
Indistinguishability Prevents Scheduler Side Channels
in Real-Time Systems

Chien-Ying Chen
∗

cchen140@illinois.edu

University of Illinois at

Urbana-Champaign

Illinois, USA

Debopam Sanyal

dsanyal2@illinois.edu

University of Illinois at

Urbana-Champaign

Illinois, USA

Sibin Mohan
∗

sibin.mohan@oregonstate.edu

Oregon State University

Oregon, USA

ABSTRACT
Scheduler side-channels can leak critical information in real-time

systems, thus posing serious threats to many safety-critical applica-

tions. The main culprit is the inherent determinism in the runtime

timing behavior of such systems, e.g., the (expected) periodic behav-
ior of critical tasks. In this paper, we introduce the notion of “sched-

ule indistinguishability”, inspired by work in differential privacy,

that introduces diversity into the schedules of such systems while

offering analyzable security guarantees.We achieve this by adding a

sufficiently large (controlled) noise to the task schedules in order to

break their deterministic execution patterns. An “𝜖-Scheduler” then

implements schedule indistinguishability in real-time Linux. We

evaluate our system using two real applications: (a) an autonomous

rover running on a real hardware platform (Raspberry Pi) and (b) a
video streaming application that sends data across large geographic

distances. Our results show that the 𝜖-Scheduler offers better pro-

tection against scheduler side-channel attacks in real-time systems

while still maintaining good performance and quality-of-service

(QoS) requirements.

CCS CONCEPTS
• Security and privacy→ Operating systems security.

KEYWORDS
Scheduler Side-Channels, Real-Time Systems, Indistinguishability

ACM Reference Format:
Chien-Ying Chen, Debopam Sanyal, and Sibin Mohan. 2021. Indistinguisha-

bility Prevents Scheduler Side Channels in Real-Time Systems. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Secu-
rity (CCS ’21), November 15–19, 2021, Virtual Event, Republic of Korea. ACM,

New York, NY, USA, 19 pages. https://doi.org/10.1145/3460120.3484769

1 INTRODUCTION
Real-time systems (RTS) have existed for decades in numerous forms,

such as avionics systems, nuclear power plants, automobiles, space

∗
The majority of this work was done when Chien-Ying and Sibin were at the University

of Illinois at Urbana-Champaign. Chien-Ying is now with NVIDIA Corporation, USA.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00

https://doi.org/10.1145/3460120.3484769

vehicles, medical devices, power generation and distribution sys-

tems as well as industrial robots. Today, however, with the advent

of new domains such as autonomous cars, drones, the Internet-of-

Things (IoT), and remote monitoring and control, RTS have moved

front and center in modern society. Most such systems have safety-
critical properties, i.e., any problems at run-time could result in

significant harm to humans, the system, or even the environment.

Imagine a situation in which your car’s airbag, a real-time system

with stringent timing constraints, fails to deploy in time; such a fail-

ure can have disastrous results. Despite their importance, security

has rarely received adequate attention in the design of real-time

cyber-physical systems (CPS). There are many reasons for the lack

of robust security: the use of custom hardware/software/protocols,

a lack of computing power and memory, and even the notion that

such systems lack inherent value to adversaries have limited the de-

velopment of security mechanisms for them. Since many RTS now

use commodity-off-the-shelf (COTS) components and are often

connected to each other or even the Internet, they expose addi-

tional attack surfaces. In fact, over the past decade, there has been

a significant uptick in attacks against cyber-physical systems with

real-time properties (e.g., [11, 15, 35, 47, 50, 52, 54, 62]).
RTS have stringent timing requirements for ensuring their correct

operation. For instance, a typical window for airbag deployment,

after a collision is detected, is around 50–60 ms [31] (less than

the time it takes to blink!). Such requirements, often driven by

the physical constraints on the system1
require that systems be

deterministic at run-time. Hence, designers take great care to ensure
that (a) their constituent software tasks execute in an expected

manner [39], e.g., to exhibit periodic behavior as shown in Figure 2;

(b) interrupts are carefully managed [64]; (c) memory management

is deterministic [37]; and (d) running time, on specific processor

platforms, is analyzed very carefully at compile/run time (e.g., [9,
12, 26, 60]). However, timing and design constraints further inhibit

the addition of security solutions to RTS.

In fact, the very determinism that is an inherent characteristic of
RTS can be used against them as an attack surface, say, via timing-
based side channels. Figure 7(a) shows the discrete Fourier transform
(DFT) of a real-time system. The graph shows that the determinis-

tic behavior, coupled with the periodic design of RTS, results in a

clear demarcation of frequencies (and hence timing behaviors) of

critical real-time tasks. This property — that RTS have determin-

istic behavior — has been used to leak critical information using

side channels such as scheduling behavior [14, 53], power con-

sumption traces [33], electromagnetic (EM) emanations [3] and

1E.g., if a physical component must be actuated at a certain frequency, then some

software tasks must also match the rate.

https://doi.org/10.1145/3460120.3484769
https://doi.org/10.1145/3460120.3484769

Defense	Enabled	by	𝜖-Scheduler
w
ith
	a	
ty
pi
ca
l

RT
S	
sc
he
du
le
r

w
ith
	𝜖-
Sc
he
du
le
r

possible	arrival	time	instants
based	on	a	bounded	Laplace	distribution

PD
F

Insight	into	𝜖-Scheduler

periodic	execution	pattern

Breaking Periodicity

diversified	execution	pattern

Obstructing Predictability

indistinguishable	schedule

deterministic,	predictable	schedule

1 2 2 3 3 1 2 2 1 2 2 1 3 3 2 2 1 2 1 2
1 2 2 3 3 1 2 2 1 2 2 1 3 3 2 2 1 2 1 2
1 2 2 3 3 1 2 2 1 2 2 1 3 3 2 2 1 2 1 2
1 2 2 3 3 1 2 2 1 2 2 1 3 3 2 2 1 2 1 2
1 2 2 3 3 1 2 2 1 2 2 1 3 3 2 2 1 2 1 2

2 1 2 3 1 3 2 2 1 2 2 1 2 1 2 3 3 2 2 1
1 2 2 3 2 2 2 3 1 2 2 3 1 3 2 1 2 1 2 2
3 2 1 3 2 1 2 2 1 2 2 1 2 2 3 3 1 2 2 1

13 2 2 1 3 1 2 1 2 2 2 3 1 2 3 2 1 2 2
2 1 2 1 2 3 2 3 2 1 2 1 3 3 2 2 1 2 2 1 2

periodic
schedule

Illustration of a Task’s Schedule
Demonstrative	
Applications

Autonomous
Rover

Video
Streaming

Figure 1: A high-level overview of this paper. The task schedule on the top left depicts a periodic execution pattern (hence
predictable and distinguishable) that can be seen in many real-time systems. With the 𝜖-Scheduler introduced in this paper,
the task schedule is injected with uncertainty (based on Laplace distributions), as depicted on the bottom left. 𝜖-Scheduler
offers analyzable security and is effective in protecting RTS against scheduler-focused side-channel attacks.

temperature [5]. In particular, ScheduLeak [14], demonstrated (a)
how to leak timing information from real-time schedules and (b)
how an adversary can use it to compromise autonomous CPS (i.e.,
take control of them, or cause them to crash).

Intuitively, one way to reduce determinism (and hence, poten-

tially, increase indistinguishability) in systems is by adding noise
to system components, for instance, to the schedule. Figures 7(c)

and 7(d) show the result of adding Laplacian noise to the system

in Figure 7(a). It thereby becomes much more difficult to identify

the frequencies of certain tasks because no peaks stand out among

the amplitudes. Adding noise to reduce the identification of an

individual in a database has been explored in the area of differential

privacy [18, 19]. The concept of 𝜖-differential privacy is used to

measure the confidence with which an individual can be identified

in the context of statistical queries in a database. The privacy pro-

tection is then quantifiable based on the foundations of mechanisms

used to increase the randomness, e.g., drawing noise to be added to

the output from, say, the Laplace distributions. Hence, we propose

similar ideas to protect RTS by increasing the indistinguishability
of system behaviors, e.g., the schedule. Hence, at a high level, we

propose that:

Systems with predictable behaviors are highly suscep-
tible to side-channel attacks; we can protect them by
reducing the ability to discern deterministic properties.

To that end, we introduce the notion of “𝜖-indistinguishability” (Sec-
tion 4) to measure the probability of: information leakage by ob-

servation of system behaviors such as schedules and other timing

information.

We introduce indistinguishability and noise models in the re-
source management algorithms and, in particular, schedulers in real-

time CPS. Those components form the core of any RTS and control

the precise timing and scheduling behaviors of tasks and resources.

Hence, they are the ideal vehicle for (i) introducing noise into the

system, and (ii) measuring the probability of information leakage.

We also develop a class of “𝜖-schedulers” that incorporate the notion
of 𝜖-indistinguishability (Section 4). Figure 1 shows an overview of

the concepts in this paper using a real world attack from literature.

While some work (e.g., [4, 36, 61]) has proposed the use of ad
hoc randomization methods in real-time schedulers, their effect

is severely restricted since they must adhere to all of the timing

constraints in RTS; for instance, these solutions are not allowed to

miss even a single deadline. In addition, they do not work well in

heavily loaded (i.e., high utilization) systems. This, in conjunction

with their ad hoc nature, also limits the calculation of any formal

security guarantees w.r.t. the degree of protection offered. In con-

trast, our 𝜖-schedulers, (a) can protect a wider class of RTS, since

we propose a modified system model (Section 5.1) that allows for

some deadlines to be missed, (b) can provide formal guarantees

(Section 4.2) built off the body of work in differential privacy and

(c) works on all types of systems, including heavily loaded ones.

The 𝜖-Scheduler is implemented on Linux, on both: a hardware

platform (Raspberry Pi) running real-time Linux as well as a sim-

ulation platform. We evaluate our work using two real applica-

tions (an autonomous rover and a video streaming application). We

further evaluate the 𝜖-Scheduler using simulations to explore the

design space as well as potential limitations of our system. The

results demonstrate that 𝜖-Scheduler is able to not only offer a

higher degree of protection (as compared to the state-of-the-art,

see Section 8.2), but also do so with actual guarantees while still
maintaining a high degree of performance and quality-of-service

(QoS). In summary, the main contributions of this paper are:

(1) the notion of schedule indistinguishability that captures the

difficulty of identifying information about individual tasks

in a task schedule [Section 3.3].

(2) an 𝜖-Scheduler that implements the schedule indistinguisha-

bility concepts based on bounded Laplace distributions [Sec-

tion 4 and 5].

(3) Implementation on a real hardware platform running real-

time Linux that is open-sourced [Section 6].

Note:Our aim is tomodify system states to deter side-channel attacks
and not the leakage of private data, the latter being the typical use

case for differential privacy.

2 BACKGROUND AND RELATEDWORK
2.1 Real-Time Systems and Scheduler

Side-Channels
Real-Time Systems. Time-critical systems such as self-driving

cars, medicine/vaccine delivery drones, space rovers (e.g., NASA’s

Opportunity and Spirit), industrial robots, autonomous tractors and

unmanned aerial vehicles (UAV), etc., play a vital role in shaping

today’s technological evolution from everyday living to space ex-

ploration. In such systems, tasks
2
delivering critical functionality

rely on an operating system (typically an operating system that

supports a real-time scheduling policy) to fulfill their timing require-

ments (e.g., the task must complete within a predefined time limit).

Oftentimes, these tasks (e.g., system heartbeat keepers, PID control

processes, sensor data collectors, motor actuators, etc.) are designed
to execute in a periodic fashion to guarantee responsiveness. Such

real-time tasks are usually associated with a set of predefined timing

constraints such as (a) minimum inter-arrival times (i.e., periods),
(b) deadlines and (c) worst-case execution times (WCET). They

are scheduled using well-known real-time scheduling algorithms

e.g., fixed-priority preemptive scheduling, earliest deadline first

scheduling [39]. These real-time constraints help system designers

ensure that all safety guarantees are met (e.g., no real-time tasks

will miss their deadlines). As a result, the system schedule becomes

deterministic and highly predicable.

Scheduler Side-Channels. The aforementioned determinism and

predictability, though favorable for the system safety, is a double-

edged sword – they create side-channels in RTS. There has been an

increasing focus (e.g., [22, 23, 34, 53, 55, 56, 58, 63]) on studying and

demonstrating the existence of side-channels and covert-channels

(as consequences of the determinism) in RTS. In this paper, we are

particularly interested in the side-channels that leak system timing
behavior via task schedules. In the RTS domain, Chen et al. [14] first
introduced the scheduler side-channels using the ScheduLeak algo-

rithms. They extract execution behavior of critical real-time tasks

from an observed task schedule at run-time. Liu et al. [42] used the

same attack surface (i.e., the task schedule) and showed that precise
timing values of critical real-time tasks can be uncovered using

frequency spectrum analysis (e.g., Discrete Fourier Transform, DFT,

analysis) as shown in Figure 7. Such timing information, while

seemingly subtle, is a crucial stepping stone to launching many

attacks against RTS. Consequently, additional side-channels such as

power consumption traces [33], schedule preemptions [14, 53], elec-

tromagnetic (EM) emanations [3] and temperature [5] have been

demonstrated in RTS. Chen et al. [14] have also shown how such in-

formation leakage can be used to launch more deliberating attacks,

e.g., taking control of autonomous systems by precisely injecting

commands to override the system’s periodic PWM updates.

Schedule Obfuscation. Yoon et al. [61] attempted to tackle the

scheduler side-channels by introducing a randomized scheduling

algorithm that obfuscates the task schedules in fixed-priority pre-

emptive RTS. This idea has been extended to multi-core environ-

ments [4]. Similarly, Krüger et al. [36] developed a combined on-

line/offline randomization scheme to reduce determinisms for time-

triggered systems. Nasri et al. [48] conducted a comprehensive

study on the schedule randomization approach and argued that

such techniques can actually expose the fixed-priority preemptive

RTS to more risks. Burow et al. [10] explore several moving-target

defenses (randomization-based) against different types of attacks

2
A task in typical real-time systems corresponds to a process/thread in generic operat-

ing systems. In this paper, we will use “task” and “process” interchangeably.

in the context of RTS (including soft RTS). While this existing work

is centered on the problem of scheduler side-channels, they do not

provide analytical guarantees for the protection against such at-

tacks. Additionally, the work targets highly constrained real-time

systems and hence their effectiveness is often limited. In contrast,

we focus on a more realistic RTS model that has flexible and more

tolerable timing requirements. This enables us to explore a more

aggressive defense strategy to achieve higher (and analyzable) pro-

tection against the threats imposed by scheduler side-channels.

2.2 Differential Privacy and Randomized
Mechanisms

Differential Privacy. Differential privacy, along with the theo-

rems and algorithms that build the foundation for protecting data

privacy, was originally introduced [18, 19] in the context of statisti-

cal queries on databases. It can be seen that differential privacy is

used in many subjects addressing the issue of data privacy [13, 18].

There is also a growing trend to extend such concepts to the sys-

tems domain [17, 30, 59] to protect data privacy distributed among a

group of devices. While in this paper we focus on the system security
rather than data privacy, the high-level goal is somewhat similar to

differential privacy and hence relevant techniques may be adopted.

