Indistinguishability Prevents Scheduler Side Channels in Real-Time Systems

Chien-Ying Chen*
cchen140@illinois.edu
University of Illinois at Urbana-Champaign
Illinois, USA

Debopam Sanyal
dsanyal2@illinois.edu
University of Illinois at Urbana-Champaign
Illinois, USA

Sibin Mohan*
sibin.mohan@oregonstate.edu
Oregon State University
Oregon, USA

ABSTRACT
Scheduler side-channels can leak critical information in real-time systems, thus posing serious threats to many safety-critical applications. The main culprit is the inherent determinism in the runtime timing behavior of such systems, e.g., the (expected) periodic behavior of critical tasks. In this paper, we introduce the notion of “scheduler indistinguishability”, inspired by work in differential privacy, that introduces diversity into the schedules of such systems while offering analyzable security guarantees. We achieve this by adding a sufficiently large (controlled) noise to the task schedules in order to break their deterministic execution patterns. An “ε-Scheduler” then implements schedule indistinguishability in real-time Linux. We evaluate our system using two real applications: (a) an autonomous rover running on a real hardware platform (Raspberry Pi) and (b) a video streaming application that sends data across large geographic distances. Our results show that the ε-Scheduler offers better protection against scheduler side-channel attacks in real-time systems while still maintaining good performance and quality-of-service (QoS) requirements.

CCS CONCEPTS
• Security and privacy → Operating systems security.

KEYWORDS
Scheduler Side-Channels, Real-Time Systems, Indistinguishability

1 INTRODUCTION
Real-time systems (RTS) have existed for decades in numerous forms, such as avionics systems, nuclear power plants, automobiles, space vehicles, medical devices, power generation and distribution systems as well as industrial robots. Today, however, with the advent of new domains such as autonomous cars, drones, the Internet-of-Things (IoT), and remote monitoring and control, RTS have moved front and center in modern society. Most such systems have safety-critical properties, i.e., any problems at run-time could result in significant harm to humans, the system, or even the environment. Imagine a situation in which your car’s airbag, a real-time system with stringent timing constraints, fails to deploy in time; such a failure can have disastrous results. Despite their importance, security has rarely received adequate attention in the design of real-time cyber-physical systems (CPS). There are many reasons for the lack of robust security: the use of custom hardware/software/protocols, a lack of computing power and memory, and even the notion that such systems lack inherent value to adversaries have limited the development of security mechanisms for them. Since many RTS now use commodity-off-the-shelf (COTS) components and are often connected to each other or even the Internet, they expose additional attack surfaces. In fact, over the past decade, there has been a significant uptick in attacks against cyber-physical systems with real-time properties (e.g., [11, 15, 35, 47, 50, 52, 54, 62]).

RTS have stringent timing requirements for ensuring their correct operation. For instance, a typical window for airbag deployment, after a collision is detected, is around 50–60 ms [31] (less than the time it takes to blink!). Such requirements, often driven by the physical constraints on the system1 require that systems be deterministic at run-time. Hence, designers take great care to ensure that (a) their constituent software tasks execute in an expected manner [39], e.g., to exhibit periodic behavior as shown in Figure 2; (b) interrupts are carefully managed [64]; (c) memory management is deterministic [37]; and (d) running time, on specific processor platforms, is analyzed very carefully at compile/run time (e.g., [9, 12, 26, 60]). However, timing and design constraints further inhibit the addition of security solutions to RTS.

In fact, the very determinism that is an inherent characteristic of RTS can be used against them as an attack surface, say, via timing-based side channels. Figure 7(a) shows the discrete Fourier transform (DFT) of a real-time system. The graph shows that the deterministic behavior, coupled with the periodic design of RTS, results in a clear demarcation of frequencies (and hence timing behaviors) of critical real-time tasks. This property — that RTS have deterministic behavior — has been used to leak critical information using side channels such as scheduling behavior [14, 53], power consumption traces [33], electromagnetic (EM) emanations [3] and

1E.g., if a physical component must be actuated at a certain frequency, then some software tasks must also match the rate.
temperature [5]. In particular, ScheduLeak [14], demonstrated (a) how to leak timing information from real-time schedules and (b) how an adversary can use it to compromise autonomous CPS (i.e., take control of them, or cause them to crash).

Intuitively, one way to reduce determinism (and hence, potentially, increase indistinguishability) in systems is by adding noise to system components, for instance, to the schedule. Figures 7(c) and 7(d) show the result of adding Laplacian noise to the system in Figure 7(a). It thereby becomes much more difficult to identify the frequencies of certain tasks because no peaks stand out among the amplitudes. Adding noise to reduce the identification of an individual in a database has been explored in the area of differential privacy [18, 19]. The concept of ϵ-differential privacy is used to measure the confidence with which an individual can be identified in the context of statistical queries in a database. The privacy protection is then quantifiable based on the foundations of mechanisms used to increase the randomness, e.g., drawing noise to be added to the output from, say, the Laplace distributions. Hence, we propose similar ideas to protect RTS by increasing the indistinguishability of system behaviors, e.g., the schedule. Hence, at a high level, we propose that:

Systems with predictable behaviors are highly susceptible to side-channel attacks; we can protect them by reducing the ability to discern deterministic properties.

To that end, we introduce the notion of “ϵ-indistinguishability” (Section 4) to measure the probability of information leakage by observation of system behaviors such as schedules and other timing information.

We introduce indistinguishability and noise models in the resource management algorithms and, in particular, schedulers in real-time CPS. Those components form the core of any RTS and control the precise timing and scheduling behaviors of tasks and resources. Hence, they are the ideal vehicle for (i) introducing noise into the system, and (ii) measuring the probability of information leakage. We also develop a class of “ϵ-schedulers” that incorporate the notion of ϵ-indistinguishability (Section 4). Figure 1 shows an overview of the concepts in this paper using a real world attack from literature.

While some work (e.g., [4, 36, 61]) has proposed the use of ad hoc randomization methods in real-time schedulers, their effect is severely restricted since they must adhere to all of the timing constraints in RTS; for instance, these solutions are not allowed to miss even a single deadline. In addition, they do not work well in heavily loaded (i.e., high utilization) systems. This, in conjunction with their ad hoc nature, also limits the calculation of any formal security guarantees w.r.t. the degree of protection offered. In contrast, our ϵ-schedulers, (a) can protect a wider class of RTS, since we propose a modified system model (Section 5.1) that allows for some deadlines to be missed, (b) can provide formal guarantees (Section 4.2) built on the body of work in differential privacy and (c) works on all types of systems, including heavily loaded ones.

The ϵ-Scheduler is implemented on Linux, on both: a hardware platform (Raspberry Pi) running real-time Linux as well as a simulating platform. We evaluate our work using two real applications (an autonomous rover and a video streaming application). We further evaluate the ϵ-Scheduler using simulations to explore the design space as well as potential limitations of our system. The results demonstrate that ϵ-Scheduler is able to not only offer a higher degree of protection (as compared to the state-of-the-art, see Section 8.2), but also do so with actual guarantees while still maintaining a high degree of performance and quality-of-service (QoS). In summary, the main contributions of this paper are:

1. the notion of schedule indistinguishability that captures the difficulty of identifying information about individual tasks in a task schedule [Section 3.3].
2. an ϵ-Scheduler that implements the schedule indistinguishability concepts based on bounded Laplace distributions [Section 4 and 5].
3. Implementation on a real hardware platform running real-time Linux that is open-sourced [Section 6].

Note: Our aim is to modify system states to deter side-channel attacks and not the leakage of private data, the latter being the typical use case for differential privacy.

2 BACKGROUND AND RELATED WORK

2.1 Real-Time Systems and Scheduler Side-Channels

Real-Time Systems. Time-critical systems such as self-driving cars, medicine/vaccine delivery drones, space rovers (e.g., NASA’s...
Opportunity and Spirit), industrial robots, autonomous tractors and unmanned aerial vehicles (UAV), etc., play a vital role in shaping today’s technological evolution from everyday living to space exploration. In such systems, tasks delivering critical functionality rely on an operating system (typically an operating system that supports a real-time scheduling policy) to fulfill their timing requirements (e.g., the task must complete within a predefined time limit). Oftentimes, these tasks (e.g., system heartbeat keepers, PID control processes, sensor data collectors, motor actuators, etc.) are designed to execute in a periodic fashion to guarantee responsiveness. Such real-time tasks are usually associated with a set of predefined timing constraints such as (a) minimum inter-arrival times (i.e., periods), (b) deadlines and (c) worst-case execution times (WCET). They are scheduled using well-known real-time scheduling algorithms e.g., fixed-priority preemptive scheduling, earliest deadline first scheduling [39]. These real-time constraints help system designers ensure that all safety guarantees are met (e.g., no real-time tasks will miss their deadlines). As a result, the system schedule becomes deterministic and highly predictable.

Scheduler Side-Channels. The aforementioned determinism and predictability, though favorable for the system safety, is a double-edged sword – they create side-channels in RTS. There has been an increasing focus (e.g., [22, 23, 34, 53, 55, 56, 58, 63]) on studying and demonstrating the existence of side-channels and covert-channels (as consequences of the determinism) in RTS. In this paper, we are particularly interested in the side-channels that leak system timing behavior via task schedules. In the RTS domain, Chen et al. [14] first introduced the scheduler side-channels using the ScheduLeak algorithms. They extract execution behavior of critical real-time tasks from an observed task schedule at run-time. Liu et al. [42] used the same attack surface (i.e., the task schedule) and showed that precise timing values of critical real-time tasks can be uncovered using frequency spectrum analysis (e.g., Discrete Fourier Transform, DFT, analysis) as shown in Figure 7. Such timing information, while seemingly subtle, is a crucial stepping stone to launching many attacks against RTS. Consequently, additional side-channels such as power consumption traces [33], schedule preemptions [14, 53], electromagnetic (EM) emanations [3] and temperature [5] have been demonstrated in RTS. Chen et al. [14] have also shown how such information leakage can be used to launch more deliberating attacks, e.g., taking control of autonomous systems by precisely injecting commands to override the system’s periodic PWM updates.

