU on top of Broadcom

BCM2837 SoC (system-on-chip). The base hardware unit of the rover is connected with RPi3 using a

40-pin GPIO (general-purpose input/output) header. The adapter board contains a voltage regulator

(provides stable 5V power for RPi3), AD acquisition chip (to use analog sensors), servo controller

(for rotating the rover) and UART converter (to control the RPi3 via UART). The base chassis is

equipped with all the sensors, motor driver and micro gear motor. We also attached a camera (RPi3

camera module) that can capture 3280 × 2464 pixel static images (and also supports high-definition

videos). The detailed specifications of the rover hardware (e.g., base chassis, adapter, wheels, etc.)
are available on the vendor website [48].

The RPi3 runs on a vendor-supported open-source operating system, Raspbian (a variant of

Debian Linux). In our experiments, we used the most recent version of Raspbian (e.g., Raspbian
Stretch console image with Linux kernel 4.9). We enabled real-time capabilities on top of the vanilla

Linux kernel by applying the PREEMPT_RT patch [50] (version 4.9.80-rt62-v7+). Since we focus

on a single core platform we activated only a single core (e.g., core0) and disabled the remaining

three cores. To be specific, we modified the boot command file (/boot/cmdline.txt) and set the

flag maxcpus = 1. The system configurations used in our experiments are summarized in Table 3.

4.1.2 Experimental Setup. In our experiments, the rover moved through a line, captured images

and stored those in its internal storage. Our rover platform consists of the following real-time tasks

(Γ𝑅): (a) four navigation tasks (for moving the rover forward, backward, left and right); (b) one
camera task (captured still images and stored in the internal filesystem) and (c) one sensor logger
task (for reading and logging rover’s infrared sensor values). We did not make any modifications to

the vendor-provided firmware/control code that ran the rover. To integrate security into this rover

platform, we included additional security tasks. For the security application, we considered Tripwire
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Fig. 2. Surveillance rover used in our experiments.

Table 3. Summary of the Implementation Platform

Artifact Configuration

Platform 1.2 GHz 64-bit Broadcom BCM2837 (Raspberry Pi 3)

CPU 1.2 GHz 64-bit ARM Cortex-A53

Memory 1 Gigabyte

Operating System Debian Linux (Raspbian Stretch Lite)

Kernel version Linux Kernel 4.9

Real-time patch PREEMPT_RT 4.9.80-rt62-v7+

Kernel flags CONFIG_PREEMPT_RT_FULL enabled

Boot parameters maxcpus=1, force_turbo=1, arm_freq=700,
arm_freq_min=700

and included the following security tasks (Γ𝑆 ) that can: (a) protect the binary files of Tripwire; (b)
protect system binary and (c) check for intrusions in the filesystem. We also modified the default

configuration file of Tripwire (/etc/tripwire/twpol.txt) and customized it (e.g.,modified default

rules and added new rules – refer to Tripwire manual [16] for details) for our experimental platform

and rover application requirements.

We measured the execution time of real-time and security tasks using the ARM cycle counter

register (CCNT) that gives us nanosecond-level precision. Since CCNT is not enabled by default

in RPi3, we developed a loadable kernel module (LKM) and activated the register. We used the

dual-loop timing method [14] for calculating WCETs
10
, i.e., we first timed an empty loop with only

the measurement instrumentation and then the execution times obtained for these instrumentation-

only loops were subtracted from the execution times for the loops with the task code. We set the

period and control constraints in a way that the taskset Γ𝑅∪Γ𝑆 became schedulable (see Tables 4 and

5). We set the cost threshold as a function of base cost 𝐽𝐵𝑇𝐻 = 𝜆 × 𝐽𝐵𝑇𝐻
𝑟 ,∀𝜏𝑟 where 𝐽𝐵𝑇𝐻

𝑟 denotes the

base control cost (e.g., when there is no security tasks in the system) and the value of 𝜆 was varied

as an experimental parameter. For this rover platform we considered the control cost as a function

of task response time (e.g., 𝛼𝑟 = 0, 𝛽𝑟 = 1 and hence 𝐽
𝐵𝑇𝐻
𝑟 = Δ𝑟 , ∀𝜏𝑟 ∈ Γ𝑅) and assumed equal

weights for the security tasks. For the accuracy of our measurements, we disabled the frequency