In our context, we define the notion of task/job indistinguisha-
bility that defines the probability of distinguishing the execution

states of one task/job from another in task schedules. Roughly speak-

ing, a low indistinguishability enables an adversary to identify a

task’s execution from an observed schedule with a high confidence

and hence the system is prone to compromises via scheduler side-

channels. To address such a problem, we propose an 𝜖-Scheduler

that offers “𝜖-indistinguishability” at a job level and/or a task level,

subject to system constraints as well as the system designer’s secu-

rity goal. To the best of our knowledge this paper is the first work

that adopts the foundation of differential privacy in the design of

schedulers and especially to address the security issues in RTS.

Laplace Mechanism. There exist many types of distributions that

are used for addressing information leakage issues (e.g., Uniform
distribution [51], Gaussian distribution [28, 41] and Laplace dis-

tribution [19].) The Uniform distribution has been used in the

KeyDrown [51] work to prevent information leakage via keystrokes.

Their work aims to uniformly distribute keystroke interrupts by

injecting fake keystrokes (with no RT requirements). In our con-

text, while using the Uniform distribution would spread the inter-

arrival times more evenly (i.e., better security), it would cause

more deadline misses and a serious degradation of the RT per-

formance. The Laplace distribution has been used in the classic dif-

ferential privacy problems for generating random noise to achieve

desired privacy protections [19]. Conventionally, the Laplace distri-

bution has a probability density function defined as Lap(𝑥 | 𝜇, 𝑏) =
1

2𝑏
exp(− |𝑥−𝜇 |

𝑏
). In this paper, we use the Laplace distribution to

generate randomized inter-arrival times for each job at run-time.

In contrast with the Uniform distribution, the Laplace distribu-

tion, while statistically vulnerable over time, can generate an av-

erage task period that’s close to the designer’s desired value thus

closely matching required RT guarantees. Furthermore, using the

Laplace distribution allows us to reuse existing mathematical and

algorithmic components with the theoretical foundations from the

differential privacy domain.

3 SYSTEM AND ADVERSARY MODELS
3.1 Preliminaries
The sets of natural numbers and real numbers are denoted byN and

R. For a given 𝑛 ∈ N, the set [𝑛] represents {1, 2, ..., 𝑛}. We denote

the Laplace distribution with location 𝜇 and scale 𝑏 by Lap(𝜇, 𝑏)
and we write Lap(𝑏) when 𝜇 = 0. For a random variable 𝑥 , drawing

values from a Laplace distribution is denoted by 𝑥 ∼ Lap(·). As
conventionally used, we sometimes abuse notation and denote a

random variable 𝑥 ∼ Lap(·) simply by Lap(·).
We consider a discrete timemodel [32]. In our context, wemainly

focus on the issue that is concerned with the timing in a single node

real-time system. We assume that a unit of time equals a timer tick

governed by the operating system and the corresponding tick count

is an integer. That is, all system and real-time task parameters are

multiples of a time tick. We denote an interval starting from time

point 𝑎 and ending at time point 𝑏 that has a length of 𝑏 − 𝑎 by

[𝑎, 𝑏) or [𝑎, 𝑏 − 1].

3.2 Real-Time System Model
In this paper, we consider a single processor, preemptive real-time

system in which some deadline misses are tolerable [16, 43]. Such

systems are very common
3
, e.g., the system contains a set of 𝑁

real-time tasks Γ = {𝜏𝑖 | 𝑖 ∈ [𝑁]}, scheduled by a dynamic-priority

scheduler (e.g., Earliest Deadline First, EDF, scheduler [39]). We

assume the real-time tasks are independent (i.e., no dependencies

between tasks). A real-time task can be a periodic task (with a fixed

period) or a flexible task (that has flexible period choices within

a predefined range) [44]. We model a real-time task 𝜏𝑖 by a tuple

(T𝑖 ,D𝑖 ,𝐶𝑖 , 𝜂𝑖) where T𝑖 = {𝑇𝑖,𝑘 | 𝑘 ∈ N} is a set of admissible peri-

ods, D𝑖 = {𝐷𝑖,𝑘 | 𝑘 ∈ N} is a set of implicit, relative deadlines (i.e.,
𝐷𝑖,𝑘 = 𝑇𝑖,𝑘 ,∀𝑘 ∈ N), 𝐶𝑖 is the worst-case execution time (WCET)

and 𝜂𝑖 is a task inter-arrival time function as defined below (a glos-

sary table is provided in Appendix Table 4 for reference). It can

be easily seen that a periodic task is then a flexible task where the

“choice of periods” is limited to a single value. That is, T𝑖 = {𝑇𝑖,1}
when 𝜏𝑖 is a periodic task and we sometimes use 𝑇𝑖 to denote such

a fixed period for simplicity. A task’s execution instance is aborted

upon missing its current deadline and it does not impact the release

of the task’s next execution instance.

To formulate the problem better, let us assume that a task’s

execution behavior is modeled by a task inter-arrival time function
where each task has a dedicated function, as illustrated in Figure 2.

Definition 3.1. (Task Inter-Arrival Time Function.) For a task 𝜏𝑖
the inter-arrival time function is defined as

𝜂𝑖 : N→ T𝑖 (1)

where 𝜂𝑖 (𝑗) is the task’s inter-arrival time at the 𝑗𝑡ℎ instance. The

resulting inter-arrival time is one of the values in the task’s inter-

arrival time set, 𝜂𝑖 (𝑗) ∈ T𝑖 . ■

3
The choice to focus on widely deployed soft RTS allows us to develop the underlying

mathematical models that can then be applied to a wider range of systems such as

weakly hard RTS (e.g., sampling and monitoring systems) and even many IoT systems.

𝜂! 𝑗 𝜂! 𝑗 + 1 𝜂! 𝑗 + 2 𝜂! 𝑗 + 3 …
𝜂! :ℕ → 𝒯!Regular Task Inter-Arrival Time Function:

Figure 2: Illustration of the task execution model used in
this paper. Arrows represent the scheduled arrival time in-
stants. The distance between two adjacent arrival times of a
task is modeled by a task-specific function 𝜂𝑖 .

Note that a strict periodic task (i.e., T𝑖 = {𝑇𝑖,1}) always gets a
fixed output from its inter-arrival time function,𝜂𝑖 (𝑗) = 𝑇𝑖,1,∀𝑗 ∈ N.
Then, based on the above function, the system’s timing behavior

(w.r.t. the task deadlines and inter-arrival times) can be modeled

by 𝜂𝑖 ,∀𝜏𝑖 ∈ Γ. That is, when the 𝑗𝑡ℎ instance of task 𝜏𝑖 arrives,

the scheduler computes its period from 𝜂𝑖 (𝑗) and configures its

deadline as well as the next arrival time accordingly.

The system can also contain other sporadic and aperiodic tasks.

Yet, these types of tasks do not naturally demonstrate periodicity

by design and thus are not of interest in our context. For this reason,

we intentionally exclude these types of tasks in our task model to

instead focus on the periodic components. It’s worth nothing that

our model in fact subsumes sporadic tasks (that have a fixed upper-

bound on the inter-arrival times between two instances). In practice,

to analyze sporadic tasks, one must account for their worst-case

behavior, i.e., when they behave like periodic tasks. Hence, if the

system has sporadic tasks, we can support them.

3.3 Adversary Model
We are mainly concerned about scheduler side channels that are

exposed by the deterministic nature of RTS as introduced in Sec-

tion 2. We assume that an adversary observes the system schedule

via some existing side channels [3, 5, 14, 33, 53]. We further assume

that the adversary does not have access to the scheduler. Without

this assumption, the adversary can undermine the scheduler or

directly obtain the schedule information without using the side

channels. Otherwise, we don’t place any restrictions on where the

adversary might exploit such side channels. As demonstrated by

our evaluation on real applications (Section 7), the attackers can be

resident in the system or at the network interface when carrying

out such attacks. The true reason for the information leakage is

due to the predictability in schedulers and that is the vulnerability

we focus on.

Note that some existing attacks have demonstrated that precise

timing information of target tasks (e.g., task phases, task arrival

times) can be deduced from the deterministic real-time schedules

at runtime. Such information can then be exploited to recreate

a targeted task’s execution state and then launch further, more

critical, attacks on the system with higher precision [14, 42]. For

instance, in a cache timing side-channel attack in which the attacker

attempts to gauge a task’s memory usage, knowing when the target

task may start can significantly aid in differentiating valid data from

noisy data. As demonstrated in ScheduLeak [14], an attacker can

place precise prime and probe operations before and after a target

task and successfully learn its execution behavior. These types of

attacks rely on the fact that periodicity exists in the real-time tasks

being targeted.

	ℛ#(𝜂! , 𝑗) 	ℛ#(𝜂! , 𝑗 + 1) 	ℛ#(𝜂! , 𝑗 + 2) 	ℛ#(𝜂! , 𝑗 + 3) …
	ℛ# (𝜂! , 𝑗) = 𝐿#(𝜂! 𝑗 ,

2𝐽!Δ𝜂!
𝜖!

, 𝑇!" ,𝑇!#)Inter-Arrival Time Randomized Mechanism:

Figure 3: Illustration of the task execution after injecting
noise. The inter-arrival times become irregular and unpre-
dictable with using a randomized mechanism.

It’s worth pointing out that such the scheduler side-channel

attacks only acquire (arguably insensitive) system timestamp infor-

mation and can operate in the user space [14]. Therefore, traditional

anomaly detection may not work well in defending the system this

scenario. In this paper, we aim to eliminate such scheduler side

channels by obscuring the task periodicity in the schedule. To this

end, our goal in this paper is to achieve schedule indistinguishability
in the system that can be further categorized into:

(i) Job-level indistinguishability refers to the difficulty of distinguish-

ing a task’s job from another of the same task in a task schedule. As

introduced in Section 3.2, a flexible task can have multiple prede-

fined periods that are associated to different execution modes and

purposes. For instance, a feedback control task in a cyber-physical

system can adjust its period based on the severity of error the phys-

ical asset under control is experiencing [44]. Leaking the current

period of the control task reveals the system’s internal state as

well as the physical asset’s external state. Achieving a job-level

indistinguishability for such a task weakens the adversary’s ability

to reason about the task’s internal execution state.

(ii) Task-level indistinguishability, on the other hand, refers to the

difficulty of distinguishing a task from another in a schedule. In a

RTS in which all tasks are strictly periodic, it is generally not hard

to distinguish and identify individual tasks from a schedule (see

Section 8.2.1 for an example and analysis). As a result, tasks are

at risk of leaking critical information. For instance, in the Sched-

uLeak attack [14], the adversary exploits the periodicity to extract

the execution behavior of a critical real-time task. Achieving task-

level indistinguishability weakens the adversary’s ability to glean

information about a specific task from the schedule.

It’s intuitive to see that job-level indistinguishability is a nec-

essary condition for the task-level indistinguishability. That is, if

task-level indistinguishability can be achieved, then job-level in-

distinguishability is also achievable. It’s worth pointing out that

the inverse relation does not hold: achieving individual job-level

indistinguishability does not automatically grant the task-level in-

distinguishability. Yet, in practice, there exist real-time constraints

that restrict the degree of timing that we can tweak. In such cases,

the task-level indistinguishability may be infeasible to achieve. In

this paper, we propose an extended task model and a real-time

scheduler with an inter-arrival time randomized mechanism to

achieve job-level indistinguishability and, when feasible, task-level

indistinguishability.

4 SCHEDULE INDISTINGUISHABILITY
In this section we introduce the components (inter-arrival time

sensitivity and randomized mechanism) that achieve notions of

the job/task-level indistinguishability. These are fundamental to

developing the 𝜖-Scheduler that will be introduced in Section 5.

4.1 Randomizing Inter-Arrival Times
Let’s consider a task 𝜏𝑖 and its inter-arrival time function 𝜂𝑖 . The

function produces consistent inter-arrival times. To break this pre-

dictable behavior, we intend to randomize each inter-arrival time. To
this end, we propose an inter-arrival time randomized mechanism,

denoted by R(·), that is attached to the scheduler to add random

noise. The inter-arrival time randomized mechanism is defined as:

R(𝜏𝑖 , 𝑗) = ⌊ 𝜂𝑖 (𝑗) + 𝑌 ⌉ (2)

the 𝑗𝑡ℎ inter-arrival time of the task 𝜏𝑖

random noise drawn from some distribution centered at 0

where 𝜏𝑖 ∈ Γ, 𝑗 ∈ N represent the 𝑗𝑡ℎ inter-arrival time of the task

𝜏𝑖 .𝑌 is a random noise value drawn from some distribution centered

at 0. Note that the noise𝑌 is presented separately for the purpose of

illustration. Such a representation is the same as drawing a random

value from some distribution centered at 𝜂𝑖 (𝑗) – which is what the

𝜖-Scheduler is eventually based on. The outcome is rounded to the

nearest integer and taken as the randomized inter-arrival time.

The added random noise 𝑌 creates inconsistent inter-arrival

times for a task and breaks a task’s periodicity. Yet, without specify-

ing a noise distribution, it may be insufficient to obscure the task’s

behavior, for example, when the noise’s variance is insignificant.

Before examining the noise addition mechanism, we first formally

define indistinguishability in our context.

4.2 Inter-Arrival Time Indistinguishability
As introduced in Section 3.3, we are concerned with job/task-level

indistinguishabilities. To analyze such indistinguishabilities with

themechanism defined in Equation 2, we use a concept that’s similar

to the notion of differential privacy [18, 19].

Definition 4.1. (𝜖-Indistinguishability Inter-Arrival Time Ran-

domizedMechanism.) An inter-arrival time randomizedmechanism

R(·) is 𝜖-indistinguishable if

Pr[R(𝜏, 𝑗) ∈ S] ≤ 𝑒𝜖Pr[R(𝜏 ′, 𝑗 ′) ∈ S] (3)

any randomized inter-arrival time for any given task 𝜏

any randomized inter-arrival time of any given task 𝜏′

for all 𝜏, 𝜏 ′ ∈ Γ, 𝑗, 𝑗 ′ ∈ N and S ⊆ Range(R). ■

That is, R(·) enables inter-arrival time indistinguishability for a

single job instance if Equation 3 is satisfied.

Note that Definition 4.1 is general enough to consider both the

job-level and task-level indistinguishabilities. When 𝜏 ≠ 𝜏 ′, task-
level indistinguishability is implied; when 𝜏 = 𝜏 ′, job-level indis-
tinguishability is implied. It is worth noting that we can maintain

an independent 𝜖𝑖 value for each task 𝜏𝑖 and each of them achieves

their own 𝜖𝑖 -indistinguishability. The indistinguishability for the

whole task set is determined by the worst of the 𝜖𝑖 values [46] (that

corresponds to the task-level indistinguishability).

4.3 Inter-Arrival Time Sensitivity and Noise
To determine the degree of noise to be added to make two inter-

arrival times indistinguishable, We define “inter-arrival time sensi-
tivity”. Intuitively, the value of the inter-arrival time sensitivity is

assigned by the largest possible difference between two inter-arrival

times. However, the true assignment depends on the protection

goal (i.e., whether to achieve the job-level indistinguishability or

the task-level indistinguishability), as explained below.

Definition 4.2. (Inter-Arrival Time Sensitivity.) This reflects the

sensitivity of the function 𝜂𝜏 (·) defined, depending on the desired

indistinguishability goal, as:

(i) Job-level indistinguishability: the inter-arrival time sensitivity

for the job-level indistinguishability, denoted by Δ𝜂𝜏 , for a given
task 𝜏 , is defined as

Δ𝜂𝜏 =: max

𝑗, 𝑗 ′∈N
𝑗≠𝑗 ′

| 𝜂𝜏 (𝑗) − 𝜂𝜏 (𝑗 ′) | (4)

distance between any two inter-arrival times of the task 𝜏

that is task-specific.