Schedule Obfuscation. Yoon et al. [61] attempted to tackle the scheduler side-channels by introducing a randomized scheduling algorithm that obfuscates the task schedules in fixed-priority preemptive RTS. This idea has been extended to multi-core environments [4]. Similarly, Krüger et al. [36] developed a combined online/offline randomization scheme to reduce determinisms for time-triggered systems. Nasri et al. [48] conducted a comprehensive study on the schedule randomization approach and argued that such techniques can actually expose the fixed-priority preemptive RTS to more risks. Burrow et al. [10] explore several moving-target defenses (randomization-based) against different types of attacks in the context of RTS (including soft RTS). While this existing work is centered on the problem of scheduler side-channels, they do not provide analytical guarantees for the protection against such attacks. Additionally, the work targets highly constrained real-time systems and hence their effectiveness is often limited. In contrast, we focus on a more realistic RTS model that has flexible and more tolerable timing requirements. This enables us to explore a more aggressive defense strategy to achieve higher (and analyzable) protection against the threats imposed by scheduler side-channels.

2.2 Differential Privacy and Randomized Mechanisms

Differential Privacy. Differential privacy, along with the theorems and algorithms that build the foundation for protecting data privacy, was originally introduced [18, 19] in the context of statistical queries on databases. It can be seen that differential privacy is used in many subjects addressing the issue of data privacy [13, 18]. There is also a growing trend to extend such concepts to the systems domain [17, 30, 59] to protect data privacy distributed among a group of devices. While in this paper we focus on the system security rather than data privacy, the high-level goal is somewhat similar to differential privacy and hence relevant techniques may be adopted.

In our context, we define the notion of task/job indistinguishability that defines the probability of distinguishing the execution states of one task/job from another in task schedules. Roughly speaking, a low indistinguishability enables an adversary to identify a task’s execution from an observed schedule with a high confidence and hence the system is prone to compromises via scheduler side-channels. To address such a problem, we propose an ε-Scheduler that offers “ε-indistinguishability” at a job level and/or a task level, subject to system constraints as well as the system designer’s security goal. To the best of our knowledge this paper is the first work that adopts the foundation of differential privacy in the design of schedulers and especially to address the security issues in RTS.

Laplace Mechanism. There exist many types of distributions that are used for addressing information leakage issues (e.g., Uniform distribution [51], Gaussian distribution [28, 41] and Laplace distribution [19, 19,]). The Uniform distribution has been used in the KeyDrown [51] work to prevent information leakage via keystrokes. Their work aims to uniformly distribute keystroke interrupts by injecting fake keystrokes (with no RT requirements). In our context, while using the Uniform distribution would spread the inter-arrival times more evenly (i.e., better security), it would cause more deadline misses and a serious degradation of the RT performance. The Laplace distribution has been used in the classic differential privacy problems for generating random noise to achieve desired privacy protections [19]. Conventionally, the Laplace distribution has a probability density function defined as Lap(x | μ, b) = \frac{1}{2b} \exp(-\frac{|x-μ|}{b}). In this paper, we use the Laplace distribution to generate randomized inter-arrival times for each job at run-time. In contrast with the Uniform distribution, the Laplace distribution, while statistically vulnerable over time, can generate an average task period that’s close to the designer’s desired value thus closely matching required RT guarantees. Furthermore, using the Laplace distribution allows us to reuse existing mathematical and

2A task in typical real-time systems corresponds to a process/thread in generic operating systems. In this paper, we will use “task” and “process” interchangeably.
algorithms components with the theoretical foundations from the
differential privacy domain.

3 SYSTEM AND ADVERSARY MODELS

3.1 Preliminaries

The sets of natural numbers and real numbers are denoted by \(\mathbb{N} \) and \(\mathbb{R} \). For a given \(n \in \mathbb{N} \), the set \([n]\) represents \(\{1, 2, ..., n\} \). We denote the Laplace distribution with location \(\mu \) and scale \(b \) by \(\text{Lap}(\mu, b) \) and we write \(\text{Lap}(b) \) when \(\mu = 0 \). For a random variable \(x \), drawing values from a Laplace distribution is denoted by \(x \sim \text{Lap}(\cdot) \). As conventionally used, we sometimes abuse notation and denote a random variable \(x \sim \text{Lap}(\cdot) \) simply by \(\text{Lap}(\cdot) \).

We consider a discrete time model [32]. In our context, we mainly focus on the issue that is concerned with the timing in a single node real-time system. We assume that a unit of time equals a timer tick governed by the operating system and the corresponding tick count is an integer. That is, all system and real-time task parameters are multiples of a time tick. We denote an interval starting from time point \(a \) and ending at time point \(b \) that has a length of \(b - a \) by \([a, b]\) or \([a, b)\).

3.2 Real-Time System Model

In this paper, we consider a single processor, preemptive real-time system in which some deadline misses are tolerable [16, 43]. Such systems are very common, e.g., the system contains a set of \(N \) real-time tasks \(\Gamma = \{\tau_i \mid i \in [N]\} \), scheduled by a dynamic-priority scheduler (e.g., Earliest Deadline First (EDF), scheduler [39]). We assume the real-time tasks are independent (i.e., no dependencies between tasks). A real-time task can be a periodic task (with a fixed period) or a flexible task (that has flexible period choices within a predefined range) [44]. We model a periodic task \(\tau_i \) by a tuple \((TI_i, DI_i, C_i, \eta_i)\) where \(TI_i = \{T_{i,k} \mid k \in \mathbb{N}\} \) is a set of admissible periods, \(DI_i = \{D_{i,k} \mid k \in \mathbb{N}\} \) is a set of implicit, relative deadlines (i.e., \(D_{i,k} = T_{i,k} \forall k \in \mathbb{N} \)), \(C_i \) is the worst-case execution time (WCET) and \(\eta_i \) is a task inter-arrival time function as defined below (a glossary is provided in Appendix Table 4 for reference). It can be easily seen that a periodic task is then a flexible task where the “choice of periods” is limited to a single value. That is, \(T_{i} = \{T_{i,1}\} \) when \(\tau_i \) is a periodic task and we sometimes use \(T_{i} \) to denote such a fixed period for simplicity. A task’s execution instance is aborted upon missing its current deadline and it does not impact the release of the next execution instance.

To formulate the problem better, let us assume that a task’s execution behavior is modeled by a task inter-arrival time function where each task has a dedicated function, as illustrated in Figure 2.

Definition 3.1. (Task Inter-Arrival Time Function.) For a task \(\tau_i \), the inter-arrival time function is defined as

\[
\eta_i : \mathbb{N} \to T_{i}
\]

(1)

where \(\eta_i(j) \) is the task’s inter-arrival time at the \(j^{th} \) instance. The resulting inter-arrival time is one of the values in the task’s inter-arrival time set, \(\eta_i(j) \in \Gamma_i \).

Note that a strict periodic task (i.e., \(T_i = \{T_{i,1}\} \)) always gets a fixed output from its inter-arrival time function, \(\eta_i(j) = T_{i,1}, \forall j \in \mathbb{N} \).

Then, based on the above function, the system’s timing behavior w.r.t. the task deadlines and inter-arrival times can be modeled by \(\eta_i, \forall \tau_i \in \Gamma \). That is, when the \(j^{th} \) instance of task \(\tau_i \) arrives, the scheduler computes its period from \(\eta_i(j) \) and configures its deadline as well as the next arrival time accordingly.

The system can also contain other sporadic and aperiodic tasks. Yet, these types of tasks do not naturally demonstrate periodicity by design and thus are not of interest in our context. For this reason, we intentionally exclude these types of tasks in our task model to instead focus on the periodic components. It’s worth nothing that our model in fact subsumes sporadic tasks (that have a fixed upper-bound on the inter-arrival times between two instances). In practice, to analyze sporadic tasks, one must account for their worst-case behavior, i.e., when they behave like periodic tasks. Hence, if the system has sporadic tasks, we can support them.

3.3 Adversary Model

We are mainly concerned about scheduler side channels that are exposed by the deterministic nature of RTS as introduced in Section 2. We assume that an adversary observes the system schedule via some existing side channels [3, 5, 14, 33, 53]. We further assume that the adversary does not have access to the scheduler. Without this assumption, the adversary can undermine the scheduler or directly obtain the schedule information without using the side channels. Otherwise, we don’t place any restrictions on where the adversary might exploit such side channels. As demonstrated by our evaluation on real applications (Section 7), the attackers can be resident in the system or at the network interface when carrying out such attacks. The true reason for the information leakage is due to the predictability in schedulers and that is the vulnerability we focus on.

Note that some existing attacks have demonstrated that precise timing information of target tasks (e.g., task phases, task arrival times) can be deduced from the deterministic real-time schedules at runtime. Such information can then be exploited to recreate a targeted task’s execution state and then launch further, more critical, attacks on the system with higher precision [14, 42]. For instance, in a cache timing side-channel attack in which the attacker attempts to gauge a task’s memory usage, knowing when the target task may start can significantly aid in differentiating valid data from noisy data. As demonstrated in ScheduLeak [14], an attacker can place precise prime and probe operations before and after a target task and successfully learn its execution behavior. These types of attacks rely on the fact that periodicity exists in the real-time tasks being targeted.

![Regular Task Inter-Arrival Time Function: \(\eta \rightarrow T \)](image-url)
4 SCHEDULE INDISTINGUISHABILITY

In this section we introduce the components (inter-arrival time sensitivity and randomized mechanism) that achieve notions of the job/task-level indistinguishability. These are fundamental to developing the ϵ-Scheduler that will be introduced in Section 5.

4.1 Randomizing Inter-Arrival Times

Let’s consider a task τ_i and its inter-arrival time function η_i. The function produces consistent inter-arrival times. To break this predictable behavior, we intend to randomize each inter-arrival time. To this end, we propose an inter-arrival time randomized mechanism, denoted by $\mathcal{R}(\cdot)$, that is attached to the scheduler to add random noise. The inter-arrival time randomized mechanism is defined as:

$$\mathcal{R}(\tau_i, j) = \lceil \eta_i(j) + \gamma \rceil$$

where $\tau_i \in \Gamma, j \in \mathbb{N}$ represent the j^{th} inter-arrival time of the task τ_i. Y is a random noise value drawn from some distribution centered at 0. Note that the noise Y is presented separately for the purpose of illustration. Such a representation is the same as drawing a random value from some distribution centered at $\eta_i(j)$ — which is what the ϵ-Scheduler is eventually based on. The outcome is rounded to the nearest integer and taken as the randomized inter-arrival time.