10
Any existing WCET analysis technique (see the related survey [51]) can also be used with our scheme and is orthogonal

to the issue at hand.
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Table 4. Parameters for Real-time and Security Tasks

Real-Time Tasks 𝐶𝑟 (ms) 𝑇𝑟 (ms) 𝐽
𝐵𝑇𝐻
𝑟 (ms)

Navigation (Forward) 20.55 4111.17 205.55

Navigation (Backward) 176.43 3528.73 391.28

Navigation (Left) 147.53 2950.60 567.14

Navigation (Right) 147.64 2952.90 765.52

Camera 672.81 13456.34 1645.16

Sensor logger 98.57 1971.44 1841.41

Table 5. Parameters for Security Tasks*

Security Tasks 𝐶𝑠 (ms) 𝑇𝑑𝑒𝑠𝑠 (ms)

Scan Tripwire binary 3888.82 77776.47

Scan system binary 3926.75 58174.83

Scan filesystem 2908.74 78535.03

*𝑇𝑚𝑎𝑥
𝑠 = 2𝑇𝑑𝑒𝑠

𝑠 , ∀𝜏𝑠 , 𝑙𝑆 = ⌈0.3𝑁𝑅 ⌉.

scaling feature in the OS. For this, we modified the boot configuration file /boot/config.txt (see

Table 3) and allow RPi3 to execute at a constant frequency (e.g., 700 MHz – the default value). We

used the GPkit [46] library and CVXOPT [52] solver to solve the period selection problem.

4.1.3 Experience and Evaluation. We compared the performance of Contego-C with the approach

described in our earlier research [1] where the security tasks are allowed to execute only when the

real-time tasks are not running (i.e., opportunistic execution where 𝑙 = 𝐿𝑠 = 𝑁𝑅). Note that when

security tasks are executing opportunistically, they will not have any impact on the timing/control

constraints of the real-time tasks.

In the first set of experiments, we analyzed the performance of our scheme by observing how

quickly an intrusion can be detected. In this experiment we considered two control cost thresholds,

e.g., 𝐽𝐵𝑇𝐻
1 and 𝐽𝐵𝑇𝐻

1 – for simplicity of notation let us denote to those thresholds as 𝑇𝐻1 and 𝑇𝐻2

where𝑇𝐻1 > 𝑇𝐻2 (e.g., less constrained). In our experiments𝑇𝐻1 = 38𝐽
𝐵𝑇𝐻
𝑟 and𝑇𝐻2 = 35𝐽

𝐵𝑇𝐻
𝑟 , ∀𝜏𝑟

where 𝐽
𝐵𝑇𝐻
𝑟 represents the base control cost (viz., response time – see Table 4) for 𝜏𝑟 when there is

no security tasks in the system.
11
For this rover platform, Algorithm 1 found higher priority-level

(e.g., 3) for the security tasks when the control cost is bounded by 𝑇𝐻1 (compared to 5 for the

control cost threshold 𝑇𝐻2, where lower value implies higher priority). We also found that for any

threshold 𝐽𝐵𝑇𝐻 = 𝜆 × 𝐽𝐵𝑇𝐻
𝑟 where 1 ≤ 𝜆 ≤ 34 our scheme returns same priority-level (e.g., 6) for

security tasks as opportunistic execution scheme.

Our goal here was to analyze the effectiveness of security tasks from the scheduling perspective.