(ii) Task-level indistinguishability: the inter-arrival time sensitivity,

denoted by Δ𝜂Γ , is defined as:

Δ𝜂Γ =: max

𝜏,𝜏 ′∈Γ
𝑗, 𝑗 ′∈N

| 𝜂𝜏 (𝑗) − 𝜂𝜏′ (𝑗 ′) | (5)

of any two tasks in the task set Γ
distance between any two inter-arrival times

that is task-set-dependent. ■

For simplicity, we use Δ𝜂 to represent either of the sensitivi-

ties when the context is clear. Then, the use of the Laplace dis-

tribution Lap(𝜂𝜏 , Δ𝜂𝜖) for generating the randomized inter-arrival

times preserves the 𝜖-indistinguishability from Definition 4.1 for

a single job instance. This property can be easily proved by ex-

panding Equation 3 with the probability density function of the

Lap(𝜂𝜏 , Δ𝜂𝜖) distribution [19, Theorem 3.6]. Therefore, the job-level

indistinguishability is achieved when Δ𝜂 = Δ𝜂𝜏 and the task-level

indistinguishability can be achieved when Δ𝜂 = Δ𝜂Γ .

4.4 𝜖-Indistinguishability in J Instances
The randomized mechanism R(·) with Laplace noise Lap(Δ𝜂𝜖) of-
fers 𝜖-indistinguishability for a single instance. However, an at-

tacker typically observes a longer sequence from the schedule.

Therefore, we are more interested in the conditions for achieving

𝜖-indistinguishability for a certain duration (as opposed to a single

point in time). As a noise draw occurs for every job instance, based

on the theorem of Sequential Composition [46, Theorem 3], the

privacy degradation is cumulative as the number of draws increases.

A smart attacker may be able to sort out the distribution by col-

lecting sufficient samples. Therefore, it is crucial to understand the

condition for providing the required level of indistinguishability

for a certain duration. To this end, we measure the duration in

the number of job instances (that corresponds to the number of

noise draws for the corresponding inter-arrival times). Then we

use the following theorem to determine the scale of the noise for

preserving 𝜖-indistinguishability up to 𝐽 job instances.

Theorem 4.3. The Laplace randomized mechanism R(·) with the
scale 𝐽 Δ𝜂

𝜖 is 𝜖-indistinguishable up to 𝐽 job instances. ■

This theorem can be proved by expanding Equation 3 with 𝐽

invocations of R(·). The proof is given in Appendix A for reference.

The assignment of 𝐽 for a given task set is discussed in Section 5.3.

4.5 Bounded Laplace Randomized Mechanism
While the introduced Laplace randomized mechanism offers 𝜖-

indistinguishability, the unbounded output domain for the random-

ized inter-arrival times makes it infeasible to adopt in real systems.

To address this problem, we introduce the “bounded Laplace ran-

domized mechanism”, i.e., the randomized inter-arrival time drawn

from a Laplace distribution is bounded by a given range. There are

typically two solutions for bounding the value drawn from a distri-

bution: (i) truncation and (ii) bounding [40]. Truncation projects

values outside the domain to the closest value within the domain.

Bounding, used in this paper, is to continue sampling indepen-

dently from the distribution until a value within the specified range

is returned. Let’s denote such a bounded Laplace distribution by

�̃�(𝜇, 𝑏,𝑇⊥,𝑇⊤) of which the drawn value is in the range [𝑇⊥,𝑇⊤].
Using such a bounded Laplace distribution allows a mechanism

to return randomized inter-arrival times within a range that’s feasi-

ble for the given constraints. However, it is known that the bounded

Laplace distribution cannot preserve the same level of probabilistic

guarantee (i.e., the 𝜖-indistinguishability in our context) with the

same scale parameter as a pure Laplace distribution and a doubling

of the noise variance is required to compensate for the loss [29, 40].

Based on this condition and Theorem 4.3, we define the bounded

inter-arrival time Laplace randomized mechanism as follows:

Definition 4.4. (Bounded Inter-Arrival Time Laplace Random-

ized Mechanism.) Let [𝑇⊥
𝑖
,𝑇⊤
𝑖
] be the feasible inter-arrival time

range for a given task 𝜏𝑖 , the bounded inter-arrival time Laplace

randomized mechanism is defined as

R̃ (𝜏𝑖 , 𝑗) = �̃�(𝜂𝑖 (𝑗) , 2𝐽𝑖Δ𝜂𝑖
𝜖𝑖

, 𝑇⊥
𝑖

, 𝑇⊤
𝑖

) (6)

𝑗𝑡ℎ inter-arrival time of 𝜏𝑖 scale of the noise distribution

bounds for randomized inter-arrival time

where �̃�(·) is the bounded Laplace distribution of which the drawn

values are bounded in the range [𝑇⊥
𝑖
,𝑇⊤
𝑖
] based on a pure Laplace

distribution Lap(𝜂𝑖 (𝑗), 2𝐽𝑖Δ𝜂𝑖𝜖𝑖
). ■

The variables𝑇⊥,𝑇⊤, Δ𝜂𝑖 , 𝐽𝑖 and 𝜖𝑖 are extended task parameters

of 𝜏𝑖 to be formalized in Section 5.1. Following Theorem 4.3, the

bounded inter-arrival time Laplace randomized mechanism R̃ (𝜏𝑖 , 𝑗)
is 𝜖-indistinguishable up to 𝐽 job instances.

5 𝜖-SCHEDULER
With the components described in Section 4, we now introduce

our proposed real-time scheduler, the 𝜖-Scheduler. In each task’s

arrival (the beginning of a new instance), the 𝜖-Scheduler uses R̃ (·)
for generating the task’s next arrival time (i.e., randomizing inter-

arrival times). In this sectionwe first introduce an extended RTS task

model that supports such an 𝜖-Scheduler, followed by discussion

for how the extended task parameters can be determined for a given

system to achieve job/task-level indistinguishability.

5.1 Extended Task Model
The basic task model presented in Section 3.2 is extended to include

parameters necessary for an 𝜖-Scheduler to achieve the desired

indistinguishability. In 𝜖-Scheduler, a task 𝜏𝑖 is characterized by

(T𝑖 ,D𝑖 ,𝐶𝑖 , 𝜂𝑖 ,𝑇
⊥
𝑖
,𝑇⊤
𝑖
,Δ𝜂𝑖 , 𝐽𝑖 , 𝜖𝑖) where [𝑇⊥

𝑖
,𝑇⊤
𝑖
] is a range of toler-

able periods, Δ𝜂𝑖 ≥ 0 is the inter-arrival time sensitivity parameter,

𝐽𝑖 is the task’s effective protection duration, and 𝜖𝑖 > 0 is the

indistinguishability scale parameter. At each new job arrival, the 𝜖-

Scheduler invokes R̃ (𝜏𝑖 , 𝑗) = �̃�(𝜂𝑖 (𝑗), 2𝐽𝑖Δ𝜂𝑖𝜖𝑖
,𝑇⊥
𝑖
,𝑇⊤
𝑖
) to determine

the next job’s randomized arrival time point.

In this extended task model, the parameters T𝑖 ,D𝑖 ,𝐶𝑖 , 𝜂𝑖 ,𝑇
⊥
𝑖

and 𝑇⊤
𝑖

are obtained from the system dynamics. The additional

parameters Δ𝜂𝑖 , 𝐽𝑖 and 𝜖𝑖 are to be given by the system designer.

As the degree of noise added to a task’s inter-arrival time relies

on the extended parameters, it is crucial to assign proper values

based on the desired indistinguishability goal. We now discuss the

considerations for determining these values.

5.2 Determining Inter-Arrival Time Sensitivity
Δ𝜂𝑖 represents the degree of random noise needed to make two inter-
arrival times indistinguishable and can be determined based on

Definition 4.2. The value of Δ𝜂𝑖 should be fixed for an execution in-

stance once assigned. In the case that we intend to achieve job-level

indistinguishability is to achieve for a given task 𝜏𝑖 , the value of

Δ𝜂𝑖 is determined solely by the task’s set of periods, T𝑖 . In this case,

each task’s sensitivity is independent of each other. On the other

hand, task-level indistinguishability requires that the sensitivity re-

flects all tasks in the system. Hence, the sensitivity for the task-level

indistinguishability is task set specific and all tasks are assigned

with the same sensitivity value. It is straightforward to see that

task-level sensitivity will be greater than job-level sensitivity of

any task (and hence larger noise will be added). It is up the system

designer to decide, taking potential performance degradation into

account, which type of indistinguishability should be achieved.

5.3 Calculating Protection Duration
Using the bounded Laplace mechanism, R̃ (·), an 𝜖-Scheduler is able
to preserve 𝜖𝑖 -indistinguishability up to 𝐽𝑖 job instances for a given

task. As pointed out in Section 4.4, the more noise samples collected,

the more likely an attacker is able to reconstruct the distribution

and reveal a task’s behavior. Therefore, 𝜖𝑖 -indistinguishability can’t

be guaranteed for an infinite time. For this reason, the 𝜖-Scheduler

should be used with other security measures for comprehensive pro-

tection against scheduler side channels. There exist some security

schemes that work well together in this context. For instance, one

can perform periodic security checks to detect possible intrusions

and anomalies [27]. With such a scheme, the distance between two

security checks can be used as a reference to compute the protection

duration parameter 𝐽𝑖 . Another feasible scheme is the restart-based

mechanism [1, 2] that enforces a reboot once a while. In such a case,

the maximum time to reset the system can be used to compute 𝐽𝑖 .

In both schemes, the adversary’s attack progress is disrupted once

the corresponding security measure kicks in and the 𝜖-Scheduler

offers further security guarantees from compromise via scheduler

side-channels. It is worth noting that not all attacks can be caught

by intrusion detection alone as system security is complex by its

10−2 10−1 100 101 102 103

εi

100

101

102

103

104

105

N
oi

se
S

ca
le

at
95

th
P

er
ce

nt
ile

(m
s) ∆ηi = 190

Ji

1

10

50

100

(a) Noise scale of Lap(0, 2𝐽𝑖Δ𝜂𝑖
𝜖𝑖

)

0 20 40 60 80 100 120 140 160 180 200
Inter-Arrival Time (ms)

0.000

0.002

0.004

0.006

0.008

P
ro

ba
bi

lit
y

D
en

si
ty

F
un

ct
io

n

Ji = 16, ∆ηi = 190, εi = 100

µ

33.3ms

100ms

(b) Probability density

Figure 4: (a) The noise scale of Lap(0, 2𝐽𝑖Δ𝜂𝑖𝜖𝑖
) at 95𝑡ℎ percentile

with Δ𝜂𝑖 = 190𝑚𝑠 and varying 𝜖𝑖 and 𝐽𝑖 . Both axes are dis-
played in a base 10 logarithmic scale. (b) Probability density
of the randomized inter-arrival times for the task 𝜏𝑖 with
T𝑖 = {33.33𝑚𝑠, 100𝑚𝑠}. The blue and green lines show the dis-
tribution when the desired period is at 33.33𝑚𝑠 and 100𝑚𝑠

respectively. In this case, 𝜖-Scheduler offers a job-level 𝜖-
indistinguishability for 𝜏𝑖 with 𝜖𝑖 = 100, Δ𝜂𝑖 = 190 and 𝐽𝑖 = 16.

very nature. For instance, the network attack demonstrated in Sec-

tion 7 will not be detected by IDS on a system and needs additional

network security that in itself isn’t guaranteed to work. Other side-

channel attacks (e.g., power consumption, EM emanations) will also

not be detected by a regular IDS since attackers do not actually

“intrude” into a system. Whereas using the 𝜖-Schedulers, we can

increase the complexity for would-be attackers and foil all of these

types of attacks. In such a scenario, our model can act as a founda-

tion for RTS designers to evaluate risks and needs to protect against

scheduler side-channels.

Note that 𝐽𝑖 is defined in the number of job instances as each job

arrival draws a random value from the distribution. When the job-

level indistinguishability is considered, each task’s 𝐽𝑖 is computed

independently so the value can be different across tasks. Let 𝜆 be

the protection duration in time, then

𝐽𝑖 =


𝜆

min(T𝑖)

 (7)

desired protection duration

the smallest period of 𝜏𝑖

𝐽𝑖 = max(


𝜆

min(T𝑗)

 | 𝜏 𝑗 ∈ Γ) (8)

the smallest period in the task set Γ

Equation 7 offers 𝜖𝑖 -indistinguishability to 𝜏𝑖 within 𝜆 time. For task-

level indistinguishability, 𝐽𝑖 for all tasks must be equal to offer the

desired indistinguishability guarantee (subject to 𝜖𝑖) as calculated

by Equation 8 where 𝜆 is a global protection duration in time.

5.4 Choosing Indistinguishability Parameter
With the noise level (Δ𝜂𝑖) and protection duration (𝐽𝑖) determined

for a given task set, 𝜖𝑖 is the major remaining variable that a system

designer must specify to secure the desired degree of protection.

Ideally, a smaller 𝜖𝑖 value provides a better indistinguishability by

generating randomized inter-arrival times with larger noise scale.

However, a large noise scale may sometimes be impractical for real-

time applications. Figure 4(a) shows examples of noise scales (the

y-axis, represented by the 95
𝑡ℎ

percentile) with varied 𝜖𝑖 values (the

x-axis) for a fixed Δ𝜂𝑖 = 190𝑚𝑠 and various 𝐽𝑖 settings. It suggests

that an 𝜖𝑖 value above an order of magnitude can be practical to

most RTS. Figure 4(b) shows an example of the distributions of the

inter-arrival times for a task that has T𝑖 = {33.33𝑚𝑠, 100𝑚𝑠} with
Δ𝜂𝑖 = 190𝑚𝑠 , 𝐽𝑖 = 16 (with assuming 𝜆 = 500𝑚𝑠) and 𝜖𝑖 = 100. It

shows how a task’s inter-arrival times are randomly generated by

an 𝜖-Scheduler in a typical RTS setting.

Nevertheless, a suitable value for 𝜖𝑖 is highly system-dependent.

Designers must be aware of system parameters (timing, periods,

deadlines, etc.) and dynamics of the RTS. Ultimately, it is up to the

system designer to select a value based on the overall security and

performance goals. This is analogous to the differential privacy

context where designers must be familiar with data and database

parameters before applying their mechanisms. Fortunately, a lot

of information needed for such “tuning” is already obtained as

part of the rigorous engineering effort that’s undertaken during

RTS design [16, 43, 60]. For example, each task’s acceptable period

range can be determined based on given specifications (e.g., CPU,

memory) and application QoS requirements. The minimum range

of a task must be greater than or equal to its best-case execution

time (a value obtained during the aforementioned design phase).

The maximum range shouldn’t be so large that makes the appli-

cation unusable (based on the desired QoS). We can then leverage

simulation techniques to automate the calculation of suitable pa-

rameters based on (a) desired protection outcomes and (b) average
performance expectations.

Note that all tasks must be assigned an identical 𝜖 value to

achieve task indistinguishability while each task can have an inde-

pendent 𝜖 value for job indistinguishability.