The added random noise Y creates inconsistent inter-arrival times for a task and breaks a task’s periodicity. Yet, without specifying a noise distribution, it may be insufficient to obscure the task’s behavior, for example, when the noise’s variance is insignificant. Before examining the noise addition mechanism, we first formally define indistinguishability in our context.

4.2 Inter-Arrival Time Indistinguishability

As introduced in Section 3.3, we are concerned with job/task-level indistinguishabilities. To analyze such indistinguishabilities with the mechanism defined in Equation 2, we use a concept that’s similar to the notion of differential privacy [18, 19].

Definition 4.1. (\(\epsilon\)-Indistinguishability Inter-Arrival Time Randomized Mechanism.) An inter-arrival time randomized mechanism $\mathcal{R}(\cdot)$ is ϵ-indistinguishable if

$$\Pr[\mathcal{R}(\tau, j) \in S] \leq e^\epsilon \Pr[\mathcal{R}(\tau', j') \in S]$$

for all $\tau, \tau' \in \Gamma$, $j, j' \in \mathbb{N}$ and $S \subseteq \text{Range}(\mathcal{R})$.

That is, $\mathcal{R}(\cdot)$ enables inter-arrival time indistinguishability for a single job instance if Equation 3 is satisfied.

Note that Definition 4.1 is general enough to consider both the job-level and task-level indistinguishabilities. When $\tau \neq \tau'$, task-level indistinguishability is implied; when $\tau = \tau'$, job-level indistinguishability is implied. It is worth noting that we can maintain an independent ϵ_i value for each task τ_i and each of them achieves their own ϵ_i-indistinguishability. The indistinguishability for the whole task set is determined by the worst of the ϵ_i values [46] (that corresponds to the task-level indistinguishability).

4.3 Inter-Arrival Time Sensitivity and Noise

To determine the degree of noise to be added to make two inter-arrival times indistinguishable, we define “inter-arrival time sensitivity”. Intuitively, the value of the inter-arrival time sensitivity is...
assigned by the largest possible difference between two inter-arrival times. However, the true assignment depends on the protection goal (i.e., whether to achieve the job-level indistinguishability or the task-level indistinguishability), as explained below.

Definition 4.2. (Inter-Arrival Time Sensitivity.) This reflects the sensitivity of the function $\eta_i(\cdot)$ defined, depending on the desired indistinguishability goal, as:

(i) Job-level indistinguishability: the inter-arrival time sensitivity for the job-level indistinguishability, denoted by $\Delta \eta_j$, for a given task j, is defined as

$$\Delta \eta_j = \max_{i,j \in \mathbb{N}, j \neq i} |\eta_i(j) - \eta_i(j')|$$

that is task-specific.

(ii) Task-level indistinguishability: the inter-arrival time sensitivity, denoted by $\Delta \eta_t$, is defined as:

$$\Delta \eta_t = \max_{r,r' \in \Gamma, j \in \mathbb{N}} |\eta_t(j) - \eta_t(j')|$$

that is task-set-dependent.

For simplicity, we use $\Delta \eta$ to represent either of the sensitivities when the context is clear. Then, the use of the Laplace distribution $\text{Lap}(\eta_j, \Delta \eta_j)$ for generating the randomized inter-arrival times preserves the ϵ-indistinguishability from Definition 4.1 for a single job instance. This property can be easily proved by expanding Equation 3 with the probability density function of the $\text{Lap}(\eta_j, \Delta \eta_j)$ distribution [19, Theorem 3.6]. Therefore, the job-level indistinguishability is achieved when $\Delta \eta = \Delta \eta_j$ and the task-level indistinguishability can be achieved when $\Delta \eta = \Delta \eta_t$.

4.4 ϵ-Indistinguishability in J Instances

The randomized mechanism $\mathcal{R}(\cdot)$ with Laplace noise $\text{Lap}(\Delta \eta_j)$ offers ϵ-indistinguishability for a single instance. However, an attacker typically observes a longer sequence from the schedule. Therefore, we are more interested in the conditions for achieving ϵ-indistinguishability for a certain duration (as opposed to a single point in time). As a noise draw occurs for every job instance, based on the theorem of Sequential Composition [46, Theorem 3], the privacy degradation is cumulative as the number of draws increases. A smart attacker may be able to sort out the distribution by collecting sufficient samples. Therefore, it is crucial to understand the condition for providing the required level of indistinguishability for a certain duration. To this end, we measure the duration in the number of job instances (that corresponds to the number of noise draws for the corresponding inter-arrival times). Then we use the following theorem to determine the scale of the noise for preserving ϵ-indistinguishability up to J job instances.

Theorem 4.3. The Laplace randomized mechanism $\mathcal{R}(\cdot)$ with the scale $\frac{2\Delta \eta_j}{\epsilon_i}$ is ϵ-indistinguishable up to J job instances.

This theorem can be proved by expanding Equation 3 with J invocations of $\mathcal{R}(\cdot)$. The proof is given in Appendix A for reference. The assignment of J for a given task set is discussed in Section 5.3.

4.5 Bounded Laplace Randomized Mechanism

While the introduced Laplace randomized mechanism offers ϵ-indistinguishability, the unbounded output domain for the randomized inter-arrival times makes it infeasible to adopt in real systems. To address this problem, we introduce the "bounded Laplace randomized mechanism", i.e., the randomized inter-arrival time drawn from a Laplace distribution is bounded by a given range. There are typically two solutions for bounding the value drawn from a distribution: *(i)* truncation and *(ii)* bounding [40]. Truncation projects values outside the domain to the closest value within the domain. Bounding, used in this paper, is to continue sampling independently from the distribution until a value within the specified range is returned. Let’s denote such a bounded Laplace distribution by $\text{L}(\mu, b, \tau^+, \tau^-)$ of which the drawn value is in the range $[\tau^+, \tau^-]$.

Using such a bounded Laplace distribution allows a mechanism to return randomized inter-arrival times within a range that’s feasible for the given constraints. However, it is known that the bounded Laplace distribution cannot preserve the same level of probabilistic guarantee (i.e., the ϵ-indistinguishability in our context) with the same scale parameter as a pure Laplace distribution and a doubling of the noise variance is required to compensate for the loss [29, 40]. Based on this condition and Theorem 4.3, we define the bounded inter-arrival time Laplace randomized mechanism as follows:

Definition 4.4. (Bounded Inter-Arrival Time Laplace Randomized Mechanism.) Let $[\tau^+, \tau^-]$ be the feasible inter-arrival time range for a given task j, the bounded inter-arrival time Laplace randomized mechanism is defined as

$$\mathcal{R}(\tau_j, j) = \tilde{L}(\eta_j(j), \frac{2\Delta \eta_j}{\epsilon_i}, \frac{T^+ - T^-}{2})$$

where $\tilde{L}(\cdot)$ is the bounded Laplace distribution of which the drawn values are bounded in the range $[T^+, T^-]$ based on a pure Laplace distribution $\text{Lap}(\eta_j(j), \frac{2\Delta \eta_j}{\epsilon_i})$.

The variables $T^\pm, \Delta \eta_j, \eta_j$, and ϵ_i are extended task parameters of τ_j to be formalized in Section 5.1. Following Theorem 4.3, the bounded inter-arrival time Laplace randomized mechanism $\mathcal{R}(\tau_j, j)$ is ϵ-indistinguishable up to J job instances.

5 ϵ-SCHEDULER

With the components described in Section 4, we now introduce our proposed real-time scheduler, the ϵ-Scheduler. In each task’s arrival (the beginning of a new instance), the ϵ-Scheduler uses $\mathcal{R}(\cdot)$ for generating the task’s next arrival time (i.e., randomizing inter-arrival times). In this section we first introduce an extended RTS task model that supports such an ϵ-Scheduler, followed by discussion for how the extended task parameters can be determined for a given system to achieve job/task-level indistinguishability.
5.1 Extended Task Model

The basic task model presented in Section 3.2 is extended to include parameters necessary for an ϵ-Scheduler to achieve the desired indistinguishability. In ϵ-Scheduler, a task t_i is characterized by $(T_i, D_i, C_i, \eta_i, T_i^\perp, T_i^\top, \Delta \eta_i, J_i, \epsilon_i)$ where $[T_i^\perp, T_i^\top]$ is a range of tolerable periods, $\Delta \eta_i \geq 0$ is the inter-arrival time sensitivity parameter, J_i is the task’s effective protection duration, and $\epsilon_i > 0$ is the indistinguishability scale parameter. At each new job arrival, the ϵ-Scheduler invokes $\tilde{R}(t_i, j) = \tilde{L}(\eta_i(j), \frac{2\Delta \eta_i}{\epsilon_i}, T_i^\top, T_i^\perp)$ to determine the next job’s randomized arrival time point.

In this extended task model, the parameters $T_i, D_i, C_i, \eta_i, T_i^\perp$ and T_i^\top are obtained from the system dynamics. The additional parameters $\Delta \eta_i, J_i$ and ϵ_i are to be given by the system designer. As the degree of noise added to a task’s inter-arrival time relies on the extended parameters, it is crucial to assign proper values based on the desired indistinguishability goal. We now discuss the considerations for determining these values.

5.2 Determining Inter-Arrival Time Sensitivity

$\Delta \eta_i$ represents the degree of random noise needed to make two inter-arrival times indistinguishable and can be determined based on Definition 4.2. The value of $\Delta \eta_i$ should be fixed for an execution instance once assigned. In the case that we intend to achieve job-level indistinguishability is to achieve for a given task t_i, the value of $\Delta \eta_i$ is determined solely by the task’s set of periods, T_i. In this case, each task’s sensitivity is independent of each other. On the other hand, task-level indistinguishability requires that the sensitivity reflects all tasks in the system. Hence, the sensitivity for the task-level indistinguishability is task set specific and all tasks are assigned with the same sensitivity value. It is straightforward to see that task-level sensitivity will be greater than job-level sensitivity of any task (and hence larger noise will be added). It is up the system designer to decide, taking potential performance degradation into account, which type of indistinguishability should be achieved.