To illustrate malicious behavior, viz., we overrode one of the real-time tasks’ code and launched

an attack that corrupted the logs/images collected by the rover. For each of the experiments, we

11Note: we selected these values by trial-and-error so that the optimization routine returns different priority-levels with

different thresholds and we can observe the design trade-offs.
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Fig. 3. Proposed scheme vs. opportunistic execution: empirical CDF of intrusion detection time. The empirical

CDF is defined as 𝐹𝛼 ( 𝚥) = 1

𝛼

𝛼∑︁
𝑖=1

I[𝜁𝑖 ≤ 𝚥 ] , where 𝛼 is the total number of experimental observations, 𝜁𝑖 is time

to detect the attack in at the 𝑖-th experimental observation and 𝚥 represents the 𝑥-axis values (e.g., normalized
detection time in cycle counts). The indicator function I[ ·] outputs 1 if the condition [·] is satisfied and
0 otherwise. The cost threshold 𝑇𝐻1 results in better tightness for this rover platform and shows a faster
intrusion detection rate.

started with a clean (i.e., uncompromised) system state, launched an attack at any random point of

the program execution and logged the time required by Tripwire to detect the attack.
12

The x-axis in Fig. 3 represents the normalized detection time (in cycle counts, normalized to

one) and the y-axis represents the probability (e.g., empirical CDF) that the attack is being detected

by that time. The figure shows that Contego-C with cost threshold 𝑇𝐻1 provides better detection

time (e.g., lesser cycle count required to detect the intrusion). Since security tasks experience less

interference for 𝑇𝐻1 we can see the faster intrusion detection rate for 𝑇𝐻1 compared to the other

case. Note that the actual time to detect the attacks also depends on when the attack is launched

and the corresponding scheduling point of the security tasks. The priority-level of security tasks is

closer for both 𝑇𝐻2 (e.g., 5 and 6 for 𝑇𝐻2 and opportunistic execution, respectively), and hence for

𝑇𝐻2 both the schemes shows similar results in terms of detection time. Since earlier work allows

the security tasks to run only when other real-time tasks are not running, the feasibility region

becomes more constrained and the optimization routine finds periods that are higher than those for

the proposed scheme. This leads to a poorer detection rate in general in most of the experiments.

In the following experiment, we observed how our security integration approach impacted the

performance of real-time tasks. We set the control cost thresholds as𝑇𝐻1 so that security tasks can

execute with a priority higher than the camera task.
13
For each experimental trial, we observed the

schedule for 200 seconds and measured
14
the response time of the camera task (Fig. 4) using ARM

cycle counter registers. We also logged the number of images captured by the task (Table 6). In Fig.

4 we show the (90
𝑡ℎ

percentile) response time observed in our experiments for both Contego-C

and opportunistic execution scheme. As we can see from the figure, task response time increases

for Contego-C. Since our scheme allows security tasks to execute with a priority higher than some

12
We assumed that there are no zero-day attacks and that attacks are detected by Tripwire correctly (i.e., there are no false

positive/negative errors).

13
We show the results for a case where security tasks execute with higher priority than the camera task. Otherwise, both

Contego-C and opportunistic execution scheme will have the same impact on the camera task – since they will not cause

any interference to the camera task.

14
We took measurements for demonstration purposes only. Such runtime probing may negatively impact the real-time

performance for practical use-cases.
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Fig. 4. Contego-C vs. opportunistic execution: impact on the response time of a low-priority real-time task
(e.g., camera task). Promoting the priority of the security tasks increases the response time of the camera
task.

real-time tasks (camera task
15
in this case), the low-priority real-time tasks will suffer interference

from security tasks. As a result response time increases. From our experiment, we found that on

average the response time of the surveillance task increased by 13.60%. However as we can see

from Table 6, this increased response time did not degrade system throughput (in terms of the

number of images captured by the surveillance task for a given duration) – since on average both

schemes captured an equal number of images in our experimental trials.

Table 6. Number of Images Captured by Both the Schemes

Image Statistics*

Scheme Avg. S.D.

Contego-C (𝑇𝐻1) 2 0.54

Opportunistic Execution 2 0.40

*
Statistics over 15 trials (each ran for 200 seconds).