6 IMPLEMENTATION IN LINUX
We implemented 𝜖-Scheduler in both (a) real-time Linux kernel

4

running on Raspberry Pi and (b) an open-source simulation plat-

form
5
that we developed. The simulation is used for design space

exploration (Section 8) and the real-time Linux kernel is used for

demonstration with real hardware and applications and also to ana-

lyze overheads. In this section we provide the platform information

(also summarized in Table 5 in Appendix) and an overview of the

implementation in the real-time Linux kernel.

6.1 Platform and Operating System
We used a Raspberry Pi 4 (RPi4) Model B

6
development board as

the base platform for our implementation. RPi4 runs a vendor-

supported open-source operating system, Raspbian (a variant of

Debian Linux). We forked the Raspbian kernel and modified it to

implement the proposed 𝜖-Scheduler. Since we focus on the single

core environment in this paper, the multi-core functionality of RPi4

was deactivated by disabling the CONFIG_SMP flag during the Linux
kernel compilation phase. The boot command file was also set with

maxcpus = 1 to further ensure the single core usage.

Real-time Environment. Themainline Linux kernel does not pro-

vide any hard real-time guarantees evenwith the custom scheduling

policies (e.g., SCHED_FIFO, SCHED_RR, SCHED_DEADLINE). However
the Real-Time Linux (RTL) Collaborative Project7maintains a kernel

(based on the mainline Linux kernel) for real-time purposes. This

4
https://github.com/synercys/Epsilon-Scheduler

5
https://github.com/synercys/RTS-Schedule-Simulator

6
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/.

7
https://wiki.linuxfoundation.org/realtime/

patched kernel (known as the PREEMPT_RT) ensures real-time be-

havior by making the scheduler fully preemptable. In this paper, we

use a PREEMPT_RT-patched kernel (4.19.71-rt24+) to enable real-

time functionality. To further enable the fully preemptive function-

ality for the PREEMPT_RT patch, the CONFIG_PREEMPT_RT_FULL
flag was enabled during the kernel compilation phase. Furthermore,

the variable sched_rt_runtime_us was set to −1 to disable the

throttling of the real-time scheduler. This setting allows the real-

time tasks to use up the entire 100% CPU utilization if required
8
.

Also, the active core’s scaling_governor was set to performance
mode to disable dynamic frequency scaling during the experiments.

Vanilla EDF Scheduler. Since Linux kernel version 3.14, an EDF

implementation (i.e., SCHED_DEADLINE) is available in the kernel

code base [21]. Therefore, we used this built-in scheduler as the

baseline EDF implementation and extended it to implement an 𝜖-

Scheduler. In Linux the system call sched_setattr() is invoked
to configure the scheduling policy for a given process. By design,

the EDF scheduler in Linux has the highest priority among all the

supported scheduling policies (e.g., SCHED_NORMAL, SCHED_FIFO
and SCHED_RR). It’s also worth noting that the Linux kernel main-

tains a separate run queue for SCHED_DEADLINE (i.e., struct dl_rq).
Therefore, it is possible to extend SCHED_DEADLINE while keeping

other scheduling policies untouched.

6.2 Implementation of 𝜖-Scheduler
We implement the 𝜖-Scheduler as a scheduling mode under the

existing SCHED_DEADLINE. The mode can be switched by setting a

custom kernel parameter /proc/sys/kernel/sched_dl_mode. The
𝜖-Scheduler’s main functionality is implemented in the function

replenish_dl_entity() that is invoked whenever a new job of a

real-time task arrives. In this function, the 𝜖-Scheduler generates

a randomized inter-arrival time based on the Laplace distribution

associated with the current task (described below). The generated

inter-arrival time is used to compute the deadline for the newly ar-

rived job. This value is also used in the function start_dl_timer()
to schedule the arrival of the next job.

Laplace Distribution. 𝜖-Scheduler requires the generation of ran-

dom numbers based on Laplace distribution for obtaining random-

ized inter-arrival times. However, the Linux kernel code is self-

contained (i.e., it does not depend on the standard or any other

C libraries) and thus a random number generator that’s based on

Laplace distribution is not natively supported. While it is possible

to build such a generator out of the existing random number genera-

tion function get_random_bytes(), the required computations(e.g.,
logarithm calculations) will be costly. Considering that the task set

parameters are fixed at the design stage, the Laplace distributions

needed by each task are fixed and known as well. Therefore, rather

than building a common Laplace distribution-based random num-

ber generator, we may convert each required Laplace distribution’s

percent point function (PPF) into an array and store each of them in

the kernel. Then, a Laplace distribution-based random number can

be drawn by randomly picking (with using get_random_bytes())
a number from the array that’s associated with the desired Laplace

8
This change in system variable settings was mainly configured for the purpose of

experimenting with the ideas of 𝜖-Scheduler only. For most real use-cases, users can

keep this system variable untouched for more flexibility.

https://github.com/synercys/Epsilon-Scheduler
https://github.com/synercys/RTS-Schedule-Simulator
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://wiki.linuxfoundation.org/realtime/

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
∆X (meters)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

∆
Y

(m
et

er
s)

Vanilla EDF

ε− Sched(103)

(a) 𝜖-Scheduler (𝜖 = 10
3)

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
∆X (meters)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

∆
Y

(m
et

er
s)

Vanilla EDF

ε− Sched(10)

(b) 𝜖-Scheduler (𝜖 = 10)
Figure 5: The trajectory of the autonomous rover through
predefined way points running under 𝜖-Scheduler. The re-
sult indicates that larger diversification and higher protec-
tion with 𝜖 = 10 can result in larger offsets in trajectory. The
worst observed deviations are 0.027𝑚 and 0.057𝑚 in the cases
of 𝜖 = 10

3 and 𝜖 = 10 respectively, compared to the trajectory
of Vanilla EDF. These deviations are reasonably small and
the autopilot performance is deemed acceptable.

distribution. The details of the aforementioned conversion and the

algorithm for the PPF-based Laplace distribution random number

generator are presented in Appendix B.

While this method allows us to draw a Laplace distribution-based

random number with a cost of a get_random_bytes() call, each
distribution requires some memory to store an array converted

from the PPF. Yet, as demonstrated by our implementation, an u32
(i.e., unsigned int) array storing 100 PPF points (which takes up

to 400 bytes) is sufficient to produce the desired distribution. An

example of the histogram for the generated random inter-arrival

times drawn by the implemented 𝜖-Scheduler in RT Linux for a task

with a target period 100𝑚𝑠 can be found in Figure 11 in Appendix.

7 EVALUATION ON REAL APPLICATIONS
In this section we evaluate the 𝜖-Scheduler with using two diverse,

real applications to demonstrate its usability and understand its

security and performance impact in a real-world setting. A design

space exploration using simulated tasks is presented in Section 8.

7.1 Autonomous Rover System
7.1.1 Experiment Setup. We first conducted a set of experiments

on a 1/24 scale rover running an autopilot application, RoverBot
9
,

on the RPi4 platform introduced in Section 6. The autopilot appli-

cation consists of 7 tasks (i.e., Actuator, RCInput, BatteryMonitor,

AHRS, Localizer, Navigator and GroundControl). Each task runs as

a process in Linux and can be configured as a real-time or non-real-

time task. The system is equipped with an Intel RealSense T265

tracking camera
10

that enables precise indoor localization as well

as indoor navigation. With such features, we let the rover steer

through a series of predefined way points that form a closed loop

and record the resulting trajectory under both (a) Vanilla EDF and
(b) 𝜖-Scheduler, both with 𝜖 = 10 and 𝜖 = 10

3
. An additional test

that uses a different set of predefined way points and associated

results are presented in Appendix C.1 for reference. In each test,

we let the rover run three rounds following the ways points. To

analyze the performance of the system, we focus on adding noise to

the Actuator task that receives control commands and sends PWM

9
https://github.com/bo-rc/Rover

10
https://www.intelrealsense.com/tracking-camera-t265

Table 1: K-S Test and Average Minimum L2 Distance
Way Points Comparison K-S p-val Min Dist (Meters)

𝜖 = 10
3
, vanilla 0.016512 0.9997 0.006885

Irregular 𝜖 = 10, vanilla 0.015882 0.9998 0.009288

𝜖 = 10
3
, 𝜖 = 10 0.018564 0.9982 N/A

updates for driving, steering and throttle (at 100𝐻𝑧), while keeping

other tasks as non-real-time tasks.

7.1.2 Results. The experiment results are shown in Figure 5. In

all test cases, the rover always starts at the coordinate (0, 0). As
the results suggest, 𝜖 = 10 demonstrated a larger deviation in

the trajectory compared to 𝜖 = 10
3
. The mean task frequency is

65.06𝐻𝑧 with 𝜖 = 10
3
and 10.22𝐻𝑧 with 𝜖 = 10. On the other hand,

the trajectories show that the rover is still able to hit the target way

points in both 𝜖 = 10
3
and 𝜖 = 10 cases. In particular, the trajectory

of 𝜖 = 10
3
matches that of Vanilla EDF with small deviations. This

shows that the 𝜖-Scheduler can be applied to real applications and

also meet users’ needs (e.g., better protection or better performance)

using the adjustable 𝜖 parameter.

Table 1 shows the values obtained from the kolmogorov-smirnov

(K-S) tests [45] (detailed in Appendix C.2) and the average mini-

mum distance between the paths followed by the rover with the

respective schedulers. The very small K-S statistic values and very

large corresponding 𝑝-values confirm that the rover paths with

both 𝜖-Schedulers (𝜖 = 10
3
and 𝜖 = 10), closely follow the original

way points as Vanilla EDF and that the former two paths closely

resemble each other. The last column in the table shows the aver-

age minimum distance between a point in the observed path (with

𝜖-Scheduler 𝜖 = 10
3
or 𝜖 = 10) and a point in the reference path

(Vanilla EDF). Firstly, for each point in the observed path, we find

a point in the reference path that corresponds to the minimum

distance. Then, we simply take the average of all such minimum

distances. The very small values of average minimum distances

show that the observed paths closely follow the reference path.

Hence, we can conclude from our evaluation above that although

running the rover with our 𝜖-Scheduler (𝜖 = 10
3
or 𝜖 = 10) causes

small deviations from the expected trajectory, the deviations them-

selves are negligible, making the performance drop relatively in-

significant. However, the security improves greatly due to the ran-

domization introduced by our 𝜖-Scheduler.

7.2 Video Streaming over the Internet
7.2.1 Experiment Setup. We conducted another set of experiments

to test the effectiveness of our 𝜖-Scheduler on RTS. We built a video

streaming application using Dynamic Adaptive Streaming over

HTTP (DASH) as the video streaming standard and flask [24] for

our web application. Our goal was to show that the 𝜖-Scheduler

is useful in negating traffic-based attacks (types of data leakage

attacks as presented by Gu et al. [25]11) on such video streaming

applications without significantly affecting the performance of the

application itself. The video stream is hosted by a server and the

client is the receiver of the video stream that is transmitted via

the application over the internet over a distance of 1800 miles. Our

attacker is placed in between the server and the client, so that

11
We created the attack from scratch as the authors denied us access to the source

code.

https://github.com/bo-rc/Rover
https://www.intelrealsense.com/tracking-camera-t265

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
15 tests for video 1 [vanilla, t=30s]

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

di
st

an
ce

truth (vid1)
inferred
mean distance

(a) Vanilla EDF

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
15 tests for video 1 [eps=1000, t=30s]

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

di
st

an
ce

vid5
vid3

vid3
vid5

vid2
vid1

vid4
vid4

vid2
vid3

vid5
vid1

vid2
vid3

vid4

truth (vid1)
inferred
mean distance

(b) 𝜖-Scheduler (𝜖 = 10
3)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
15 tests for video 1 [eps=10, t=30s]

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

di
st

an
ce

vid5
vid2

vid2
vid4

vid3
vid2

vid4
vid5

vid2
vid3

vid4
vid5

vid3
vid4

vid5

truth (vid1)
inferred
mean distance

(c) 𝜖-Scheduler (𝜖 = 10)

Figure 6: The similarity distance measures for 15 traffic samples with the server running on RPi4. We shaded the region
between the maximum and the minimum distances. The mean distances are shown in gray dotted lines as references. Clearly,
the similarity distances between the traffic patterns and video 1’s fingerprints are rarely the minimum across the 15 tests with
𝜖-Scheduler (2 out of 15 with 𝜖 = 10

3 and 0 out of 15 with 𝜖 = 10), while they are the minimum with Vanilla EDF in 13 out
of 15 tests. This shows that the random noise added to the traffic patterns under 𝜖-Scheduler reduces the effectiveness of the
traffic-based video identification attack.

Table 2: FPS Observed by The Client (Video 1)
Scheduler Max Mean Min Std CV

Vanilla EDF 32.00 29.90 28.00 0.68 0.02

𝜖-Scheduler (𝜖 = 10
3
) 28.00 25.87 22.00 1.71 0.07

𝜖-Scheduler (𝜖 = 10) 14.00 9.23 6.00 2.07 0.22

eavesdropping on the network traffic can be easily carried out.

The performance of the application is measured using the frames

per second (FPS) of the video. Ideally, the FPS of the video at the

client’s end is similar to the FPS of the video sent from the server.

It is important to note that the 𝜖-Scheduler only randomizes the

arrival time of video frames to the client and does not change the

content of the video. An attack can be devised on such applications

by exploiting some key properties of DASH video streaming. The

details of how the attack works are presented in Appendix D.

In this experiment, we set 𝜖-Scheduler with Δ𝜂 = 190𝑚𝑠 , 𝐽 = 16

with the desired protection duration to be 𝜆 = 500𝑚𝑠12 for the video

streaming task running at 30𝐻𝑧. Our evaluation verifies whether

the video identification attack in the case of the 𝜖-Scheduler shows

results that are random at best. In our setup, we use five videos with

varying content, frame rates and resolutions
13

(see Appendix D).

We consider a total of five streaming scenarios, each scenario being

the event when only one of the five videos is being streamed via

our application, i.e., only video 𝑥 is being streamed, where 𝑥 ∈
{1, 2, ..., 5}. Eavesdropping is done for 30 seconds with 2 seconds

as the segment length and the corresponding traffic patterns are

captured using Wireshark. For repeatability, this is done fifteen

times for each scheduler (Vanilla EDF, 𝜖-Scheduler with 𝜖 = 10 and

𝜖 = 10
3
), resulting in 45 traffic pattern samples for each scenario.

7.2.2 Experiment Results. For identification purposes, we calculate

the distance metric 𝑑𝑖𝑠𝑡 , which is representative of the similarity

between a given traffic pattern and a video fingerprint. Hence,

given a traffic pattern and a dataset containing 𝑛 videos, there are

𝑛 distances generated (𝑛 = 5 in our case). The smaller the value

of 𝑑𝑖𝑠𝑡 , the greater the probability for the traffic pattern matching

12
It is shown that the security tasks are typically assigned periods in the range

[250𝑚𝑠, 500𝑚𝑠] [27]. In our evaluation, we take 500𝑚𝑠 (i.e., the worst protection) to
estimate protection duration 𝐽 .
13
The video resolutions used in our experiments are constrained by (i) the hardware

used (i.e., a single processor in RPi4 in our setup), (ii) the implementation of the

streaming application and (iii) the target streaming frame rate. It is not a limitation

of the proposed scheduling scheme and the 𝜖-Scheduler can work with any video

resolution as long as computation power is available and the workloads are feasible

for the underlying hardware platform.

the video fingerprint, which is equivalent to the probability of the

corresponding video being streamed during the eavesdropping. In

order to compensate for our relatively short eavesdropping time,

instead of setting thresholds on distances to identify the target

video as done by Gu et al. [25], we simply identify the target video

as being the one that had the minimum distance out of the five

calculated distances. Figure 6 shows the similarity distances for the

traffic samples collected when video 1 was being streamed. The

results obtained when the other videos (2,3,4 and 5) were being

streamed, closely match that of video 1.