5.3 Calculating Protection Duration

Using the bounded Laplace mechanism, $\tilde{R}(\cdot)$, an ϵ-Scheduler is able to preserve ϵ_i-indistinguishability up to J_i job instances for a given task. As pointed out in Section 4.4, the more noise samples collected, the more likely an attacker is to reconstruct the distribution and reveal a task’s behavior. Therefore, ϵ_i-indistinguishability can’t be guaranteed for an infinite time. For this reason, the ϵ-Scheduler should be used with other security measures for comprehensive protection against scheduler side-channels. There exist some security schemes that work well together in this context. For instance, one can perform periodic security checks to detect possible intrusions and anomalies [27]. With such a scheme, the distance between two security checks can be used as a reference to compute the protection duration parameter J_i. Another feasible scheme is the restart-based mechanism [1, 2] that enforces a reboot once a while. In such a case, the maximum time to reset the system can be used to compute J_i. In both schemes, the adversary’s attack progress is disrupted once the corresponding security measure kicks in and the ϵ-Scheduler offers further security guarantees from compromise via scheduler side-channels. It is worth noting that not all attacks can be caught by intrusion detection alone as system security is complex by its very nature. For instance, the network attack demonstrated in Section 7 will not be detected by IDS on a system and needs additional network security that in itself isn’t guaranteed to work. Other side-channel attacks (e.g., power consumption, EM emanations) will also not be detected by a regular IDS since attackers do not actually “intrude” into a system. Whereas using the ϵ-Schedulers, we can increase the complexity for would-be attackers and foil all of these types of attacks. In such a scenario, our model can act as a foundation for RTS designers to evaluate risks and needs to protect against scheduler side-channels.

Note that J_i is defined in the number of job instances as each job arrival draws a random value from the distribution. When the job-level indistinguishability is considered, each task’s J_i is computed independently so the value can be different across tasks. Let λ be the protection duration in time, then

$$J_i = \left\lfloor \frac{\lambda}{\min(T_i)} \right\rfloor \quad (7) \quad J_i = \max\left(\frac{\lambda}{\min(T_i)}, |\tau_j \in \Gamma| \right) \quad (8)$$

Equation 7 offers ϵ_i-indistinguishability to τ_i within λ time. For task-level indistinguishability, J_i for all tasks must be equal to offer the desired indistinguishability guarantee (subject to ϵ_i) as calculated by Equation 8 where λ is a global protection duration in time.

5.4 Choosing Indistinguishability Parameter

With the noise level ($\Delta \eta_i$) and protection duration (J_i) determined for a given task set, ϵ_i is the major remaining variable that a system designer must specify to secure the desired degree of protection. Ideally, a smaller ϵ_i value provides a better indistinguishability by generating randomized inter-arrival times with larger noise scale. However, a large noise scale may sometimes be impractical for real-time applications. Figure 4(a) shows examples of noise scales (the y-axis, represented by the 95^{th} percentile) with varied ϵ_i values (the x-axis) for a fixed $\Delta \eta_i = 190ms$ and various J_i settings. It suggests that an ϵ_i value above an order of magnitude can be practical to most RTS. Figure 4(b) shows an example of the distributions of the
inter-arrival times for a task that has $T_i = \{33.33\text{ms}, 100\text{ms}\}$ with $\Lambda_{T_i} = 190\text{ms}$, $J_i = 16$ (with assuming $\lambda = 500 \text{ms}$) and $\epsilon_i = 100$. It shows how a task’s inter-arrival times are randomly generated by an e-Scheduler in a typical RTS setting.

Nevertheless, a suitable value for ϵ_i is highly system-dependent. Designers must be aware of system parameters (timings, periods, deadlines, etc.) and dynamics of the RTS. Ultimately, it is up to the system designer to select a value based on the overall security and performance goals. This is analogous to the differential privacy context where designers must be familiar with data and database parameters before applying their mechanisms. Fortunately, a lot of information needed for such “tuning” is already obtained as part of the rigorous engineering effort that’s undertaken during RTS design [16, 43, 60]. For example, each task’s acceptable period range can be determined based on given specifications (e.g., CPU, memory) and application QoS requirements. The minimum range of a task must be greater than or equal to its best-case execution time (a value obtained during the aforementioned design phase). The maximum range shouldn’t be so large that makes the application unusable (based on the desired QoS). We can then leverage simulation techniques to automate the calculation of suitable parameters based on (a) desired protection outcomes and (b) average performance expectations.

Note that all tasks must be assigned an identical ϵ value to achieve task indistinguishability while each task can have an independent ϵ value for job indistinguishability.

6 IMPLEMENTATION IN LINUX

We implemented e-Scheduler in both (a) real-time Linux kernel\(^4\) running on Raspberry Pi and (b) an open-source simulation platform\(^5\) that we developed. The simulation is used for design space exploration (Section 8) and the real-time Linux kernel is used for demonstration with real hardware and applications and also to analyze overheads. In this section we provide the platform information (also summarized in Table 5 in Appendix) and an overview of the implementation in the real-time Linux kernel.

6.1 Platform and Operating System

We used a Raspberry Pi 4 (RPi4) Model B\(^6\) development board as the base platform for our implementation. RPi4 runs a vendor-supported open-source operating system, Raspbian (a variant of Debian Linux). We forked the Raspbian kernel and modified it to implement the proposed e-Scheduler. Since we focus on the single core environment in this paper, the multi-core functionality of RPi4 was deactivated by disabling the CONFIG_SMP flag during the Linux kernel compilation phase. The boot command file was also set with maxcpus = 1 to further ensure the single core usage.

Real-time Environment. The mainline Linux kernel does not provide any hard real-time guarantees even with the custom scheduling policies (e.g., SCHED_FIFO, SCHED_RR, SCHED_DEADLINE). However, the Real-Time Linux (RTL) Collaborative Project\(^7\) maintains a kernel (based on the mainline Linux kernel) for real-time purposes. This patched kernel (known as the PREEMPT_RT) ensures real-time behavior by making the scheduler fully preemptable. In this paper, we use a PREEMPT_RT-patched kernel (4.19.71-rt24+) to enable real-time functionality. To further enable the fully preemptive functionality for the PREEMPT_RT patch, the CONFIG_PREEMPT_RT_FULL flag was enabled during the kernel compilation phase. Furthermore, the variable sched rt runtime us was set to −1 to disable the throttling of the real-time scheduler. This setting allows the real-time tasks to use up the entire 100% CPU utilization if required\(^8\). Also, the active core’s scaling governor was set to performance mode to disable dynamic frequency scaling during the experiments.

Vanilla EDF Scheduler. Since Linux kernel version 3.14, an EDF implementation (i.e., SCHED_DEADLINE) is available in the kernel code base [21]. Therefore, we used this built-in scheduler as the baseline EDF implementation and extended it to implement an e-Scheduler. In Linux the system call sched_setattr() is invoked to configure the scheduling policy for a given process. By design, the EDF scheduler in Linux has the highest priority among all the supported scheduling policies (e.g., SCHED_NORMAL, SCHED_FIFO and SCHED_RR). It’s also worth noting that the Linux kernel maintains a separate run queue for SCHED_DEADLINE (i.e., struct dl_rq). Therefore, it is possible to extend SCHED_DEADLINE while keeping other scheduling policies untouched.

6.2 Implementation of e-Scheduler

We implement the e-Scheduler as a scheduling mode under the existing SCHED_DEADLINE. The mode can be switched by setting a custom kernel parameter /proc/sys/kernel/sched dl mode. The e-Scheduler’s main functionality is implemented in the function replenish dl entity() that is invoked whenever a new job of a real-time task arrives. In this function, the e-Scheduler generates a randomized inter-arrival time based on the Laplace distribution associated with the current task (described below). The generated inter-arrival time is used to compute the deadline for the newly arrived job. This value is also used in the function start d l timer() to schedule the arrival of the next job.

Laplace Distribution. e-Scheduler requires the generation of random numbers based on Laplace distribution for obtaining randomized inter-arrival times. However, the Linux kernel code is self-contained (i.e., it does not depend on the standard or any other C libraries) and thus a random number generator that’s based on Laplace distribution is not natively supported. While it is possible to build such a generator out of the existing random number generation function get random bytes(), the required computations (e.g., logarithm calculations) will be costly. Considering that the task set parameters are fixed at the design stage, the Laplace distributions needed by each task are fixed and known as well. Therefore, rather than building a common Laplace distribution-based random number generator, we may convert each required Laplace distribution’s percent point function (PPF) into an array and store each of them in the kernel. Then, a Laplace distribution-based random number can be drawn by randomly picking (with using get random bytes()) a number from the array that’s associated with the desired Laplace

\(^{4}\)https://github.com/synergys/Epsilon-Scheduler

\(^{5}\)https://github.com/synergys/RTS-Schedule-Simulator

\(^{6}\)https://www.raspberrypi.org/products/raspberry-pi-4-model-b/

\(^{7}\)https://wiki.linuxfoundation.org/realtime/

\(^{8}\)This change in system variable settings was mainly configured for the purpose of experimenting with the ideas of e-Scheduler only. For most real use-cases, users can keep this system variable untouched for more flexibility.
distribution. The details of the aforementioned conversion and the algorithm for the PPF-based Laplace distribution random number generator are presented in Appendix B.

While this method allows us to draw a Laplace distribution-based random number with a cost of a get_random_bytes() call, each distribution requires some memory to store an array converted from the PPF. Yet, as demonstrated by our implementation, an u32 (i.e., unsigned int) array storing 100 PPF points (which takes up to 400 bytes) is sufficient to produce the desired distribution. An example of the histogram for the generated random inter-arrival times drawn by the implemented ϵ-Scheduler in RT Linux for a task with a target period 100ms can be found in Figure 11 in Appendix.