4.2 Experiments with Synthetic Tasksets
4.2.1 Workload Generation and Parameters. We used the parameters similar to that from prior

research [1, 43, 53]. We grouped the real-time and security tasksets by base-utilization from

[0.01 + 0.1 · 𝑖, 0.1 + 0.1 · 𝑖] where 𝑖 ∈ Z, 0 ≤ 𝑖 ≤ 9. This allowed us to generate tasksets with an

even distribution of tasks. Each base-utilization group contained 250 tasksets (e.g., a total of 2500
tasksets were tested for each of the experiments). The utilization of the real-time and security tasks

were generated by the UUniFast [54] algorithm. Each taskset instance contained [3, 10] real-time

and [2, 5] security tasks. Each real-time task 𝜏 𝑗 ∈ Γ𝑅 had a period 𝑇𝑗 ∈ [10, 1000] ms and we

assumed 𝑙𝑆 = ⌈0.3𝑁𝑅⌉. The maximum allowable periods for the security tasks were selected from

[1000, 1500] ms and the desired period was assumed to be 𝑇𝑑𝑒𝑠𝑠 =
⌊
0.5𝑇𝑚𝑎𝑥𝑠

⌋
, ∀𝜏𝑠 ∈ Γ𝑆 . We also

assumed that real-time task priorities follow rate-monotonic order [28], e.g., priority of 𝜏𝑟 is higher

than 𝜏𝑟 ′ if 𝑇𝑟 < 𝑇𝑟 ′ . For security tasks, we assumed that priorities are assigned according to desired

monitoring frequency, e.g., priority of 𝜏𝑠 is higher than 𝜏𝑠′ if 𝑇
𝑑𝑒𝑠
𝑠 < 𝑇𝑑𝑒𝑠

𝑠′ .

15
We considered camera task as an example of low-priority real-time task to demonstrate the effects.
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Table 7. Control Systems and Parameters

Control System Transfer Function* Parameters

Cruise control
1

1500𝑠+50 𝛼 = 5.57
10

6
𝛽 = 5.46

10
6

Rotary motion control
0.01

(0.01𝑠+0.1) (0.5𝑠+1)+(0.01)2 𝛼 = 695

10
4
𝛽 = 682

10
4

Suspension system
0.0035𝑠2+0.01876𝑠+0.625

𝑠4+48.1𝑠3+1849𝑠2+1657𝑠+5×104 𝛼 = 7.34
10

9
𝛽 = 7.20

10
9

*
Given the transfer function𝐺 (𝑠) , it is straightforward to correlate with the state space form (e.g., Eq. (1)). For details refer to [55, Ch. 2].

Table 8. Simulation Parameters

Parameter Values

Number of real-time tasks, 𝑁𝑅 [3, 10]
Number of security tasks, 𝑁𝑆 [2, 5]
Real-time task period, 𝑇𝑟 [10, 1000] ms

Maximum allowable period, 𝑇𝑚𝑎𝑥𝑠 [1000, 1500] ms

Desired period for security tasks, 𝑇𝑑𝑒𝑠𝑠

⌊
0.5𝑇𝑚𝑎𝑥𝑠

⌋
Minimum utilization of security tasks 30% of real-time tasks

Maximum priority-level of the security tasks, 𝑙𝑆 ⌈0.3𝑁𝑅⌉
Number of taskset in each configuration 250

For modeling physical plants, we considered three (linearized) automotive control systems [56]:

(a) cruise control system (operates the vehicle at a constant speed), (b) rotary control system (coupled

with wheels or drums and provide translational motion) and (c) vehicle suspension system (single

dimensional multiple spring-damper system that controls the motion of the vehicle body). For each

of these three control systems 𝑃𝑖 , we first used Jitterbug tool [57] to obtain the quadratic control cost

𝐽𝑖 (e.g., Eq. (2)) and then linearized and obtained the parameters 𝛼𝑖 and 𝛽𝑖 using scipy.optimize
[58] library (see Table 7). For each of the real-time tasks 𝜏𝑟 ∈ Γ𝑅 , we randomly selected the control

parameters from {𝛼𝑖 }, {𝛽𝑖 }, 1 ≤ 𝑖 ≤ 3. Unless otherwise specified, for low-priority real-time

tasks we set the control cost threshold 𝐽𝑇𝐻𝑟 = 5𝐽
𝐵𝑇𝐻
𝑟 where 𝐽

𝐵𝑇𝐻
𝑟 represents the base cost (e.g., the

cost when there is no security tasks or the security tasks are executing with lowest priority). We

considered 𝜔𝑠 = 1, ∀𝜏𝑠 ∈ Γ𝑆 and the total utilization of the security tasks were assumed to be at

least 30% of the real-time tasks. The parameters used in our experiments are summarized in Table 8.