Table 2 shows the FPS statistics observed at the client’s end over

a duration of 30 seconds for video 1 in which an FPS data point is

computed using the number of frame packets received from the

Internet per 0.5 seconds. The FPS of video 1 sent from the server

is 30. The CV (Coefficient of Variation) value represents relative

variability of the FPS in each scheduler configuration. It reveals

that FPS in the case of Vanilla EDF has the smallest variability as

there is no randomization while it shows the largest variability in

the case of 𝜖-Scheduler with 𝜖 = 10. In the case of 𝜖-Scheduler with

𝜖 = 10
3
, it has a reasonably small CV value and slightly decreased

mean FPS with a good protection against the eavesdropping attack

that’s comparable to 𝜖 = 10 (see Figure 6). As a result, it shows

that a balance between performance (i.e., FPS) and security can be

reached by using 𝜖-Scheduler with 𝜖 = 10
3
in this experiment.

8 DESIGN SPACE EXPLORATION
Besides the evaluation with real applications, we also conduct an

evaluation with using simulations as well as a real hardware plat-

form (i.e., RPi4). The simulation enables us to explore a larger design

space while the hardware platform enables us to understand the

true scheduling overheads in a realistic environment.

8.1 Experiment Setup
8.1.1 Simulation. A set of simulated tasks with timing parame-

ters of avionics system [49] (total task utilization 0.64) is used to

examine the outcome of the 𝜖-Scheduler in the first part of our

evaluation. The tasks’ parameters are shown in Table 6 in Appen-

dix. The 𝜖-Scheduler is also tested extensively using simulation

tasks generated from a mechanism is commonly used in litera-

ture [7, 14, 27, 61]. The details for the generation of the 6000 tested

task sets are provided in Appendix E.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Frequency (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

A
m

pl
it

ud
e

(N
or

m
al

iz
ed

) Frequency Amplitude

Peak Threshold

(a) Vanilla EDF
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Frequency (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

A
m

pl
it

ud
e

(N
or

m
al

iz
ed

) Frequency Amplitude

Peak Threshold

(b) TaskShuffler EDF

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Frequency (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

A
m

pl
it

ud
e

(N
or

m
al

iz
ed

) Frequency Amplitude

Peak Threshold

(c) 𝜖-Scheduler (𝜖 = 10
3)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Frequency (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

A
m

pl
it

ud
e

(N
or

m
al

iz
ed

) Frequency Amplitude

Peak Threshold

(d) 𝜖-Scheduler (𝜖 = 10)
Figure 7: Results of the DFT analysis for the avionics tasks
(Table 6 in Appendix). The blue lines are the normalized
amplitudes for the corresponding frequency bins and the
green lines are the Z-scored based moving peak threshold
for detecting outstanding peaks. The results suggest that 𝜖-
Scheduler creates a wide range of noise in the frequency
spectrum and is effective in obscuring the periodic elements
enclosed in the original schedule.

To explore the best-case protection as well as the impact on the

system performance, we configure the extended task parameters to

achieve the task-level indistinguishability. The efficacy of job-level

indistinguishability is specifically examined against the ScheduLeak

attack [14] (results presented in Section 8.2.3). To achieve the task-

level indistinguishability, Δ𝜂 is assigned to 200𝑚𝑠 − 10𝑚𝑠 = 190𝑚𝑠 .

𝐽𝑖 for each task is calculated using Equation 8 with a protection

duration of 500𝑚𝑠 (demonstrated to be practical to perform periodic

security checks RTS [27]). We consider two 𝜖 settings 10 and 10
3

that represent values that one may reasonably choose based on the

noise range shown in Figure 4. In our experiments, we use a fixed

simulation duration (5000𝑚𝑠) so that we are able to compare the

experiment results across different task sets.

We also include the vanilla EDF scheduler and a state-of-the-art

randomization-based scheduler for comparison. The randomization-

based scheduler, labeled as “TaskShuffler EDF”, is an EDF-based

scheduler that ports the TaskShuffler’s randomization protocol.

8.1.2 Measuring Scheduling Overheads. To evaluate the scheduling
overheads, we conduct experiments on the RPi4 platform running

RT Linux. We use the built-in SCHED_DEADLINE scheduler as the

Vanilla EDF scheduler and an implementation of TaskShuffler EDF

for comparison. The timing overheads for a function is measured

using the trace-cmd command. For evaluating power consump-

tion, we use a High Voltage (HV) Power Monitor manufactured

by Monsoon
14

that supplies a 5.2𝑉 power to the RPi4 board. The

power consumption is then monitored in the monitor’s software,

PowerTool version 5.0.0.25.

8.2 Experiment Results
8.2.1 Discrete Fourier Transform Analysis. First we try to under-

stand the (deterministic) periodicity in the schedules produced by:

(a) Vanilla EDF scheduler, (b) TaskShuffler EDF scheduler and (c)
our 𝜖-Scheduler (with 𝜖 = 10

3
and 𝜖 = 10). Since we are concerned

about the periodic components in the task schedules, frequency

spectrum analysis tools such as DFT [42] can be useful (the details

of measurement for DFT are provided in Appendix F).

We conduct the DFT analysis on the schedules based on the

avionics task set (Table 6 in Appendix) and the resulting frequency

14
https://www.msoon.com/high-voltage-power-monitor

(a) Outstanding peak count (b) Average slot entropy
Figure 8: The results indicate (a) Vanilla EDF yields a large
number of peaks that are useful for adversaries to learn the
schedule while there are no significant amount of peaks de-
tected with 𝜖-Scheduler and (b) 𝜖-Scheduler generates diver-
sified scheduleswith higher entropy (i.e.,more randomness).

spectra are shown in Figure 7. As revealed by the peaks displayed

in Figure 7(a), the task periods are easily identifiable in the sched-

ule generated by the vanilla EDF scheduler because of its work-

conserving nature. It’s worth pointing out that the 100𝑚𝑠 (i.e., 10𝐻𝑧)
value does not show up as a peak in the spectrum because the cor-

responding task has a very small execution time (i.e., 0.002𝑚𝑠).

Figure 7(b) shows the spectrum of the same task set scheduled

under the TaskShuffler EDF scheduler and the result is similar to

the vanilla EDF scheduler except with more base noise. This is due

to the high task set utilization (i.e., 0.64 in this case) that provides

fewer opportunities for obfuscating the schedule. While the task set

may not be exhaustive, it does demonstrate the shortcoming of the

TaskShuffler’s randomization protocol – it gets less effective when

the system utilization is high. This shortcoming can also be seen in

later experiments. On the other hand, Figure 7(c) and (d) show the

spectra when scheduled using the 𝜖-Scheduler with 𝜖 = 10
3
and

𝜖 = 10, respectively. Both settings add significant noise across the

entire frequency domain. As a result, no peaks stand out, especially

ones that match the task frequencies.

The green lines shown in Figure 7 are the moving peak threshold

calculated using the Z-score based peak detection algorithm (see

Appendix F for details). From the figures we can see that the thresh-

old is useful for identifying the outstanding peaks while filtering

out background noise. The outstanding peaks represent the true

periodicity coming out of the schedule and thus are particularly

useful for attackers to reconstruct timing information. Intuitively,

the more outstanding peaks that are collected, the more precise

information the attackers have available to them.

Next we use the aforementioned peak detection algorithm to

count the number of outstanding peaks and test with extensive

simulations to get a broader understanding of the effectiveness

of 𝜖-Scheduler in obscuring the task periodicity. The experiment

results are presented in Figure 8(a) where each point represents the

result of a task set for the corresponding scheduler. As expected,

the vanilla EDF scheduler yields systems with stronger periodicity

and more peaks that stand out. On the other hand, the TaskShuf-

fler EDF scheduler can effectively obscure the task periodicity for

most of the task sets except those with higher utilization. With 𝜖-

Scheduler, no significant peaks are detected due to the addition of

larger overall noise in both 𝜖 = 10
3
and 𝜖 = 10 settings. The result

also demonstrates that the efficacy of 𝜖-Scheduler is independent

of the task utilization, in contrast with Vanilla and TaskShuffler.

https://www.msoon.com/high-voltage-power-monitor

[0.0,0.1] [0.1,0.2] [0.2,0.3] [0.3,0.4] [0.4,0.5] [0.5,0.6] [0.6,0.7] [0.7,0.8] [0.8,0.9] [0.9,1.0]
Task Set Utilization

0.0

0.2

0.4

0.6

0.8

1.0

In
fe

re
nc

e
P

re
ci

si
on

of
φ̃
v

Vanilla EDF

TaskShuffler EDF

ε− Sched(103)

ε− Sched(10)

ε− Sched(103)∗
ε− Sched(10)∗

Figure 9: The inference precision results of 10 · 𝐿𝐶𝑀 (𝑇𝑜 ,𝑇𝑣)
grouped by the task set utilization. The experiment suggests
that 𝜖-Scheduler can offer effective protection against the
ScheduLeak attack. Such an effect is independent to the at-
tack duration and the task set utilization.

8.2.2 Average Slot Entropy. Next we analyze the schedules by mea-

suring their average slot entropy. The notion of Schedule Entropy
was first introduced to calculate the randomness given to a task

schedule by the TaskShuffler scheduling algorithm [61]. They then

proposed the Upper-Approximated Schedule Entropy, 𝐻Γ (S), to em-

pirically estimate the schedule entropy of a given task set. A bound

is then derived by Vreman et al. [57] showing the legitimacy of

such estimation. As the scale of the entropy depends on the length

of the schedule under analysis, in this paper we use Average Slot
Entropy [57] that calculates the mean slot entropy based on the

upper-approximated schedule entropy.

The results are shown in Figure 8(b). Similar to Figure 8(a), a

point represents the average slot entropy of a task set under the cor-

responding scheduler. The results indicate that 𝜖-Scheduler yields
higher entropy than the other two schedulers even when the system

utilization is high (note that TaskShuffler EDF fails to obfuscate the

schedules in these instances). For the 𝜖-Scheduler, 𝜖 = 10 generally

performs better than 𝜖 = 10
3 w.r.t. the entropy as the former has a

wider variation range for the noise-enhanced inter-arrival times.

8.2.3 Inference Precision. To understand the effectiveness of our

mechanisms against scheduler side-channel attacks, we carry out

the ScheduLeak attacks [14] against the simulation tasks. The met-

ric, inference precision [14, Definition 2], denoted by I𝑜𝑣 , was intro-
duced to evaluate the effectiveness of a side-channel attack w.r.t.
the task phase inference. It represents the precision of the inferred

phase 𝜙𝑣 compared to the true phase of a target task 𝜙𝑣 . The infer-

ence precision is calculated by I𝑜𝑣 =

����Δ𝜙𝑇𝑣
2

− 1

���� A larger I𝑜𝑣 indicates

that the inference 𝜙𝑣 is more precise in inferring 𝜙𝑣 .

To illustrate, let us consider a task set consisting of 𝑁 tasks

Γ = {𝜏1, 𝜏2, ...𝜏𝑛} whose task IDs are ordered by their periods (i.e.,
𝑇1 > 𝑇2 > ... > 𝑇𝑛). The observer (attacker) task is then selected as

the (
⌊
𝑛
3

⌋
+1)-th task and the victim task is selected as the (𝑛−

⌊
𝑛
3

⌋
)-

th task. This assignment ensures that there exist other tasks with

diverse periods (i.e., somewith smaller periods and somewith larger

periods compared to 𝑇𝑜 and 𝑇𝑣 .)

We first run experiments for achieving task indistinguishabil-

ity. The results suggest that ScheduLeak shows better inference

precision as attack duration increases for both vanilla EDF and

TaskShuffler. On the other hand, 𝜖-Scheduler offers consistent pro-
tection throughout the entire course of the attack (a plot for this

The Number of Task Sets that Have
Deadline Misses in ε−Sched(10) 8

600

16
600

58
600

[0
.0

,0
.1

]

[0
.1

,0
.2

]

[0
.2

,0
.3

]

[0
.3

,0
.4

]

[0
.4

,0
.5

]

[0
.5

,0
.6

]

[0
.6

,0
.7

]

[0
.7

,0
.8

]

[0
.8

,0
.9

]

[0
.9

,1
.0

]

Task Set Utilization

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
F

re
qu

en
cy

E
rr

or
R

at
io

ε−Sched(103) ε−Sched(10)

Figure 10: Results of themean frequency error ratio grouped
by the system utilization. It shows that a large 𝜖 value can
lead to greater mean frequency error and also cause some
tasks to miss deadlines when the utilization is high, as dis-
played by the plot at the top section that shows the number
of task sets that have experienced deadline misses in each
utilization group with 𝜖 = 10.

experiment result is provided in Appendix Figure 15). Figure 9

shows the breakdown of the inference precision results grouped

by the utilization. It reveals that the TaskShuffler scheduler offers

less effective protection when the utilization is high due to limited

possible randomization. On the other hand, our 𝜖-Scheduler yields

consistent performance across all task utilizations leading to an

average inference precision (0.498 and 0.501 for 𝜖 = 10
3
and 𝜖 = 10

respectively) that is close to the outcome produced by a random guess.
Next, we test if job indistinguishability for the victim task is

sufficient to protect it against ScheduLeak. Here, all tasks have con-

sistent inter-arrival times based on their periods (i.e., 𝜖𝑖 = ∞) except
the victim task. The results are presented as the 5

𝑡ℎ
(𝜖-𝑆𝑐ℎ𝑒𝑑 (103)∗)

and 6
𝑡ℎ

(𝜖-𝑆𝑐ℎ𝑒𝑑 (10)∗) bars in each group shown in Figures 9 and

15. As shown, the victim task is protected by job indistinguishability.

The ScheduLeak attack fails to take advantage of the side channels

and yields inference precision at a level similar to a random guess.

8.2.4 QoS-Based Results. While the above results show that the 𝜖-

Scheduler is effective in increasing the noise in the schedule, we are

interested in the impact on the QoS of the tasks. We first examine

deadline misses in our experiments. As expected, both Vanilla EDF

and TaskShuffler EDF obey strict real-time constraints and thus do

not experience any deadline misses. In 𝜖-Scheduler, no deadline

miss has been observed when 𝜖 = 10
3
. However, with 𝜖 = 10, we

observe intermittent deadline misses in some of task sets with high

utilization. The number of task sets encountering deadline misses in

such a setting is plotted at the top of Figure 10. As the result shows,

only 1.37% of the tested task sets have deadline misses. Among

these cases, no consecutive deadline miss has been observed.