7 EVALUATION ON REAL APPLICATIONS

In this section we evaluate the ϵ-Scheduler with using two diverse, real applications to demonstrate its usability and understand its security and performance impact in a real-world setting. A design space exploration using simulated tasks is presented in Section 8.

7.1 Autonomous Rover System

7.1.1 Experiment Setup. We first conducted a set of experiments on a 1/24 scale rover running an autopilot application, RoverBot\(^3\), on the RP4 platform introduced in Section 6. The autopilot application consists of 7 tasks (i.e., Actuator, RConfig, BatteryMonitor, AHRS, Localizer, Navigator and GroundControl). Each task runs as a process in Linux and can be configured as a real-time or non-real-time task. The system is equipped with an Intel RealSense T265 tracking camera\(^4\) that enables precise indoor localization as well as indoor navigation. With such features, we let the rover steer through a series of predefined way points that form a closed loop and record the resulting trajectory under both (a) Vanilla EDF and (b) ϵ-Scheduler, both with $\epsilon = 10$ and $\epsilon = 10^3$. An additional test that uses a different set of predefined way points and associated results are presented in Appendix C.1 for reference. In each test, we let the rover run three rounds following the ways points. To analyze the performance of the system, we focus on adding noise to the Actuator task that receives control commands and sends PWM updates for driving, steering and throttle (at 100Hz), while keeping other tasks as non-real-time tasks.

7.1.2 Results. The experiment results are shown in Figure 5. In all test cases, the rover always starts at the coordinate (0, 0). As the results suggest, $\epsilon = 10$ demonstrated a larger deviation in the trajectory compared to $\epsilon = 10^3$. The mean task frequency is 65.06Hz with $\epsilon = 10^3$ and 10.22Hz with $\epsilon = 10$. On the other hand, the trajectories show that the rover is still able to hit the target way points in both $\epsilon = 10^3$ and $\epsilon = 10$ cases. In particular, the trajectory of $\epsilon = 10^3$ matches that of Vanilla EDF with small deviations. This shows that the ϵ-Scheduler can be applied to real applications and also meet users’ needs (e.g., better protection or better performance) using the adjustable ϵ parameter.

Table 1 shows the values obtained from the kolmogorov-smirnov (K-S) tests [45] (detailed in Appendix C.2) and the average minimum distance between the paths followed by the rover with the respective schedulers. The very small K-S statistic values and very large corresponding p-values confirm that the rover paths with both ϵ-Schedulers ($\epsilon = 10^3$ and $\epsilon = 10$), closely follow the original way points as Vanilla EDF and that the former two paths closely resemble each other. The last column in the table shows the average minimum distance between a point in the observed path (with ϵ-Scheduler $\epsilon = 10^3$ or $\epsilon = 10$) and a point in the reference path (Vanilla EDF). Firstly, for each point in the observed path, we find a point in the reference path that corresponds to the minimum distance. Then, we simply take the average of all such minimum distances. The very small values of average minimum distances show that the observed paths closely follow the reference path.

Hence, we can conclude from our evaluation above that although running the rover with our ϵ-Scheduler ($\epsilon = 10^3$ or $\epsilon = 10$) causes small deviations from the expected trajectory, the deviations themselves are negligible, making the performance drop relatively insignificant. However, the security improves greatly due to the randomization introduced by our ϵ-Scheduler.

7.2 Video Streaming over the Internet

7.2.1 Experiment Setup. We conducted another set of experiments to test the effectiveness of our ϵ-Scheduler on RTS. We built a video streaming application using Dynamic Adaptive Streaming over HTTP (DASH) as the video streaming standard and flask [24] for our web application. Our goal was to show that the ϵ-Scheduler is useful in negating traffic-based attacks (types of data leakage attacks as presented by Gu et al. [25]\(^5\)) on such video streaming applications without significantly affecting the performance of the application itself. The video stream is hosted by a server and the client is the receiver of the video stream that is transmitted via the application over the internet over a distance of 1800 miles. Our attacker is placed in between the server and the client, so that

\(^3\)[https://github.com/bo-rc/Rover]

\(^4\)[https://www.intelrealsense.com/tracking-camera-t265]

\(^5\)We created the attack from scratch as the authors denied us access to the source code.

<table>
<thead>
<tr>
<th>Way Points</th>
<th>Comparison</th>
<th>K-S</th>
<th>p-val</th>
<th>Min Dist (Meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irregular</td>
<td>$\epsilon = 10^3$, vanilla</td>
<td>0.016512</td>
<td>0.9977</td>
<td>0.006855</td>
</tr>
<tr>
<td></td>
<td>$\epsilon = 10$, vanilla</td>
<td>0.015852</td>
<td>0.9998</td>
<td>0.009288</td>
</tr>
<tr>
<td></td>
<td>$\epsilon = 10^3$, $\epsilon = 10$</td>
<td>0.015854</td>
<td>0.9982</td>
<td>N/A</td>
</tr>
</tbody>
</table>
We consider a total of five streaming scenarios, each scenario being

![Graph](image1.png)

Figure 6: The similarity distance measures for 15 traffic samples with the server running on RPi4. We shaded the region between the maximum and the minimum distances. The mean distances are shown in gray dotted lines as references. Clearly, the similarity distances between the traffic patterns and video 1’s fingerprints are rarely the minimum across the 15 tests with ϵ-Scheduler (2 out of 15 with $\epsilon = 10^3$ and 0 out of 15 with $\epsilon = 10$), while they are the minimum with Vanilla EDF in 13 out of 15 tests. This shows that the random noise added to the traffic patterns under ϵ-Scheduler reduces the effectiveness of the traffic-based video identification attack.

Table 2: FPS Observed by The Client (Video 1)

<table>
<thead>
<tr>
<th>Scheduler</th>
<th>Max</th>
<th>Mean</th>
<th>Min</th>
<th>Std</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vanilla EDF</td>
<td>28.00</td>
<td>29.96</td>
<td>28.00</td>
<td>0.60</td>
<td>0.02</td>
</tr>
<tr>
<td>ϵ-Scheduler ($\epsilon = 10^3$)</td>
<td>28.00</td>
<td>25.87</td>
<td>22.00</td>
<td>1.71</td>
<td>0.07</td>
</tr>
<tr>
<td>ϵ-Scheduler ($\epsilon = 10$)</td>
<td>14.00</td>
<td>9.25</td>
<td>6.00</td>
<td>2.07</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Eavesdropping on the network traffic can be easily carried out. The performance of the application is measured using the frames per second (FPS) of the video. Ideally, the FPS of the video at the client’s end is similar to the FPS of the video sent from the server. It is important to note that the ϵ-Scheduler only randomizes the arrival time of video frames to the client and does not change the content of the video. An attack can be devised on such applications by exploiting some key properties of DASH video streaming. The details of how the attack works are presented in Appendix D.

In this experiment, we set ϵ-Scheduler with $\Delta T = 190ms$, $J = 16$ with the desired protection duration to be $\lambda = 500ms$ for the video streaming task running at 30Hz. Our evaluation verifies whether the video identification attack in the case of the ϵ-Scheduler shows results that are random at best. In our setup, we use five videos with varying content, frame rates and resolutions (see Appendix D). We consider a total of five streaming scenarios, each scenario being the event when only one of the five videos is being streamed via our application, i.e., only video x is being streamed, where $x \in \{1, 2, ..., 5\}$. Eavesdropping is done for 30 seconds with 2 seconds as the segment length and the corresponding traffic patterns are captured using Wireshark. For repeatability, this is done fifteen times for each scheduler (Vanilla EDF, ϵ-Scheduler with $\epsilon = 10$ and $\epsilon = 10^3$), resulting in 45 traffic pattern samples for each scenario.

7.2.2 Experiment Results. For identification purposes, we calculate the distance metric $dist$, which is representative of the similarity between a given traffic pattern and a video fingerprint. Hence, given a traffic pattern and a dataset containing n videos, there are n distances generated ($n = 5$ in our case). The smaller the value of $dist$, the greater the probability for the traffic pattern matching the video fingerprint, which is equivalent to the probability of the corresponding video being streamed during the eavesdropping. In order to compensate for our relatively short eavesdropping time, instead of setting thresholds on distances to identify the target video as done by Gu et al. [25], we simply identify the target video as being the one that had the minimum distance out of the five calculated distances. Figure 6 shows the similarity distances for the traffic samples collected when video 1 was being streamed. The results obtained when the other videos (2,3,4 and 5) were being streamed, closely match that of video 1.

Table 2 shows the FPS statistics observed at the client’s end over a duration of 30 seconds for video 1 in which an FPS data point is computed using the number of frame packets received from the Internet per 0.5 seconds. The FPS of video 1 sent from the server is 30. The CV (Coefficient of Variation) value represents relative variability of the FPS in each scheduler configuration. It reveals that FPS in the case of Vanilla EDF has the smallest variability as there is no randomization while it shows the largest variability in the case of ϵ-Scheduler with $\epsilon = 10$. In the case of ϵ-Scheduler with $\epsilon = 10^3$, it has a reasonably small CV value and slightly decreased mean FPS with a good protection against the eavesdropping attack that’s comparable to $\epsilon = 10$ (see Figure 6). As a result, it shows that a balance between performance (i.e., FPS) and security can be reached by using ϵ-Scheduler with $\epsilon = 10^3$ in this experiment.

8 DESIGN SPACE EXPLORATION

Besides the evaluation with real applications, we also conduct an evaluation with using simulations as well as a real hardware platform (i.e., RPi4). The simulation enables us to explore a larger design space while the hardware platform enables us to understand the true scheduling overheads in a realistic environment.