4.2.2 Comparison With Opportunistic Execution. In the first set of experiments (Fig. 5) we compare

the number of schedulable tasksets (e.g., those ones where all the real-time requirements are

satisfied) found by both the proposed and opportunistic execution schemes. We used the acceptance
ratio as a metric to evaluate schedulability. The acceptance ratio (y-axis in Fig. 5) is defined as the

number of schedulable tasksets over the total number of generated ones. The x-axis in Fig. 5 shows

the total system utilization:

∑
𝜏𝑖 ∈{Γ𝑅∪Γ𝑆 }

𝐶𝑖

𝑇𝑖
(e.g., total utilization of real-time and security tasks). From

this figure we can observe that Contego-C results in better schedulability compared to opportunistic
execution scheme. Our proposed scheme allows security tasks to execute at a priority-level up to 𝑙𝑆
(as long as it does not violate control delay requirements). As a result, security tasks experience less

interference than in opportunistic execution scheme. This flexibility gives the optimization routine
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Fig. 5. Percentage of tasksets found schedulable (e.g., that satisfied all the constraints) in both schemes for
different base-utilizations.

a larger feasibility region (especially for high utilization) to satisfy all the constraints (and hence

more tasksets are found schedulable).

In the next set of experiments, we analyzed how the different control cost impacts the schedu-

lability. For this, we vary the cost threshold as a function of base cost: 𝐽𝐵𝑇𝐻 = 𝜆 × 𝐽𝐵𝑇𝐻
𝑟 , ∀𝜏𝑟 and

show how it impacts schedulability for different utilizations and base cost factors (e.g., 𝜆). For
better representation of schedulability with different utilizations and cost thresholds we define the

weighted schedulability metric as follows [59]:

𝑊𝑠 (𝐽𝑇𝐻 ) =

∑
Γ
𝑈 (Γ)𝑆 (Γ, 𝐽𝑇𝐻 )∑

Γ
𝑈 (Γ) (26)

where schedulability test 𝑆 (Γ, 𝐽𝑇𝐻 ) returns a binary output if the taskset Γ is schedulable for cost

threshold 𝐽𝑇𝐻 and𝑈 (Γ) denotes the taskset utilization in all base-utilization groups. The x-axis in

Fig. 6 shows the different cost threshold (as a factor of base cost) and the y-axis shows the weighted

schedulability. From this figure, we can see that a higher cost threshold increases schedulability

since the optimization method finds a wider feasibility region to satisfy all the real-time constraints.

Also, the opportunistic execution scheme does not have any impact on the real-time tasks, and

thus weighted schedulability remains unchanged with varying cost thresholds.

In Fig. 7 we measure the difference in the tightness of periodic monitoring (e.g., 𝜂) obtained by

the proposed scheme and the opportunistic execution approach. The non-negative values in the

y-axis of Fig. 7 imply that the proposed scheme performs better than the scheme presented in our

previous work [1]. The figure shows that our approach can achieve better cumulative tightness,

and performs comparatively better in medium utilization (e.g., 0.45-0.75). For higher utilization, the
difference is close to zero. However, this does not mean that the proposed scheme performs worse

than the opportunistic execution approach. This is mainly because our scheme found a feasible

solution for the lowest priority-level (e.g., 𝑙 = 𝑁𝑅) and is making both schemes look more similar.