We next examine how close to the indistinguishable tasks per-

form to the desired frequencies. A task’s frequency error is calcu-

lated as the difference between the task’s mean and desired fre-

quencies. The mean of the frequency errors (grouped by task set

utilization) is shown in the bar chart in Figure 10. The result in-

dicates that task sets scheduled by 𝜖-Scheduler with 𝜖 = 10 has

frequency error significantly larger than that with 𝜖 = 10
3
. It is

expected as 𝜖 = 10 yields a wider inter-arrival range (more noise

Table 3: Summary of Scheduling Overhead Measurement
Mean of Measurement Vanilla EDF T.S. EDF 𝜖 = 10

3 𝜖 = 10

Context Switch Count Ratio 1 2.525 0.914 0.696

pick_next_dl_entity() 1.25𝑢𝑠 4.3𝑢𝑠 1.44𝑢𝑠 1.39𝑢𝑠

𝜖-Scheduler function* - - 5.79𝑢𝑠 5.41𝑢𝑠

Power Usage (performance) 2.37𝑊 2.39𝑊 2.38𝑊 2.36𝑊

Power Usage (ondemand) 2.20𝑊 2.3𝑊 2.08𝑊 2.05𝑊

* get_next_inter_arrival_time()

added). It is also worth pointing out that the frequency error is

due to the bounds in generating the noise-added inter-arrival times

that can lead to an asymmetric distribution (as an example, see the

distribution for 𝜇 = 33.3𝑚𝑠 in Figure 4(b)).

While the mean task frequency gives us an insight into the

overall performance of the service delivery, it is crucial to know how

often the task is performing at a frequency below what is expected

(i.e., with inter-arrival times larger than the desired period) as such

execution usually has a direct impact on the task’s commitment

to the service delivery. We measure such a property for a task

by calculating the ratio of the number of under-performing inter-

arrival times to the total number of generated inter-arrival times.

In this experiment, we first compute the worst under-performance

ratio for each task set (by measuring it for each task and selecting

the worst in the task set) and then calculate the mean of the worst

under-performance ratios. From our experiment results, the under-

performance ratio can be biased towards 0.5 and above, leading to

a degradation in the execution frequency (a detailed experiment

plot is provided in Appendix, Figure 16). This usually happens to

the task that has a small target period and hence, an asymmetric

distribution that tends to generate larger inter-arrival times (again,

see Figure 4(b) for an example). It hints that one should expect a

degradation in the service when using 𝜖-Scheduler, particularly

with a small 𝜖 value (i.e., larger noise and variation in the schedule).

8.2.5 Scheduling Overhead. We next evaluate the scheduling over-

head of the 𝜖-Scheduler, togetherwith the Vanilla EDF and TaskShuf-

fler EDF schedulers as a comparison. The measurement results are

summarized in Table 3. We set Vanilla EDF as the base and calcu-

late the context switch count ratio compared to TaskShuffler EDF

and 𝜖-Scheduler in simulation. The result suggests that TaskShuf-

fler EDF generates a twofold increase in the number of context

switches. This matches the design of the TaskShuffler’s randomiza-

tion protocol that aims to obfuscate the schedule by introducing

more scheduling points (i.e., more context switches). On the other

hand, 𝜖-Scheduler produces fewer context switches as the generated
inter-arrival times can be greater than Vanilla EDF. This measure-

ment generally matches the result shown in Figure 16.

Next, we execute a set of tasks (with parameters given in Table 6)

on RT Linux on the RPi4 platform to measure the mean cost of

scheduling. We first measure the execution time overheads of the

main scheduling function pick_next_dl_entity() that picks the
next task at a scheduling point. The result shows that TaskShuf-

fler EDF has larger overhead as it invokes get_random_bytes()
that takes an average 2.23𝑢𝑠 to generate a 64-bit random number.

On the other hand, the 𝜖-Scheduler has overheads that are very

similar to Vanilla EDF as the scheduling mechanism is identical

in pick_next_dl_entity(). To evaluate the true overhead of 𝜖-

Scheduler, we measure get_next_inter_arrival_time() where
randomized inter-arrival times are generated in our 𝜖-Scheduler

implementation. As shown in the table, the time cost is around

5.79𝑢𝑠 and is independent of the 𝜖 setting. This cost is mainly

due to the invocation of the random number generation func-

tion, get_random_bytes(). Note that this overhead is incurred

in the scheduler when a job arrives, which is not equivalent to

the context switch overhead as an arrival of a job in EDF (and 𝜖-

Scheduler) does not necessarily lead to a new scheduling event (i.e.,
a pick_next_dl_entity() call).

We also measured the power consumption of the platform for

each of the schedulers. When the scaling governor is configured

as scaling_governor = performance (a typical setting for RTS

to maintain a predictable execution time and behavior), the power

consumption consistent for all schedulers. It is expected as the CPU

runs at the highest frequency at all times under the performance
setting. For a comparison purposes, we measure the power con-

sumptionwith scaling_governor = ondemand that lowers the CPU
frequency (i.e., less power consumption) when idling for a signifi-

cant amount of time. The resulting power consumption matches

what we have learned from the above experiments (e.g., lower con-
text switch ratio in 𝜖-Scheduler) and suggest that 𝜖-Scheduler does

not result in higher power consumption.

9 DISCUSSION AND CONCLUSION
From the evaluation, both 𝜖 = 10

3
and 𝜖 = 10 settings produce

promising results for obscuring the periodicity and diversifying the

schedule. However, as shown by the QoSmeasurements, the 𝜖 = 10
3

setting yields more reasonable variations in the task frequencies.

While 𝜖-Scheduler offers less protection with 𝜖 = 10
3
value, it may

not be unusual to choose such a large 𝜖 value in many RTS. The

same outcomes can be drawn from the evaluation using the two

real applications in which the system reaches a balance between

performance and security with 𝜖 = 10
3
. On the other hand, with

𝜖 = 10, the results demonstrate how diverse the performance impact

could be for different applications. In such a setting, the rover

system performswith an acceptable error, while the video streaming

service becomes unusable. Considering that every application has

its unique tolerance to variations, the 𝜖 value should be determined
on a case-by-case basis in conjunction with system designers.

A possible improvement is to dynamically adjust the 𝜖 value

based on the QoS and protection demand at run-time. In such a

case, 𝜖 is particularly useful as a security parameter to be integrated

with a feedback control real-time scheduling algorithm (e.g., [43]).

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers and the

shepherd, Prof. Kaveh Razavi, for their valuable feedback. The au-

thors would also like to thank Prof. Siddharth Garg (NYU) for initial

ideas. This work is supported by the National Science Foundation

(NSF) grant SaTC-1718952. Any opinions, findings and conclusions

or recommendations expressed in this publication are those of the

authors and do not necessarily reflect the views of NSF.

REFERENCES
[1] Fardin Abdi, Chien-Ying Chen, Monowar Hasan, Songran Liu, Sibin Mohan, and

Marco Caccamo. 2018. Guaranteed physical security with restart-based design

for cyber-physical systems. In Proceedings of the 9th ACM/IEEE International
Conference on Cyber-Physical Systems. IEEE Press, 10–21.

[2] Fardin Abdi, Chien-Ying Chen, Monowar Hasan, Songran Liu, Sibin Mohan, and

Marco Caccamo. 2018. Preserving Physical Safety Under Cyber Attacks. IEEE
Internet of Things Journal (2018).

[3] Dakshi Agrawal, Bruce Archambeault, Josyula R Rao, and Pankaj Rohatgi. 2002.

The EM side—channel (s). In International Workshop on Cryptographic Hardware
and Embedded Systems. Springer, 29–45.

[4] Hyeongboo Baek and Chang Mook Kang. 2020. Scheduling Randomization

Protocol to Improve Schedule Entropy for Multiprocessor Real-Time Systems.

Symmetry 12, 5 (2020), 753.

[5] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire

Whelan. 2006. The sorcerer’s apprentice guide to fault attacks. Proc. IEEE 94, 2

(2006), 370–382.

[6] Donald J Berndt and James Clifford. 1994. Using dynamic time warping to find

patterns in time series.. In KDD workshop, Vol. 10. Seattle, WA, USA:, 359–370.

[7] Marko Bertogna and Sanjoy Baruah. 2010. Limited preemption EDF scheduling

of sporadic task systems. IEEE Trans. on Ind. Info. 6, 4 (2010), 579–591.
[8] Enrico Bini and Giorgio C Buttazzo. 2005. Measuring the performance of schedu-

lability tests. RTS Journal 30, 1-2 (2005), 129–154.
[9] Alan Burns and Stewart Edgar. 2000. Predicting computation time for advanced

processor architectures. In Real-Time Systems, 2000. Euromicro RTS 2000. 12th
Euromicro Conference on. IEEE, 89–96.

[10] Nathan Burow, Ryan Burrow, Roger Khazan, Howard Shrobe, and Bryan C Ward.

2020. Moving Target Defense Considerations in Real-Time Safety-and Mission-

Critical Systems. In Proceedings of the 7th ACM Workshop on Moving Target
Defense. 81–89.

[11] Defense Use Case. 2016. Analysis of the cyber attack on the Ukrainian power

grid. Electricity Information Sharing and Analysis Center (E-ISAC) (2016).
[12] Francisco J Cazorla, Eduardo Quiñones, Tullio Vardanega, Liliana Cucu, Benoit

Triquet, Guillem Bernat, Emery Berger, Jaume Abella, Franck Wartel, Michael

Houston, et al. 2013. Proartis: Probabilistically analyzable real-time systems.

ACM Transactions on Embedded Computing Systems (2013).
[13] Konstantinos Chatzikokolakis, Miguel E Andrés, Nicolás Emilio Bordenabe, and

Catuscia Palamidessi. 2013. Broadening the scope of differential privacy using

metrics. In International Symposium on Privacy Enhancing Technologies Sympo-
sium. Springer, 82–102.

[14] Chien-Ying Chen, Sibin Mohan, Rodolfo Pellizzoni, Rakesh B Bobba, and Negar

Kiyavash. 2019. A Novel Side-Channel in Real-Time Schedulers. In 2019 IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE,
90–102.

[15] Thomas M. Chen and Saeed Abu-Nimeh. 2011. Lessons from Stuxnet. Computer
44, 4 (April 2011), 91–93.

[16] Hoon Sung Chwa, Kang G Shin, and Jinkyu Lee. 2018. Closing the gap between

stability and schedulability: a new task model for Cyber-Physical Systems. In 2018
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS).
IEEE, 327–337.

[17] Jorge Cortés, Geir E Dullerud, Shuo Han, Jerome Le Ny, SayanMitra, and George J

Pappas. 2016. Differential privacy in control and network systems. In 2016 IEEE
55th Conference on Decision and Control (CDC). IEEE, 4252–4272.

[18] Cynthia Dwork. 2008. Differential privacy: A survey of results. In International
conference on theory and applications of models of computation. Springer, 1–19.

[19] Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differ-

ential privacy. Foundations and Trends® in Theoretical Computer Science 9, 3–4
(2014), 211–407.

[20] Iker Esnaola-Gonzalez, Meritxell Gómez-Omella, Susana Ferreiro, Izaskun Fer-

nandez, Ignacio Lázaro, and Elena García. 2020. An IoT Platform towards the

Enhancement of Poultry Production Chains. Sensors 20, 6 (2020), 1549.
[21] Dario Faggioli, Fabio Checconi, Michael Trimarchi, and Claudio Scordino. 2009.

An EDF scheduling class for the Linux kernel. In Real-Time Linux Wkshp.
[22] A. Ghassami, X. Gong, and N. Kiyavash. 2015. Capacity limit of queueing timing

channel in shared FCFS schedulers. In 2015 IEEE International Symposium on
Information Theory (ISIT). 789–793. https://doi.org/10.1109/ISIT.2015.7282563

[23] Xun Gong and Negar Kiyavash. 2016. Quantifying the Information Leakage in

Timing Side Channels in Deterministic Work-conserving Schedulers. IEEE/ACM
Trans. Netw. 24, 3 (June 2016), 1841–1852. https://doi.org/10.1109/TNET.2015.

2438860

[24] Miguel Grinberg. 2018. Flask web development: developing web applications with
python. " O’Reilly Media, Inc.".

[25] Jiaxi Gu, Jiliang Wang, Zhiwen Yu, and Kele Shen. 2019. Traffic-Based Side-

Channel Attack in Video Streaming. IEEE/ACM Transactions on Networking 27, 3

(2019), 972–985.

[26] Jeffery Hansen, Scott A Hissam, and Gabriel A Moreno. 2009. Statistical-based

wcet estimation and validation. In Proceedings of the 9th Intl. Workshop on Worst-
Case Execution Time (WCET) Analysis.

[27] Monowar Hasan, Sibin Mohan, Rakesh B Bobba, and Rodolfo Pellizzoni. 2016.

Exploring opportunistic execution for integrating security into legacy hard real-

time systems. In 2016 IEEE Real-Time Systems Symposium (RTSS). IEEE, 123–134.
[28] Jianping He and Lin Cai. 2016. Differential private noise adding mechanism and

its application on consensus. arXiv preprint arXiv:1611.08936 (2016).

[29] Naoise Holohan, Spiros Antonatos, Stefano Braghin, and Pól Mac Aonghusa.

2018. The bounded Laplace mechanism in differential privacy. arXiv preprint
arXiv:1808.10410 (2018).

[30] Zhenqi Huang, Yu Wang, Sayan Mitra, and Geir E Dullerud. 2014. On the cost

of differential privacy in distributed control systems. In Proceedings of the 3rd
international conference on High confidence networked systems. 105–114.

[31] Aini Hussain, M. A. Hannan, Azah Mohamed, Hilmi Sanusi, and A. K. Ariffin.

2006. Vehicle crash analysis for airbag deployment decision. International Journal
of Automotive Technology 7, 2 (2006), 179–185.

[32] Damir Isovic. 2001. Handling Sporadic Tasks in Real-time Systems: Combined
Offline and Online Approach. Mälardalen University.

[33] Ke Jiang, L. Batina, P. Eles, and Zebo Peng. 2014. Robustness Analysis of Real-Time

Scheduling Against Differential Power Analysis Attacks. In 2014 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI). 450–455. https://doi.org/10.1109/

ISVLSI.2014.11

[34] S. Kadloor, N. Kiyavash, and P. Venkitasubramaniam. 2016. Mitigating Timing

Side Channel in Shared Schedulers. IEEE/ACM Transactions on Networking 24, 3

(June 2016), 1562–1573. https://doi.org/10.1109/TNET.2015.2418194

[35] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno,

Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav

Shacham, and Stefan Savage. 2010. Experimental Security Analysis of a Modern

Automobile. In Security and Privacy (SP), 2010 IEEE Symposium on. 447 –462.

https://doi.org/10.1109/SP.2010.34

[36] Kristin Krüger, Marcus Völp, and Gerhard Fohler. 2018. Vulnerability Analysis

and Mitigation of Directed Timing Inference Based Attacks on Time-Triggered

Systems. In 30th Euromicro Conference on Real-Time Systems (ECRTS). 22:1–22:17.
https://doi.org/10.4230/LIPIcs.ECRTS.2018.22

[37] Ben Lickly, Isaac Liu, Sungjun Kim, Hiren D. Patel, Stephen A. Edwards, and

Edward A. Lee. 2008. Predictable Programming on a Precision TimedArchitecture.

In Proceedings of the 2008 International Conference on Compilers, Architectures
and Synthesis for Embedded Systems. 137–146.

[38] Bruno Monteiro Rocha Lima, Luiz Claudio Sampaio Ramos, Thiago Eu-

staquio Alves de Oliveira, Vinicius Prado da Fonseca, and Emil M Petriu. 2019.

Heart Rate Detection Using a Multimodal Tactile Sensor and a Z-score Based

Peak Detection Algorithm. CMBES Proceedings 42 (2019).
[39] C. L. Liu and J. W. Layland. 1973. Scheduling algorithms for multiprogramming

in a hard real-time environment. J. ACM (1973).

[40] Fang Liu. 2016. Statistical Properties of Sanitized Results from Differentially

Private Laplace Mechanismwith Univariate Bounding Constraints. arXiv preprint
arXiv:1607.08554 (2016).