8.1 Experiment Setup

8.1.1 Simulation. A set of simulated tasks with timing parameters of avionics system [49] (total task utilization 0.64) is used to examine the outcome of the ϵ-Scheduler in the first part of our evaluation. The tasks’ parameters are shown in Table 6 in Appendix. The ϵ-Scheduler is also tested extensively using simulation tasks generated from a mechanism is commonly used in literature [7, 14, 27, 61]. The details for the generation of the 6000 tested task sets are provided in Appendix E.
To explore the best-case protection as well as the impact on the system performance, we configure the extended task parameters to achieve the task-level indistinguishability. The efficacy of job-level indistinguishability is specifically examined against the ScheduleLeak attack [14] (results presented in Section 8.2.3). To achieve the task-level indistinguishability, $\Delta \eta$ is assigned to $200ms - 10ms = 190ms$. f_i^e for each task is calculated using Equation 8 with a protection duration of 500ms (demonstrated to be practical to perform periodic security checks RTS [27]). We consider two ϵ settings 10 and 10^3 that represent values that one may reasonably choose based on the noise range shown in Figure 4. In our experiments, we use a fixed simulation duration (5000ms) so that we are able to compare the experiment results across different task sets.

We also include the vanilla EDF scheduler and a state-of-the-art randomization-based scheduler for comparison. The randomization-based scheduler, labeled as “TaskShuffler EDF”, is an EDF-based scheduler that ports the TaskShuffler’s randomization protocol.

8.1.2 Measuring Scheduling Overheads. To evaluate the scheduling overheads, we conduct experiments on the RPi4 platform running RT Linux. We use the built-in SCHED_DEADLINE scheduler as the Vanilla EDF scheduler and an implementation of TaskShuffler EDF for comparison. The timing overheads for a function is measured using the trace-cmd command. For evaluating power consumption, we use a High Voltage (HV) Power Monitor manufactured by Monsoon¹⁴ that supplies a 5.2V power to the RPi4 board. The power consumption is then monitored in the monitor’s software, PowerTool version 5.0.0.25.

8.2 Experiment Results

8.2.1 Discrete Fourier Transform Analysis. First we try to understand the (deterministic) periodicity in the schedules produced by: (a) Vanilla EDF scheduler, (b) TaskShuffler EDF scheduler and (c) our ϵ-Scheduler (with $\epsilon = 10^3$ and $\epsilon = 10$). Since we are concerned about the periodic components in the task schedules, frequency spectrum analysis tools such as DFT [42] can be useful (the details of measurement for DFT are provided in Appendix F).

We conduct the DFT analysis on the schedules based on the avionics task set (Table 6 in Appendix) and the resulting frequency spectra are shown in Figure 7. As revealed by the peaks displayed in Figure 7(a), the task periods are easily identifiable in the schedule generated by the vanilla EDF scheduler because of its work-conserving nature. It’s worth pointing out that the 100ms (i.e., 10Hz) value does not show up as a peak in the spectrum because the corresponding task has a very small execution time (i.e., 0.002ms). Figure 7(b) shows the spectrum of the same task set scheduled under the TaskShuffler EDF scheduler and the result is similar to the vanilla EDF scheduler except with more base noise. This is due to the high task set utilization (i.e., 0.64 in this case) that provides fewer opportunities for obfuscating the schedule. While the task set may not be exhaustive, it does demonstrate the shortcoming of the TaskShuffler’s randomization protocol – it gets less effective when the system utilization is high. This shortcoming can also be seen in later experiments. On the other hand, Figure 7(c) and (d) show the spectra when scheduled using the ϵ-Scheduler with $\epsilon = 10^3$ and $\epsilon = 10$, respectively. Both settings add significant noise across the entire frequency domain. As a result, no peaks stand out, especially ones that match the task frequencies.

The green lines shown in Figure 7 are the moving peak threshold calculated using the Z-score based peak detection algorithm (see Appendix F for details). From the figures we can see that the threshold is useful for identifying the outstanding peaks while filtering out background noise. The outstanding peaks represent the true periodicity coming out of the schedule and thus are particularly useful for attackers to reconstruct timing information. Intuitively, the more outstanding peaks that are collected, the more precise information the attackers have available to them.

Next we use the aforementioned peak detection algorithm to count the number of outstanding peaks and test with extensive simulations to get a broader understanding of the effectiveness of ϵ-Scheduler in obscuring the task periodicity. The experiment results are presented in Figure 8(a) where each point represents the result of a task set for the corresponding scheduler. As expected, the vanilla EDF scheduler yields systems with stronger periodicity and more peaks that stand out. On the other hand, the TaskShuffler EDF scheduler can effectively obscure the task periodicity for most of the task sets except those with higher utilization. With ϵ-Scheduler, no significant peaks are detected due to the addition of larger overall noise in both $\epsilon = 10^3$ and $\epsilon = 10$ settings. The result also demonstrates that the efficacy of ϵ-Scheduler is independent of the task utilization, in contrast with Vanilla and TaskShuffler.

¹⁴https://www.msoon.com/high-voltage-power-monitor
8.2.2 Average Slot Entropy. Next we analyze the schedules by measuring their average slot entropy. The notion of Schedule Entropy was first introduced to calculate the randomness given to a task schedule by the TaskShuffler scheduling algorithm [51]. They then proposed the Upper-Approximated Schedule Entropy, $H_U(S)$, to empirically estimate the schedule entropy of a given task set. A bound is then derived by Vreman et al. [57] showing the legitimacy of such estimation. As the scale of the entropy depends on the length of the schedule under analysis, in this paper we use Average Slot Entropy [57] that calculates the mean slot entropy based on the upper-approximated schedule entropy.

The results are shown in Figure 8(b). Similar to Figure 8(a), a point represents the average slot entropy of a task set under the corresponding scheduler. The results indicate that ϵ-Scheduler yields higher entropy than the other two schedulers even when the system utilization is high (note that TaskShuffler EDF fails to obfuscate the schedules in these instances). For the ϵ-Scheduler, $\epsilon = 10$ generally performs better than $\epsilon = 10^3$ w.r.t. the entropy as the former has a wider variation range for the noise-enhanced inter-arrival times.

8.2.3 Inference Precision. To understand the effectiveness of our mechanisms against scheduler side-channel attacks, we carry out the ScheduLeak attacks [14] against the simulation tasks. The metric, inference precision [14, Definition 2], denoted by φ, was introduced to evaluate the effectiveness of a side-channel attack w.r.t. the task phase inference. It represents the precision of the inferred phase $\widetilde{\phi}$ compared to the true phase of a target task ϕ_v. The inference precision is calculated by $\varphi = \frac{\Delta \phi}{\phi_v}$, $\Delta \phi = |\phi - \phi_v|$. A larger φ indicates that the inference $\widetilde{\phi}$ is more precise in inferring ϕ_v.

To illustrate, let us consider a task set consisting of N tasks $\Gamma = \{T_1, T_2, ..., T_n\}$ whose task IDs are ordered by their periods (i.e., $T_1 > T_2 > ... > T_n$). The observer (attacker) task is then selected as the $(\lceil \frac{8}{3} \rceil + 1)$-th task and the victim task is selected as the $(n - \lceil \frac{8}{3} \rceil)$-th task. This assignment ensures that there exist other tasks with diverse periods (i.e., some with smaller periods and some with larger periods compared to T_o and T_v).

We first run experiments for achieving task indistinguishability. The results suggest that ScheduLeak shows better inference precision as attack duration increases for both vanilla EDF and TaskShuffler. On the other hand, ϵ-Scheduler offers consistent protection throughout the entire course of the attack (a plot for this experiment result is provided in Appendix Figure 15). Figure 9 shows the breakdown of the inference precision results grouped by the system utilization. It shows that the TaskShuffler scheduler offers less effective protection when the utilization is high due to limited possible randomization. On the other hand, our ϵ-Scheduler yields consistent performance across all task utilizations leading to an average inference precision (0.498 and 0.501 for $\epsilon = 10^3$ and $\epsilon = 10$ respectively) that is close to the outcome produced by a random guess.

Next, we test if job indistinguishability for the victim task is sufficient to protect it against ScheduLeak. Here, all tasks have consistent inter-arrival times based on their periods (i.e., $\epsilon_i = \infty$ except the victim task. The results are presented as the 5^{th} (ϵ-Sched(10^3)) and 6^{th} (ϵ-Sched(10)) bars in each group shown in Figures 9 and 15. As shown, the victim task is protected by job indistinguishability. The ScheduLeak attack fails to take advantage of the side channels and yields inference precision at a level similar to a random guess.

8.2.4 QoS-Based Results. While the above results show that the ϵ-Scheduler is effective in increasing the noise in the schedule, we are interested in the impact on the QoS of the tasks. We first examine deadline misses in our experiments. As expected, both Vanilla EDF and TaskShuffler EDF obey strict real-time constraints and thus do not experience any deadline misses. In ϵ-Scheduler, no deadline miss has been observed when $\epsilon = 10^3$. However, with $\epsilon = 10$, we observe intermittent deadline misses in some of task sets with high utilization. The number of task sets encountering deadline misses in such a setting is plotted at the top of Figure 10. As the result shows, only 1.37% of the tested task sets have deadline misses. Among these cases, no consecutive deadline miss has been observed.

We next examine how close to the indistinguishable tasks perform to the desired frequencies. A task’s frequency error is calculated as the difference between the task’s mean and desired frequencies. The mean of the frequency errors (grouped by task set utilization) is shown in the bar chart in Figure 10. The result indicates that task sets scheduled by ϵ-Scheduler with $\epsilon = 10$ has frequency error significantly larger than that with $\epsilon = 10^3$. It is expected as $\epsilon = 10$ yields a wider inter-arrival range (more noise
Table 3: Summary of Scheduling Overhead Measurement

<table>
<thead>
<tr>
<th>Mean of Measurement</th>
<th>Vanilla EDF</th>
<th>T.S. EDF</th>
<th>e = 10^3</th>
<th>e = 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context Switch Count Ratio</td>
<td>1</td>
<td>2.525</td>
<td>0.914</td>
<td>0.896</td>
</tr>
<tr>
<td>pick_next_dl_entity()</td>
<td>1.25us</td>
<td>4.3us</td>
<td>1.44us</td>
<td>1.39us</td>
</tr>
<tr>
<td>ε-Scheduler function</td>
<td>0</td>
<td>3.79us</td>
<td>3.41us</td>
<td>3.41us</td>
</tr>
<tr>
<td>Power Usage (performance)</td>
<td>2.37W</td>
<td>2.39W</td>
<td>2.35W</td>
<td>2.36W</td>
</tr>
<tr>
<td>Power Usage (ondemand)</td>
<td>2.20W</td>
<td>2.3W</td>
<td>2.08W</td>
<td>2.05W</td>
</tr>
</tbody>
</table>

added). It is also worth pointing out that the frequency error is due to the bounds in generating the noise-added inter-arrival times that can lead to an asymmetric distribution (as an example, see the distribution for \(\mu = 33.3ms \) in Figure 4(b)).