4.2.3 Comparison with Mixed-Criticality Systems and Optimal Priority Ordering. While in this work

we consider a legacy system (i.e., where changing the priority ordering of all real-time tasks is not

an option), for comparison purposes we considered the following two schemes (Note: they do not

consider any period adaptation):

• Criticality Monotonic Priority Ordering (CrMPO) [26]: We compare with mixed criticality

systems [27] where tasks have different criticality levels (e.g., HI and LO) to ensure the level
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Fig. 6. Weighted schedulability with different control cost thresholds. Schedulability of opportunistic execu-
tion scheme is independent of cost threshold.
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Fig. 7. The difference in cumulative tightness for Contego-C and opportunistic execution. Each of the data
points in the plot represents a schedulable taskset (e.g., there exists a solution that satisfies all the constraints).

of assurance. In our experiments tasks follow a criticality monotonic ordering (HI-criticality

tasks have higher priorities than all the LO-criticality tasks), e.g., first 𝑙𝑆 real-time and all

security tasks are considered as HI-criticality and the rest of 𝑁𝑅 − 𝑙𝑆 real-time tasks are

scheduled as LO-criticality. Since we focus on schedulability, we consider two variants of

CrMPO: CrMPO-Tmax and CrMPO-Tdes where periods of the security tasks are set as 𝑇𝑚𝑎𝑥𝑠

and 𝑇𝑑𝑒𝑠𝑠 , ∀𝜏𝑠 ∈ Γ𝑆 , respectively.
• Optimal Priority Assignment (OPA) [60]: In this scheme, all the tasks (e.g., both real-time and

the security ones) are scheduled using Audsley’s OPA algorithm. As before, we consider the

two variants of OPA: OPA-Tmax and OPA-Tdes where periods of the security tasks are set to

maximum and desired values, respectively.

In Fig 8 we compare the acceptance ratio of Contego-C with CrMPO and OPA schemes. We note

that any taskset that is schedulable by CrMPO-Tmax/CrMPO-Tdes schemes will also be schedulable

in Contego-C. Running all the security tasks with their desired periods will result in a high degree

of interference from low priority tasks and this leads to a poor acceptance ratio (especially for

higher utilization) for CrMPO-Tdes scheme. While both the OPA-Tmax and OPA-Tdes outperform

Contego-C (for higher utilizations), we note that this may not be applicable for legacy systems

where changing the priority of (all or a subset of) real-time/control tasks is not an option. We also
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Fig. 8. The acceptance ratio vs taskset utilizations for Contego-C and other priority assignment schemes (e.g.,
CrMPO and OPA).
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Fig. 9. Normalized difference between achievable and desired periods for each of the security tasks vs. total
utilization of the system. The closer the y-axis values to 0, the more desirable the period for security tasks.

note that while OPA-Tmax results in better schedulability, our priority and period assignments

help to achieve faster monitoring – as we explain next (see Fig. 9).

The cumulative tightness 𝜂 bound presented in Section 4.2.2 takes into account all the security

tasks. In the following experiment (Fig. 9), we measure how close the execution frequency of each
of the security tasks is to their desired frequency when compared to the CrMPO/OPA schemes

(red lines in the figure). Let us define the following metric (e.g., normalized difference between

achievable and desired periods):

𝜉 =
∥T∗ − Tdes∥

2

∥Tmax − Tdes∥
2

(27)

where T∗
is the solution obtained from Algorithm 1, Tdes = [𝑇𝑑𝑒𝑠𝑖 ]T∀𝜏𝑖 ∈Γ𝑆 and Tmax = [𝑇𝑚𝑎𝑥𝑖 ]T∀𝜏𝑖 ∈Γ𝑆

are the desired and maximum period vector respectively, and ∥·∥
2
denotes the Euclidean norm. The

closer the value of 𝜉 is to 0, the nearer the period of each of the security task is to the desired period.

Note that CrMPO/OPA-Tdes (respectively CrMPO/OPA-Tmax) gives the bound of the normalized

distance, e.g., 𝜉CrMPO/OPA-Tdes = 0 (res. 𝜉CrMPO/OPA-Tmax = 1). As the total utilization increases, the

feasible set of the period selection problem (that respects all constraints) becomes more restrictive

due to the higher interference. As a result, we see the degradation in effectiveness (in terms of

𝜉) for the tasksets with higher utilization. Our experiments also show that there is a trade-off

between security and schedulability. When compared to CrMPO-Tmax/OPA-Tmax our approach
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finds smaller periods (since the normalized distance is less than 1) in most cases – this is expected

since there is no period adaptation. Our approach achieves better monitoring when compared

with CrMPO/OPA with (b) same or better schedulability (for CrMPO-Tmax) and (b) a reduction in

acceptance ratio (for OPA-Tmax).