[41] Fang Liu. 2018. Generalized gaussian mechanism for differential privacy. IEEE
Transactions on Knowledge and Data Engineering 31, 4 (2018), 747–756.

[42] Songran Liu, Nan Guan, Dong Ji, Weichen Liu, Xue Liu, and Wang Yi. 2019. Leak-

ing your engine speed by spectrum analysis of real-Time scheduling sequences.

Journal of Systems Architecture (2019).
[43] Chenyang Lu, John A Stankovic, Sang H Son, and Gang Tao. 2002. Feedback

control real-time scheduling: Framework, modeling, and algorithms. Real-Time
Systems 23, 1-2 (2002), 85–126.

[44] Pau Marti, Caixue Lin, Scott A Brandt, Manel Velasco, and Josep M Fuertes. 2004.

Optimal state feedback based resource allocation for resource-constrained control

tasks. In 25th IEEE International Real-Time Systems Symposium. IEEE, 161–172.

[45] Frank J Massey Jr. 1951. The Kolmogorov-Smirnov test for goodness of fit. Journal
of the American statistical Association 46, 253 (1951), 68–78.

[46] Frank D McSherry. 2009. Privacy integrated queries: an extensible platform

for privacy-preserving data analysis. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of data. 19–30.

[47] Byungho Min and Vijay Varadharajan. 2014. Design and Analysis of Security

Attacks against Critical Smart Grid Infrastructures. 2014 19th International
Conference on Engineering of Complex Computer Systems 0 (2014), 59–68. https:

//doi.org/10.1109/ICECCS.2014.16

[48] Mitra Nasri, Thidapat Chantem, Gedare Bloom, and Ryan M Gerdes. 2019. On

the Pitfalls and Vulnerabilities of Schedule Randomization against Schedule-

Based Attacks. In 2019 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 103–116.

[49] R. Pellizzoni, N. Paryab, M. Yoon, S. Bak, S. Mohan, and R. B. Bobba. 2015. A

generalized model for preventing information leakage in hard real-time systems.

In 21st IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS). 271–282. https://doi.org/10.1109/RTAS.2015.7108450

[50] David Schneider. 2015. Jeep Hacking 101. IEEE Spectrum (Aug 2015). http:

//spectrum.ieee.org/cars-that-think/transportation/systems/jeep-hacking-101.

[51] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser, Clémentine Maurice,

Raphael Spreitzer, and Stefan Mangard. 2018. Keydrown: Eliminating software-

based keystroke timing side-channel attacks. In Network and Distributed System
Security Symposium. Internet Society.

[52] D. Shepard, J. Bhatti, and T. Humphreys. 2012. Drone Hack: Spoofing Attack

Demonstration on a Civilian Unmanned Aerial Vehicle. GPS World (August

2012).

https://doi.org/10.1109/ISIT.2015.7282563
https://doi.org/10.1109/TNET.2015.2438860
https://doi.org/10.1109/TNET.2015.2438860
https://doi.org/10.1109/ISVLSI.2014.11
https://doi.org/10.1109/ISVLSI.2014.11
https://doi.org/10.1109/TNET.2015.2418194
https://doi.org/10.1109/SP.2010.34
https://doi.org/10.4230/LIPIcs.ECRTS.2018.22
https://doi.org/10.1109/ICECCS.2014.16
https://doi.org/10.1109/ICECCS.2014.16
https://doi.org/10.1109/RTAS.2015.7108450
http://spectrum.ieee.org/cars-that-think/transportation/systems/jeep-hacking-101
http://spectrum.ieee.org/cars-that-think/transportation/systems/jeep-hacking-101

[53] Joon Son and Alves-Foss. 2006. Covert Timing Channel Analysis of Rate Mono-

tonic Real-Time Scheduling Algorithm in MLS Systems. In 2006 IEEE Information
Assurance Workshop. 361–368. https://doi.org/10.1109/IAW.2006.1652117

[54] Hugo Teso. 2013. Aicraft Hacking. In Fourth Annual HITB Security Conference in
Europe.

[55] Nick Tsalis, Efstratios Vasilellis, Despina Mentzelioti, and Theodore Apostolopou-

los. 2019. A Taxonomy of Side Channel Attacks on Critical Infrastructures and

Relevant Systems. In Critical Infrastructure Security and Resilience. Springer,
283–313.

[56] Marcus Völp, Claude-Joachim Hamann, and Hermann Härtig. 2008. Avoiding

Timing Channels in Fixed-priority Schedulers. In Proceedings of the 2008 ACM
Symposium on Information, Computer and Communications Security (ASIACCS)
(Tokyo, Japan). 44–55. https://doi.org/10.1145/1368310.1368320

[57] Nils Vreman, Richard Pates, Kristin Krüger, Gerhard Fohler, and Martina Maggio.

2019. Minimizing Side-Channel Attack Vulnerability via Schedule Randomization.

In 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2928–2933.
[58] M. Völp, B. Engel, C. Hamann, and H. Härtig. 2013. On confidentiality-preserving

real-time locking protocols. In 2013 IEEE 19th Real-Time and Embedded Technology
and Applications Symposium (RTAS). 153–162. https://doi.org/10.1109/RTAS.

2013.6531088

[59] Yu Wang, Zhenqi Huang, Sayan Mitra, and Geir E Dullerud. 2017. Differential

privacy in linear distributed control systems: Entropy minimizing mechanisms

and performance tradeoffs. IEEE Transactions on Control of Network Systems 4, 1
(2017), 118–130.

[60] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan

Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heck-

mann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat,

and Per Stenström. 2008. The Worst-Case Execution-Time Problem—Overview of

Methods and Survey of Tools. ACM Transactions on Embedded Computing Systems
7, 3, Article 36 (May 2008), 53 pages. https://doi.org/10.1145/1347375.1347389

[61] M. Yoon, S. Mohan, C. Chen, and L. Sha. 2016. TaskShuffler: A Schedule Random-

ization Protocol for Obfuscation against Timing Inference Attacks in Real-Time

Systems. In 2016 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS). 1–12. https://doi.org/10.1109/RTAS.2016.7461362

[62] Man-Ki Yoon, Bo Liu, Naira Hovakimyan, and Lui Sha. 2017. VirtualDrone:

virtual sensing, actuation, and communication for attack-resilient unmanned

aerial systems. In Proceedings of the 8th International Conference on Cyber-Physical
Systems. ACM, 143–154.

[63] Man-Ki Yoon, Mengqi Liu, Hao Chen, Jung-Eun Kim, and Zhong Shao. 2021.

Blinder: Partition-Oblivious Hierarchical Scheduling. In 30th USENIX Security
Symposium (USENIX Security 21). USENIX Association. https://www.usenix.org/

conference/usenixsecurity21/presentation/yoon

[64] Yuting Zhang and Richard West. 2006. Process-Aware Interrupt Scheduling and

Accounting. In Proc. of the 27th IEEE International Real-Time Systems Symposium.

A PROOF OF THEOREM 4.3
Proof. Let R 𝐽 (𝜏𝑖 , 𝑗) = {R(𝜏𝑖 , 𝑘) | 𝑗 ≤ 𝑘 < 𝑗 + 𝐽 } be a set of R(·)

invocations. By the definition of the inter-arrival time indistinguish-

able, it must satisfy

Pr[R 𝐽 (𝜏, 𝑗) ∈ W] ≤ 𝑒𝜖Pr[R 𝐽 (𝜏 ′, 𝑗 ′) ∈ W] (9)

for all 𝜏, 𝜏 ′ ∈ Γ, 𝑗, 𝑗 ′ ∈ N andW ⊆ Range(R 𝐽).
Let 𝑤 = {𝜔𝑘 |𝑘 ∈ [𝐽]} be an inter-arrival time sequence gener-

ated by R 𝐽 (𝜏, 𝑗). Then

Pr[R 𝐽 (𝜏, 𝑗) = 𝑤] =
∏

𝑘∈[𝐽]
Pr[R(𝜏, 𝑗 + 𝑘 − 1) = 𝜔𝑘]

where 𝜔𝑘 is calculated by 𝜂𝜏 (·) + Lap(𝑏) in which 𝑏 is the Laplace

distribution parameter. Expanding with the probability density

function, the right term in the above equation can be rewritten as

∏
𝑘∈[𝐽]

1

2𝑏
exp(− |𝜔𝑘 − 𝜂𝜏 (𝑗 + 𝑘 − 1) |

𝑏
)

Table 4: Glossary of Notations
Notation Definition

Real-Time Task Model

Γ a set of real-time tasks

𝜏𝑖 a real-time task in Γ

T𝑖 a set of admissible periods of 𝜏𝑖

D𝑖 a set of implicit, relative deadlines of 𝜏𝑖

𝐶𝑖 the worst-case execution time of 𝜏𝑖

𝜂𝑖 the inter-arrival time function of 𝜏𝑖

𝜖-Scheduler Extended Model

Δ𝜂𝑖 the inter-arrival time sensitivity of 𝜏𝑖

𝐽𝑖 effective protection duration for 𝜏𝑖

𝜖𝑖 indistinguishability scale of 𝜏𝑖

R̃ (·) bounded inter-arrival time Laplace randomized mechanism

Table 5: Summary of the Implementation Platform
Artifact Parameters

Platform ARM Cortex-A72 (Raspberry Pi 4)

System Configuration 1.5 GHz 64-bit processor, 4 GB RAM

Operating System Debian Linux (Raspbian)

Kernel Version Linux Kernel 4.19.71-rt24-v7l+

Kernel Configuration

(make defconfig)
CONFIG_SMP disabled
CONFIG_PREEMPT_RT_FULL enabled

Boot Commands maxcpus=1
Run-time Variables sched_rt_runtime_us=−1

scaling_governor=performance
Base Scheduler SCHED_DEADLINE

Then

Pr[R 𝐽 (𝜏, 𝑗) = 𝑤]
Pr[R 𝐽 (𝜏 ′, 𝑗 ′) = 𝑤]

=
∏

𝑘∈[𝐽]

1

2𝑏
exp(− |𝜔𝑘−𝜂𝜏 (𝑗+𝑘−1) |

𝑏
)

1

2𝑏
exp(− |𝜔𝑘−𝜂𝜏′ (𝑗 ′+𝑘−1) |

𝑏
)

=
∏

𝑘∈[𝐽]
exp(|𝜂𝜏 (𝑗 + 𝑘 − 1) − 𝜂𝜏 (𝑗 ′ + 𝑘 − 1) |

𝑏
)

The term |𝜂𝜏 (𝑗 + 𝑘 − 1) − 𝜂𝜏 (𝑗 ′ + 𝑘 − 1) | represents the difference
between two inter-arrival times which can be replaced with Δ𝜂
for the worst case (i.e., the largest possible difference defined in

Definition 4.2). The above becomes∏
𝑘∈[𝐽]

exp(Δ𝜂
𝑏

) = exp(
∑

𝑘∈[𝐽]

Δ𝜂

𝑏
)

= exp(𝐽Δ𝜂
𝑏

)

Using Equation 9, we can derive 𝑏 from

exp(𝐽Δ𝜂
𝑏

) ≤ exp(𝜖)

𝑏 ≥ 𝐽Δ𝜂

𝜖
(10)

Therefore, the Laplace distribution with the scale𝑏 =
𝐽 Δ𝜂
𝜖 preserves

𝜖-indistinguishability up to 𝐽 instances. ■

https://doi.org/10.1109/IAW.2006.1652117
https://doi.org/10.1145/1368310.1368320
https://doi.org/10.1109/RTAS.2013.6531088
https://doi.org/10.1109/RTAS.2013.6531088
https://doi.org/10.1145/1347375.1347389
https://doi.org/10.1109/RTAS.2016.7461362
https://www.usenix.org/conference/usenixsecurity21/presentation/yoon
https://www.usenix.org/conference/usenixsecurity21/presentation/yoon

Table 6: Timing Parameters of a Avionics Demonstrator [49]
Task Name WCET (ms) Period (ms)

Software Control Task 2 20

Mission Planner 0.002 100

Encryption 3 42

Image Encoding 18 42

Image I/O 1.46 42

Network Manager 0.03 10

0 20 40 60 80 100 120 140 160 180 200
Inter-Arrival Time (ms)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

R
el

at
iv

e
F

re
qu

en
cy

Ji = 16, ∆ηi = 190, εi = 100

Figure 11: Histogram of the randomized inter-arrival times
generated by 𝜖-Scheduler for the task 𝜏𝑖 with a desired period
100𝑚𝑠 running in RT Linux. The extended task parameters
are assigned to be 𝜖𝑖 = 100, Δ𝜂𝑖 = 190 and 𝐽𝑖 = 16 (the same as
that shown in Figure 4(b)). The plot shows that the generated
inter-arrival times are distributed under the desired Laplace
distribution indicated by the dash line.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Cumulative Probability

−400

−300

−200

−100

0

100

200

300

400

P
er

ce
nt

P
oi

nt
F

un
ct

io
n

of
X

Ji = 16, ∆ηi = 190, εi = 100

Figure 12: Chart of the percent of function (PPF) based on a
Laplace distribution with 𝜖𝑖 = 100, Δ𝜂𝑖 = 190 and 𝐽𝑖 = 16 (the
same as that shown in Figure 4(b)). The dash line represents
the true PPF curve and the bars are reconstructed by the 100
PPF points stored in the PPF-based distribution array con-
verted using Algorithm 1.

B A LAPLACE RNG IN LINUX KERNEL
To create a Laplace distribution-based random number generator

in the Linux kernel, we convert the distribution’s PPF into an array

to store in the kernel code by using Algorithm 1. This algorithm

takes as input a function of PPF of the target distribution (centered

at 0) and the desired number of the points (𝑠𝑡𝑒𝑝𝑠) to convert into

an integer array as the output (𝑎𝑟𝑟𝑎𝑦𝑃𝑃𝐹). In this algorithm, the

PPF function takes as input a percentile value (ranged from 0 to

1.0) and gives the corresponding distribution sample value at the

given percentile. An example of the PPF function is provided in

Algorithm 1: PPF-Based Distribution and Array Conver-

sion

Input:
𝑃𝑃𝐹 =: the PPF of the target Laplace distribution

𝑠𝑡𝑒𝑝𝑠 =: the number of PPF points to expand

Output:
𝑎𝑟𝑟𝑎𝑦𝑃𝑃𝐹 the array storing the PPF points

1 𝑎𝑟𝑟𝑎𝑦𝑃𝑃𝐹 = []
2 𝑠𝑡𝑒𝑝 = 0

3 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = (1 − 0.5)/(𝑠𝑡𝑒𝑝𝑠 − 1)
4 while 𝑠𝑡𝑒𝑝 < 𝑠𝑡𝑒𝑝𝑠 do
5 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 = 𝑠𝑡𝑒𝑝 · 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 + 0.5

6 𝑎𝑟𝑟𝑎𝑦𝑃𝑃𝐹 [𝑠𝑡𝑒𝑝] = 𝑖𝑛𝑡 (𝑃𝑃𝐹 (𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒))
7 𝑠𝑡𝑒𝑝 = 𝑠𝑡𝑒𝑝 + 1

8 return 𝑎𝑟𝑟𝑎𝑦𝑃𝑃𝐹

Algorithm 2: PPF-Based Random Number Generator

Input:
𝑎𝑟𝑟𝑎𝑦𝑃𝑃𝐹 =: an array storing expanded PPF points

Output:
𝑠𝑎𝑚𝑝𝑙𝑒 =: a random value equivalent to the corresponding

distribution

1 𝑠𝑖𝑧𝑒𝑎𝑟𝑟𝑎𝑦 = 𝑙𝑒𝑛(𝑎𝑟𝑟𝑎𝑦𝑃𝑃𝐹)
2 𝑟𝑎𝑑𝑖𝑑𝑥 = 𝑅𝐴𝑁𝐷𝑖𝑛𝑡 (0, 𝑙𝑒𝑛(𝑎𝑟𝑟𝑎𝑦𝑃𝑃𝐹 · 2 − 1))
3 if 𝑟𝑎𝑑𝑖𝑑𝑥 > (𝑠𝑖𝑧𝑒𝑎𝑟𝑟𝑎𝑦 − 1) then
4 𝑠𝑎𝑚𝑝𝑙𝑒 = −𝑎𝑟𝑟𝑎𝑦𝑃𝑃𝐹 [𝑟𝑎𝑑𝑖𝑑𝑥 − 𝑠𝑖𝑧𝑒𝑎𝑟𝑟𝑎𝑦]
5 else
6 𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑎𝑟𝑟𝑎𝑦𝑃𝑃𝐹 [𝑟𝑎𝑑𝑖𝑑𝑥]
7 return 𝑠𝑎𝑚𝑝𝑙𝑒

Figure 12 as the dash curve. Line 3 computes the resolution of

the percentage each point in the array represents. Line4 to line

8 iterate through each of the computed percentile to obtain and

store the corresponding percent point value in the output array.