While the mean task frequency gives us an insight into the overall performance of the service delivery, it is crucial to know how often the task is performing at a frequency below what is expected (i.e., with inter-arrival times larger than the desired period) as each execution usually has a direct impact on the task’s commitment to the service delivery. We measure such a property for a task by calculating the ratio of the number of under-performing inter-arrival times to the total number of generated inter-arrival times. In this experiment, we first compute the worst under-performance ratio for each task set (by measuring it for each task and selecting the worst in the task set) and then calculate the mean of the worst under-performance ratios. From our experiment results, the under-performance ratio can be biased towards 0.5 and above, leading to a degradation in the execution frequency (a detailed experiment plot is provided in Appendix, Figure 16). This usually happens to the task that has a small target period and hence, an asymmetric distribution that tends to generate larger inter-arrival times (again, see Figure 4(b) for an example). It hints that one should expect a degradation in the service when using ε-Scheduler, particularly with a small ε value (i.e., larger noise and variation in the schedule).

8.2.5 Scheduling Overhead. We next evaluate the scheduling overhead of the ε-Scheduler, together with the Vanilla EDF and TaskShuffler EDF schedulers as a comparison. The measurement results are summarized in Table 3. We set Vanilla EDF as the base and compute the context switch count ratio compared to TaskShuffler EDF and ε-Scheduler in simulation. The result suggests that TaskShuffler EDF generates a twofold increase in the number of context switches. This matches the design of the TaskShuffler’s randomization protocol that aims to obfuscate the schedule by introducing more scheduling points (i.e., more context switches). On the other hand, ε-Scheduler produces fewer context switches as the generated inter-arrival times can be greater than Vanilla EDF. This measurement generally matches the result shown in Figure 16.

Next, we execute a set of tasks (with parameters given in Table 6) on RT Linux on the RPi4 platform to measure the mean cost of scheduling. We first measure the execution time overheads of the main scheduling function pick_next_dl_entity() that picks the next task at a scheduling point. The result shows that TaskShuffler EDF has larger overhead as it invokes get_random_bytes() that takes an average 2.23ms to generate a 64-bit random number. On the other hand, the ε-Scheduler has overheads that are very similar to Vanilla EDF as the scheduling mechanism is identical in pick_next_dl_entity(). To evaluate the true overhead of ε-Scheduler, we measure get_next_inter_arrival_time() where randomized inter-arrival times are generated in our ε-Scheduler implementation. As shown in the table, the time cost is around 5.79us and is independent of the ε setting. This cost is mainly due to the invocation of the random number generation function, get_random_bytes(). Note that this overhead is incurred in the scheduler when a job arrives, which is not equivalent to the context switch overhead as an arrival of a job in EDF (and ε-Scheduler) does not necessarily lead to a new scheduling event (i.e., a pick_next_dl_entity() call).

We also measured the power consumption of the platform for each of the schedulers. When the scaling governor is configured as scaling_governor = performance (a typical setting for RTS to maintain a predictable execution time and behavior), the power consumption is very similar for all schedulers. It is expected as the CPU runs at the highest frequency at all times under the performance setting. For a comparison purposes, we measure the power consumption with scaling_governor = ondemand that lowers the CPU frequency (i.e., less power consumption) when idling for a significant amount of time. The resulting power consumption matches what we have learned from the above experiments (e.g., lower context switch ratio in ε-Scheduler) and suggest that ε-Scheduler does not result in higher power consumption.

9 DISCUSSION AND CONCLUSION

From the evaluation, both ε = 10^3 and ε = 10 settings produce promising results for obscuring the periodicity and diversifying the schedule. However, as shown by the QoS measurements, the ε = 10^3 setting yields more reasonable variations in the task frequencies. While ε-Scheduler offers less protection with ε = 10^3 value, it may not be unusual to choose such a large ε value in many RTS. The same outcomes can be drawn from the evaluation using the two real applications in which the system reaches a balance between performance and security with ε = 10^3. On the other hand, with ε = 10, the results demonstrate how diverse the performance impact could be for different applications. In such a setting, the rover system performs with an acceptable error, while the video streaming service becomes unusable. Considering that every application has its unique tolerance to variations, the ε value should be determined on a case-by-case basis in conjunction with system designers.

A possible improvement is to dynamically adjust the ε value based on the QoS and protection demand at run-time. In such a case, ε is particularly useful as a security parameter to be integrated with a feedback control real-time scheduling algorithm (e.g., [43]).

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers and the shepherd, Prof. Kaveh Razavi, for their valuable feedback. The authors would also like to thank Prof. Siddharth Garg (NYU) for initial ideas. This work is supported by the National Science Foundation (NSF) grant SaTC-1718952. Any opinions, findings and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of NSF.

REFERENCES

A PROOF OF THEOREM 4.3

Proof. Let $\mathcal{R}^{\tau}(\tau, j) = \{\mathcal{R}(\tau, k) | j \leq k < j + J\}$ be a set of $\mathcal{R}(\cdot)$ invocations. By the definition of the inter-arrival time indistinguishable, it must satisfy

$$
\Pr[\mathcal{R}^{\tau}(\tau, j) \in \mathcal{W}] = \varepsilon \Pr[\mathcal{R}^{\tau}(\tau', j') \in \mathcal{W}]
$$

(9)

for all $\tau, \tau' \in \Gamma, j, j' \in \mathbb{N}$ and $\mathcal{W} \subseteq \text{Range}(\mathcal{R}^{\tau})$.

Let $w = \{\omega_k | k \in \mathcal{J}\}$ be an inter-arrival time sequence generated by $\mathcal{R}(\tau, j)$. Then

$$
\Pr[\mathcal{R}^{\tau}(\tau, j) = w] = \prod_{k \in \mathcal{J}} \Pr[\mathcal{R}(\tau, j + k - 1) = \omega_k]
$$

where ω_k is calculated by $\eta_T(\cdot) + \text{Lap}(b)$ in which b is the Laplace distribution parameter. Expanding with the probability density function, the right term in the above equation can be rewritten as

$$
\prod_{k \in \mathcal{J}} \frac{1}{2b} \exp\left(-\frac{|\omega_k - \eta_T(j + k - 1)|}{b}\right)
$$

The term $|\eta_T(j + k - 1) - \eta_T(j' + k - 1)|$ represents the difference between two inter-arrival times which can be replaced with $\Delta \eta_T$ for the worst case (i.e., the largest possible difference defined in Definition 4.2). The above becomes

$$
\prod_{k \in \mathcal{J}} \exp\left(\frac{-\Delta \eta_T}{b}\right) = \exp\left(\frac{\Delta \eta_T}{b}\right)
$$

Using Equation 9, we can derive b from

$$
\exp\left(\frac{\Delta \eta_T}{b}\right) \leq \exp(\varepsilon)
$$

$$
b \geq \frac{\Delta \eta_T}{\varepsilon}
$$

(10)

Therefore, the Laplace distribution with the scale $b = \frac{\Delta \eta_T}{\varepsilon}$ preserves ε-indistinguishability up to j instances.

Table 4: Glossary of Notations

<table>
<thead>
<tr>
<th>Notation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ</td>
<td>a set of real-time tasks</td>
</tr>
<tr>
<td>τ_j</td>
<td>a real-time task in Γ</td>
</tr>
<tr>
<td>T_j</td>
<td>a set of admissible periods of τ_j</td>
</tr>
<tr>
<td>D_j</td>
<td>a set of implicit, relative deadlines of τ_j</td>
</tr>
<tr>
<td>C_j</td>
<td>the worst-case execution time of τ_j</td>
</tr>
<tr>
<td>η_i</td>
<td>the inter-arrival time function of τ_j</td>
</tr>
</tbody>
</table>

ϵ-Scheduler Extended Model

$\Delta \eta_T$ | the inter-arrival time sensitivity of τ_j |
\bar{f}	effective protection duration for τ_j
ϵ_i	indistinguishability scale of τ_j
$\mathcal{R}(\cdot)$	bounded inter-arrival time Laplace randomized mechanism

Table 5: Summary of the Implementation Platform

<table>
<thead>
<tr>
<th>Artifact</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform</td>
<td>ARM Cortex-A72 (Raspberry Pi 4)</td>
</tr>
<tr>
<td>System Configuration</td>
<td>1.5 GHz 64-bit processor, 4 GB RAM</td>
</tr>
<tr>
<td>Operating System</td>
<td>Debian Linux (Raspbian)</td>
</tr>
<tr>
<td>Kernel Version</td>
<td>Linux Kernel 4.19.71-r24-v7l+</td>
</tr>
<tr>
<td>Kernel Configuration</td>
<td>CONFIG_SMP disabled</td>
</tr>
<tr>
<td>Boot Commands</td>
<td>CONFIG_PREEMPT_RT_FULL enabled</td>
</tr>
<tr>
<td>Run-time Variables</td>
<td>maxcpus=1</td>
</tr>
<tr>
<td>Base Scheduler</td>
<td>sched_rt_runtime_us=-1 scaling_governor=performance</td>
</tr>
<tr>
<td>Base Scheduler</td>
<td>SCHED_DEADLINE</td>
</tr>
</tbody>
</table>

Then

$$
\Pr[\mathcal{R}^{\tau}(\tau, j) = w] = \prod_{k \in \mathcal{J}} \frac{1}{2b} \exp\left(-\frac{|\omega_k - \eta_T(j + k - 1)|}{b}\right)
$$

$$
= \prod_{k \in \mathcal{J}} \exp\left(\frac{-\Delta \eta_T}{b}\right) = \exp\left(\frac{\Delta \eta_T}{b}\right)
$$

Using Equation 9, we can derive b from

$$
\exp\left(\frac{\Delta \eta_T}{b}\right) \leq \exp(\varepsilon)
$$

$$
b \geq \frac{\Delta \eta_T}{\varepsilon}
$$

(10)
Table 6: Timing Parameters of a Avionics Demonstrator [49]

<table>
<thead>
<tr>
<th>Task Name</th>
<th>WCET (ms)</th>
<th>Period (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Control Task</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Mission Planner</td>
<td>0.002</td>
<td>100</td>
</tr>
<tr>
<td>Encryption</td>
<td>3</td>
<td>42</td>
</tr>
<tr>
<td>Image Encoding</td>
<td>18</td>
<td>42</td>
</tr>
<tr>
<td>Image I/O</td>
<td>1.46</td>
<td>42</td>
</tr>
<tr>
<td>Network Manager</td>
<td>0.03</td>
<td>10</td>
</tr>
</tbody>
</table>

Figure 11: Histogram of the randomized inter-arrival times generated by e-Scheduler for the task $τ_i$ with a desired period 100ms running in RT Linux. The extended task parameters are assigned to be $ε_i = 100$, $Δη_i = 190$ and $J_i = 16$ (the same as that shown in Figure 4(b)). The plot shows that the generated inter-arrival times are distributed under the desired Laplace distribution indicated by the dash line.