5 RELATEDWORK
Security in RTS has been addressed in literature in different contexts – in a broader sense this

includes (but is not limited to) integrating monitoring and intrusion detection mechanisms, pro-

tecting communication channels, defending against side-channel attacks, as well as designing

hardware/software-based architectural solutions.

Real-Time Security Integration Frameworks. The work most closely related to Contego-C is our

earlier work [1], where security tasks are executed with the lowest priority relative to real-time

tasks. Although this approach may be useful for existing systems since the schedulability of the real-

time tasks remain unaffected, as we observed from our experiments, this leads to longer response

times for the security tasks and thus may increase the detection time for attacks. We also developed

a multi-mode framework [12] that allows the security policies/tasks to execute in different modes

(i.e., passive monitoring with lowest priority as well as exhaustive checking with higher priority).

By using this approach, for instance, security routines can execute opportunistically when the

system is deemed to be clean (i.e., not compromised). However if any anomaly or unusual behavior

is suspected, the security policy will switch to a fine-grained checking mode and execute with higher

priority. The security tasks may go back to normal mode if: i) no anomalous activity is found; or ii)
the intrusion is detected and malicious entities are removed. Our multi-mode framework [12] used

the concept of hierarchical scheduling and proposed to execute the security tasks in a server [61].
Such server-based approach is difficult to implement in practical systems and requires additional

porting efforts. In recent work [62] we introduced algorithm to find an allocation of security tasks

for partitioned fixed-priority multicore RTS [63] using the concept of opportunistic execution. All of

the aforementioned work do not consider the control aspects and are designed for implicit-deadline

systems only.

Mixed Criticality Scheduling and Priority/Period Optimization in RTS. The system model considered

in this paper may be viewed as a special case of mixed criticality systems [64] where the system

operates in multiple criticality levels (say HI for real-time and LO for security tasks). However,

unlike Vestal’s mixed criticality task model [27] where WCETs and periods are vectors of values

(see the related survey [64]), we consider a single WCET and period value (e.g., there exists only one
criticality level). In mixed criticality systems LO criticality tasks are abandoned to ensure timely

operation of the HI-criticality tasks [65] that may not be possible in our context. In addition, as we

see in the experiments (Section 4.2.3) generic criticality monotonic priority ordering [26] does not

always result in better monitoring (e.g., less effective). We further note that while there exist a large

body of work in mixed criticality RTS (too many to enumerate here, refer to related surveys [64, 66–

68]), the consideration of real-time security aspects (i.e., joint period/priority selection of security

tasks) distinguish our research from existing literature.

Researchers also develop various priority assignment schemes for RTS (see the related work [69–

72] and the survey [65]). However, existing work (a) focus on assigning priorities of all the tasks, (b)
are not control-aware, (c) do not optimize task periods and (d) are primarily designed for implicit-

deadline systems (i.e., deadline ≤ period). Further, they are also not designed toward security

considerations of legacy systems in mind where real-time task parameters can not be significantly

modified due to real-time/control constraints.
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While not in the context of security in RTS, there exists other work [32, 73] in which the authors

statically assign the periods for multiple independent control tasks considering control delay as a

cost metric. Davare et al. [74] propose to assign task and message periods as well as satisfy end-to-

end latency constraints for distributed automotive systems by leveraging schedulability analysis

within a convex optimization framework. Previous work used a different model/application scenario

(such as controller area networks [75] and/or minimize control delay using utilization-bound tests)

and hence can not be directly retrofitted in our context.

Securing Communication Messages/Channels. There exists recent work [10, 11] where authors

proposed schemes to secure cyber-physical systems from man-in-the-middle attacks, where an

attacker can compromise communication between system sensors and controllers. There has been

some work [8, 9] where authors proposed to add security mechanisms (such as encryption) into RTS

and considered periodic task scheduling where each task requires a security service whose overhead

varies according to the quantifiable level of the service. Unlike ours, all of the aforementioned work

require modification of the existing real-time tasks.

Defense Against Side-Channel Attacks. Bao et al. [76] model the behavior of the attacker and

introduce a scheduling algorithm. Unlike hard real-time systems, authors consider a system with

aperiodic tasks that have soft deadlines. The proposed polynomial complexity algorithm provides

a trade-off between side-channel information leakage and the number of deadline misses for

the real-time tasks. In comparison, we propose to ensure security policies in hard RTS without
violating temporal constraints and schedulability of the real-time (and control) tasks. A state cleanup

mechanism is introduced in literature [38] where the authors modify the fixed priority scheduling

algorithm to mitigate information leakage through shared resources (e.g., caches). However, this
leakage prevention comes at a cost of reduced schedulability. In comparison, we propose to ensure

security policies without violating temporal constraints and schedulability of the real-time control

tasks.

Randomization and Architectural Frameworks. Researchers also proposed schedule obfuscation

methods [77] to minimize the predictability of deterministic RTS scheduler by randomizing the

task schedule while providing the necessary real-time guarantees. Unlike our scheme that works

at the scheduler level, there exist architectural frameworks [13, 14, 24, 25, 78–81] that can protect

RTS against security vulnerabilities. We highlight that all the aforementioned work requires

modification to the scheduler or real-time task parameters. It is not inconceivable that those

architectural frameworks and randomization protocols can the employed on top of our proposed

scheme to improve security posture in future RTS.

6 DISCUSSION
In this work, we did not design Contego-C towards any specific security mechanisms and allow

designers to integrate any given technique based on application requirements. Depending on the

actual operation of the security tasks a particular (class of) attack may or may not be detectable.

For instance Contego-C may not detect a zero-day exploit for a given set of security tasks.

There exist cases when some of the security tasks may need to be executed without preemption.
For instance, let us consider a security task that scans the process table and has been preempted

in the middle of its operation. An adversary may corrupt the process table entry that has already

been scanned before the next scheduling point of the security task. When the security tasks are

rescheduled, it will start scanning from its last known state and may not be able to detect the

changes in a timely manner. When security tasks need to perform a special atomic operation, the

priority of the task can be increased to a priority that is strictly higher than all of the real-time tasks.
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It is worth mentioning that, the cost of atomicity (by means of priority inversion) will compromise

the timing constraints (and also control performance) of some (or all) of the real-time tasks.

While Contego-C abstracts security tasks (and underlying monitoring events) and works in a

proactive manner, designers may want to integrate monitoring mechanisms that react, based on

anomalous behavior. For instance, let at time 𝑡 , 𝑗-th job of task 𝜏𝑠 (e.g., 𝜏
𝑗
𝑠 ) performs action a0 (e.g.,

runtime of real-time tasks). Because of intrusions (or perhaps due to other system artifacts) in

time [𝑡, 𝑡 +𝑇𝑠 ] (𝑇𝑠 is the period of 𝜏𝑠 ), job 𝜏
𝑗+1
𝑠 finds that a0 is not behaving as expected. Therefore

𝜏
𝑗+1
𝑠 may perform both actions, a0 and a1 (say that checks the list of system calls, to see if any

undesired calls are executed). One way to support such a feature is to consider the dependency (i.e.,
a1 depends on a0 in this case) between security checks (e.g., sub-tasks). We intend to extend our

framework considering dependencies between security tasks.

7 CONCLUSION
Any successful security breach in cyber-physical systems with real-time requirements can have

catastrophic effects. Threats to safety-critical systems are growing and there is a need to design

security solutions that can foil such attacks. In this paper, we introduce Contego-C, a framework

to integrate security into legacy real-time control systems. We demonstrate the efficacy of such

integration mechanisms in a practical cyber-physical system and analyze the design trade-offs,

both from a security and real-time perspective. We believe Contego-C will provide valuable hints

to the engineers on how to enhance security into such safety-critical systems.
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