Figure 12: Chart of the percent of function (PPF) based on a Laplace distribution with $ε_i = 100$, $Δη_i = 190$ and $J_i = 16$ (the same as that shown in Figure 4(b)). The dash line represents the true PPF curve and the bars are reconstructed by the 100 PPF points stored in the PPF-based distribution array converted using Algorithm 1.

Algorithm 1: PPF-Based Distribution and Array Conversion

Input:
- $PPF =$: the PPF of the target Laplace distribution
- $steps =$: the number of PPF points to expand

Output:
- $array_{ppf} =$ the array storing the PPF points

1. $array_{ppf} = []$
2. $step = 0$
3. $resolution = (1 - 0.5)/(steps - 1)$
4. **while** $step < steps$ **do**
 5. $percentile = step \cdot resolution + 0.5$
 6. $array_{ppf}[step] = \text{int}(PPF(percentile))$
 7. $step = step + 1$
8. **return** $array_{ppf}$

Algorithm 2: PPF-Based Random Number Generator

Input:
- $array_{ppf} =$: an array storing expanded PPF points

Output:
- $sample =$: a random value equivalent to the corresponding distribution

1. $size_{array} = \text{len}(array_{ppf})$
2. $rad_{idx} = \text{RAND}_\text{int}(0, \text{len}(array_{ppf}) \cdot 2 - 1))$
3. **if** $rad_{idx} > (size_{array} - 1)$ **then**
 4. **else**
 5. $sample = array_{ppf}[rad_{idx} - size_{array}]$
6. **return** $sample$

Figure 12 as the dash curve. Line 3 computes the resolution of the percentage each point in the array represents. Line 4 to line 8 iterate through each of the computed percentile to obtain and store the corresponding percent point value in the output array. Line 9 returns the array which stores PPF points above the 50-th percentile. In other words, the array contains only half part of the distribution (as demonstrated by the bars shown in Figure 12). It is done to save memory space as a Laplace distribution is symmetric. We then use Algorithm 2 to obtain a random number from the PPF array.

Algorithm 2 takes the aforementioned PPF array ($array_{ppf}$) as input and draws a random number that is equivalent to a random draw from the underlying distribution. Line 2 obtains a random number from a common random number generator (based on a uniform distribution) with a range of $[0, 2 \cdot \text{len}(array_{ppf}) - 1]$ (i.e., two times of the length of the PPF array). Line 3 to line 7 convert the random number into a feasible index to obtain a sample value from the PPF array. If the random number is greater than the array’s length, a negative sample value is generated. Otherwise a positive value is obtained and returned.
By eavesdropping on the network traffic during video streaming, attackers can recognize certain patterns in the traffic. Video fingerprints can be built on the other hand, using the pre-recorded video files. Hence, attackers can utilize the fingerprints and the observed traffic pattern to identify which video was being streamed during eavesdropping. The idea is to merely compare the extracted video fingerprints with the observed traffic pattern of the video stream to deduce an individual video. A matching method is necessary for effective outcomes post-comparison. In this way, the eavesdropped traffic and the video fingerprints provide seamless video identification.

Real-time video has many varying parameters which make it difficult to implement an efficient yet accurate attack. There are many quality levels of recorded video: some have noise, others are clear. Fingerprinting often is not effective when there is too much noise in a sample. This is because the fingerprints will not be unique and are rarely representative of the sample. The bandwidth plays a major role in the adaptive quality selection in the network. A high bandwidth automatically transmits samples using higher quality levels. This makes it problematic to observe a consistent pattern for the same video in the traffic trace. Another obstacle is the length of the eavesdropped sample. It is time-consuming to eavesdrop on the entire video. Also most times, the host doesn’t play the entire video, so only a part of the video is present in the eavesdropped traffic. There is a workaround for this in DASH: the bitrate variation trend is stable for a particular sample, hence a bitrate based fingerprinting method is viable.

The systematic steps are: extracting the video fingerprints from pre-recorded videos, obtaining the eavesdropped traffic pattern, calculating a similarity estimate between the traffic pattern and the fingerprints using temporal sequence analysis (p-DTW) and finally, identifying the video using this similarity estimate. An example of a fingerprint and an observed traffic pattern is shown in Figure 14. Specifically, we use the fingerprint-based video identification attack detailed in sections IV and V by Gu et al. [25], adapting it to the video streaming application that we designed.

The fingerprints that we obtain follow the segmentation rules of DASH. Initially, we calculate the data per second in bits per second (bps) for each video in a differential manner in order to eliminate the impact of different quality levels on the fingerprints. This sequence of fingerprints, which correspond to data per second, need to be aggregated into segments before the matching step because DASH transmits video data in segments. Each segment covers a certain number of seconds; segment length is usually kept constant. Again a differential strategy is used to collect the data per segment and the resulting set is the set of video fingerprints available to the attacker. For each video in the dataset, a set of video fingerprints is calculated. Next comes the part where the attacker eavesdrops on
the network traffic to obtain traffic traces. This occurs during the transmission of the video from the server to the client. Assuming that there are no other processes that require a large bandwidth, the attacker aggregates the obtained network traffic (in bps) into data per segment in a differential manner. The objective is to find a maximum match between the sequence of traffic traces and the sequence of individual video fingerprints. The video corresponding to the maximum match is identified to be the video that was being streamed during the eavesdropping period.

The similarity measurement is a method to find out which set of video fingerprints is likely to produce the extracted traffic pattern. Since the assumption is that only one video is streamed at a time, measuring the similarity of the pattern to each set of fingerprints will reveal the closest match. We treat this as a time series matching problem. Two important considerations before solving the problem have to be taken into account: eavesdropping can be short and the eavesdropped period may correspond to only a portion of the entire video. After normalizing the sequences using a sigmoid function, a newly proposed method called “partial dynamic time warping (P-DTW)” is used. There are several advantages of using this method over the classic DTW [6] method. Classic DTW tries to match the two sequences in their entirety, i.e., using the full length of sequences to calculate the alignment cost. The series heads and tails are required to be matched. On the other hand, P-DTW tries to find the best local alignment between the two sequences, i.e., it minimizes the distance between the traffic pattern and any proper sub-sequence of the fingerprints. The sub-sequence that results in this minimum is selected for calculating the final similarity between the fingerprint and the traffic traces. As eavesdropping occurs only for a part of the video, P-DTW is more suited to our attack. The similarity is quantified using the minimum distance (cost) of aligning the two sequences. Whichever set of video fingerprints renders the minimum distance is the identified video in our attack.

E GENERATION OF SIMULATION TASK SETS

A total of 6000 task sets are generated by utilization from \{0.001+0.1\cdot x, 0.1+0.1\cdot x \mid 0 \leq x \leq 9 \land x \in \mathbb{Z}\}. Each group contains subgroups that have a fixed number of tasks from \{5, 7, 9, 11, 13, 15\}. A total of 100 task sets are generated for each of the 60 subgroups. The utilization for a task set is generated from a uniform distribution using the ULNumFast algorithm [8]. Each task’s period \(T_i\) is randomly drawn from [10ms, 200ms] and the worst-case execution time \(C_i\) is computed based on the generated task utilization and period. The task phase is randomly selected from [0, \(T_i\)].

F DISCRETE FOURIER TRANSFORM

ANALYSIS SETUP

To adequately utilize such a tool, the task schedule must be transformed into a sequence of equal-spaced samples that represent the states when CPU is busy and idle. In our analysis, a sample is taken at each time tick and hence the Nyquist frequency is half of the tick rate. In contrast to prior work [42] where busy and idle states are translated into binary values 1 and 0, we translate them into 1.0 and -1.0 to reduce noise in the spectrum caused by the positive-biased sample values. The outcome of the transformation is a sequence of 1.0 and -1.0 numbers that is then analyzed using DFT. In the end, only the first half part of the analysis result is taken since the DFT output is known to be conjugate symmetric. As shown in Figure 7, the resulting frequency spectrum is useful for uncovering the periodicity introduced by the scheduling of the real-time tasks.
Additionally, it can also be seen that peaks encapsulate the true frequencies of the tasks (annotated by the red dashed lines). It’s worth noting that the spectrum can contain aliasing frequency peaks that are in harmony with the true frequencies. These harmonic peaks in fact are helpful for adversaries to identify and verify the true frequencies of interest.

We are interested in the amount of information that an adversary can learn from the DFT analysis w.r.t. a task’s periodic behavior. By the nature of DFT, the amplitude in the spectrum has a positive correlation with the periods and the peaks that stand out are particularly helpful to adversaries in gaining more knowledge about the schedule. To this end, we use a Z-score based peak detection algorithm [20, 38] to count the number of outstanding peaks in the spectrum. The peak detection algorithm uses a moving mean with a 10Hz window to detect the outstanding peaks that are 3.5 standard deviations away. As shown by the green line in Figure 7, such a moving threshold can effectively identify the peaks that are significant while filtering out the base noise.