Line 9 returns the array which stores PPF points above the 50-th

percentile. In other words, the array contains only half part of the

distribution (as demonstrated by the bars shown in Figure 12). It is

done to save memory space as a Laplace distribution is symmetric.

We then use Algorithm 2 to obtain a random number from the PPF

array.

Algorithm 2 takes the aforementioned PPF array (𝑎𝑟𝑟𝑎𝑦𝑃𝑃𝐹) as

input and draws a random number that is equivalent to a random

draw from the underlying distribution. Line 2 obtains a random

number from a common random number generator (based on a

uniform distribution) with a range of [0, 2 · 𝑙𝑒𝑛(𝑎𝑟𝑟𝑎𝑦𝑃𝑃𝐹) − 1] (i.e.,
two times of the length of the PPF array). Line 3 to line 7 convert the

random number into a feasible index to obtain a sample value from

the PPF array. If the random number is greater than the array’s

length, a negative sample value is generated. Otherwise a positive

value is obtained and returned.

−0.5 0.0 0.5 1.0 1.5
∆X (meters)

0.0

0.5

1.0

1.5

2.0

2.5

∆
Y

(m
et

er
s)

Vanilla EDF

ε− Sched(103)

(a) 𝜖-Scheduler (𝜖 = 10
3)

−0.5 0.0 0.5 1.0 1.5
∆X (meters)

0.0

0.5

1.0

1.5

2.0

2.5

∆
Y

(m
et

er
s)

Vanilla EDF

ε− Sched(10)

(b) 𝜖-Scheduler (𝜖 = 10)
Figure 13: The trajectory of the rover system steering
through predefined way points with RoverBot running un-
der Vanilla EDF and 𝜖-Scheduler. The worst observed devia-
tions are 0.024𝑚 and 0.038𝑚 in the cases of 𝜖 = 10

3 and 𝜖 = 10

respectively, compared to the trajectory of Vanilla EDF.

Table 7: K-S Test and Average Minimum L2 Distance
Way Points Comparison K-S p-val Min Dist (Meters)

𝜖 = 10
3
, vanilla 0.015038 0.9999 0.009458

Route “8” 𝜖 = 10, vanilla 0.016958 0.9999 0.009940

𝜖 = 10
3
, 𝜖 = 10 0.013265 0.9999 N/A

C AUTONOMOUS ROVER SYSTEM
C.1 The Route “8” Test
With an experiment setup the same as introduced in Section 7.1,

we conduct another set of tests with a closed loop route that has

a shape “8”. The results are shown in Figure 13 and Table 7 which

suggest similar, promising performance outcomes. As the “8” route

has more rounded turns, the worst observed deviations (0.024𝑚

and 0.038𝑚 in the cases of 𝜖 = 10
3
and 𝜖 = 10 compared to Vanilla

EDF) are generally smaller (i.e., better) compared to the irregular

route.

C.2 The Kolmogorov-smirnov (K-S) Test
We perform two types of K-S tests: the one sample test and the

two sample test. The one sample test is used to determine whether

the cumulative distributive function (CDF) of an observed random

variable is identical to the CDF of a reference random variable, also

known as the null hypothesis. Here, our observed random variable

is the y-axis of the rover paths with 𝜖-Scheduler (𝜖 = 10
3
or 𝜖 = 10)

and our reference random variable is the y-axis of the rover paths

with Vanilla EDF. The two sample test is used to determine whether

two independent samples are drawn from the same continuous

distribution (null hypothesis). Hence, this test is used to compare

rover paths with 𝜖-Scheduler (𝜖 = 10
3
) and 𝜖-Scheduler (𝜖 = 10).

If the K-S statistic value is small and the corresponding 𝑝-value

large, then we cannot reject the null hypothesis. Instead, the null

hypothesis is almost certainly true.

D VIDEO STREAMING EAVESDROPPING
ATTACK

While streaming with DASH, each video segment is a certain seg-

ment length and quality level. This type of mechanism results in

a distinct traffic pattern due to the segment-based transmission.

This key property can be used to identify videos while streaming.

Table 8: Video Description
Video Content Resolution FPS

1 lecture 640 X 352 30

2 movie 640 X 360 30

3 street 480 X 360 25

4 soccer 640 X 480 25

5 cartoon 640 X 480 25

By eavesdropping on the network traffic during video streaming,

attackers can recognize certain patterns in the traffic. Video fin-

gerprints can be built on the other hand, using the pre-recorded

video files. Hence, attackers can utilize the fingerprints and the

observed traffic pattern to identify which video was being streamed

during eavesdropping. The idea is to merely compare the extracted

video fingerprints with the observed traffic pattern of the video

stream to deduce an individual video. A matching method is nec-

essary for effective outcomes post-comparison. In this way, the

eavesdropped traffic and the video fingerprints provide seamless

video identification.

Real-time video has many varying parameters which make it

difficult to implement an efficient yet accurate attack. There are

many quality levels of recorded video: some have noise, others

are clear. Fingerprinting often is not effective when there is too

much noise in a sample. This is because the fingerprints will not be

unique and are rarely representative of the sample. The bandwidth

plays a major role in the adaptive quality selection in the network.

A high bandwidth automatically transmits samples using higher

quality levels. This makes it problematic to observe a consistent

pattern for the same video in the traffic trace. Another obstacle

is the length of the eavesdropped sample. It is time-consuming to

eavesdrop on the entire video. Also most times, the host doesn’t

play the entire video, so only a part of the video is present in the

eavesdropped traffic. There is a workaround for this in DASH: the

bitrate variation trend is stable for a particular sample, hence a

bitrate based fingerprinting method is viable.

The systematic steps are: extracting the video fingerprints from

pre-recorded videos, obtaining the eavesdropped traffic pattern,

calculating a similarity estimate between the traffic pattern and the

fingerprints using temporal sequence analysis (p-DTW) and finally,

identifying the video using this similarity estimate. An example of

a fingerprint and an observed traffic pattern is shown in Figure 14.

Specifically, we use the fingerprint-based video identification attack

detailed in sections IV and V by Gu et al. [25], adapting it to the

video streaming application that we designed.

The fingerprints that we obtain follow the segmentation rules of

DASH. Initially, we calculate the data per second in bits per second

(bps) for each video in a differential manner in order to eliminate the

impact of different quality levels on the fingerprints. This sequence

of fingerprints, which correspond to data per second, need to be

aggregated into segments before the matching step because DASH

transmits video data in segments. Each segment covers a certain

number of seconds; segment length is usually kept constant. Again

a differential strategy is used to collect the data per segment and

the resulting set is the set of video fingerprints available to the

attacker. For each video in the dataset, a set of video fingerprints is

calculated. Next comes the part where the attacker eavesdrops on

0 20 40 60 80
second

6.0

6.5

7.0

7.5

8.0

bi
ts

 p
er

 p
er

io
d

1e6 Video 1 fingerprints

0 5 10 15 20 25 30
second

6.0
6.2
6.4
6.6
6.8
7.0

bi
ts

 p
er

 p
er

io
d

Traffic pattern (Vanilla EDF)

Figure 14: The similarity between the eavesdropped traffic
pattern with Vanilla EDF when video 1 was being streamed
and video 1’s fingerprints. The similarity distance is calcu-
lated using temporal sequence analysis.

the network traffic to obtain traffic traces. This occurs during the

transmission of the video from the server to the client. Assuming

that there are no other processes that require a large bandwidth,

the attacker aggregates the obtained network traffic (in bps) into

data per segment in a differential manner. The objective is to find

a maximum match between the sequence of traffic traces and the

sequence of individual video fingerprints. The video corresponding

to the maximum match is identified to be the video that was being

streamed during the eavesdropping period.

The similarity measurement is a method to find out which set of

video fingerprints is likely to produce the extracted traffic pattern.

Since the assumption is that only one video is streamed at a time,

measuring the similarity of the pattern to each set of fingerprints

will reveal the closest match. We treat this as a time series matching

problem. Two important considerations before solving the prob-

lem have to be taken into account: eavesdropping can be short

and the eavesdropped period may correspond to only a portion of

the entire video. After normalizing the sequences using a sigmoid

function, a newly proposed method called “partial dynamic time

warping (P-DTW)” is used. There are several advantages of using

this method over the classic DTW [6] method. Classic DTW tries to

match the two sequences in their entirety, i.e., using the full length

of sequences to calculate the alignment cost. The series heads and

tails are required to be matched. On the other hand, P-DTW tries

to find the best local alignment between the two sequences, i.e., it
minimizes the distance between the traffic pattern and any proper

sub-sequence of the fingerprints. The sub-sequence that results in

this minimum is selected for calculating the final similarity between

the fingerprint and the traffic traces. As eavesdropping occurs only

for a part of the video, P-DTW is more suited to our attack. The

similarity is quantified using the minimum distance (cost) of align-

ing the two sequences. Whichever set of video fingerprints renders

the minimum distance is the identified video in our attack.

E GENERATION OF SIMULATION TASK SETS
A total of 6000 task sets are grouped by utilization from {[0.001+0.1·
𝑥, 0.1+0.1 ·𝑥) | 0 ≤ 𝑥 ≤ 9∧𝑥 ∈ Z}. Each group contains subgroups

that have a fixed number of tasks from {5, 7, 9, 11, 13, 15}. A total

of 100 task sets are generated for each of the 60 subgroups. The

utilization for a task set is generated from a uniform distribution

using the UUniFast algorithm [8]. Each task’s period𝑇𝑖 is randomly

drawn from [10𝑚𝑠, 200𝑚𝑠] and the worst-case execution time 𝐶𝑖 is

1 2 3 4 5 6 7 8 9 10
Attack Duration (LCM(To, Tv))

0.0

0.2

0.4

0.6

0.8

1.0

In
fe

re
nc

e
P

re
ci

si
on

of
φ̃
v

Vanilla EDF

TaskShuffler EDF

ε− Sched(103)

ε− Sched(10)

ε− Sched(103)∗
ε− Sched(10)∗

Figure 15: The inference precision results for a Sched-
uLeak attack duration ranged from 1 · 𝐿𝐶𝑀 (𝑇𝑜 ,𝑇𝑣) to 10 ·
𝐿𝐶𝑀 (𝑇𝑜 ,𝑇𝑣). The experiment suggests that 𝜖-Scheduler’s pro-
tection against ScheduLeak is independent to the attack du-
ration.

[0
.0

,0
.1

]

[0
.1

,0
.2

]

[0
.2

,0
.3

]

[0
.3

,0
.4

]

[0
.4

,0
.5

]

[0
.5

,0
.6

]

[0
.6

,0
.7

]

[0
.7

,0
.8

]

[0
.8

,0
.9

]

[0
.9

,1
.0

]

Task Set Utilization

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
of

th
e

W
or

st
U

nd
er

P
er

fo
rm

an
ce

R
at

io

ε−Sched(103) ε−Sched(10)

Figure 16: Results of the mean of the worst under-
performance ratio (y-axis) grouped by the task set utiliza-
tion (x-axis). The experiment gives us an insight into the
degradation a systemmay observe from its tasks. It suggests
that a task’s under-performance ratio can be biased towards
0.5 and above. The bias is noticeable when 𝜖 is large. This
often happens on the task that has a small period leading
to an asymmetric distribution that tends to generate larger
inter-arrival times.

computed based on the generated task utilization and period. The

task phase is randomly selected from [0,𝑇𝑖).

F DISCRETE FOURIER TRANSFORM
ANALYSIS SETUP

To adequately utilize such a tool, the task schedule must be trans-

formed into a sequence of equal-spaced samples that represent the

states when CPU is busy and idle. In our analysis, a sample is taken

at each time tick and hence the Nyquist frequency is half of the tick

rate. In contrast to prior work [42] where busy and idle states are

translated into binary values 1 and 0, we translate them into 1.0 and

−1.0 to reduce noise in the spectrum caused by the positive-biased

sample values. The outcome of the transformation is a sequence

of 1.0 and −1.0 numbers that is then analyzed using DFT. In the

end, only the first half part of the analysis result is taken since

the DFT output is known to be conjugate symmetric. As shown in

Figure 7, the resulting frequency spectrum is useful for uncovering

the periodicity introduced by the scheduling of the real-time tasks.

Additionally, it can also be seen that peaks encapsulate the true fre-

quencies of the tasks (annotated by the red dashed lines). It’s worth

noting that the spectrum can contain aliasing frequency peaks that

are in harmony with the true frequencies. These harmonic peaks

in fact are helpful for adversaries to identify and verify the true

frequencies of interest.

We are interested in the amount of information that an adversary

can learn from the DFT analysis w.r.t. a task’s periodic behavior.
By the nature of DFT, the amplitude in the spectrum has a positive

correlation with the periods and the peaks that stand out are par-

ticularly helpful to adversaries in gaining more knowledge about

the schedule. To this end, we use a Z-score based peak detection

algorithm [20, 38] to count the number of outstanding peaks in

the spectrum. The peak detection algorithm uses a moving mean

with a 10𝐻𝑧 window to detect the outstanding peaks that are 3.5

standard deviations away. As shown by the green line in Figure 7,

such a moving threshold can effectively identify the peaks that are

significant while filtering out the base noise.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Real-Time Systems and Scheduler Side-Channels
	2.2 Differential Privacy and Randomized Mechanisms

	3 System and Adversary Models
	3.1 Preliminaries
	3.2 Real-Time System Model
	3.3 Adversary Model

	4 Schedule Indistinguishability
	4.1 Randomizing Inter-Arrival Times
	4.2 Inter-Arrival Time Indistinguishability
	4.3 Inter-Arrival Time Sensitivity and Noise
	4.4 Epsilon-Indistinguishability in J Instances
	4.5 Bounded Laplace Randomized Mechanism

	5 Epsilon-Scheduler
	5.1 Extended Task Model
	5.2 Determining Inter-Arrival Time Sensitivity
	5.3 Calculating Protection Duration
	5.4 Choosing Indistinguishability Parameter

	6 Implementation in Linux
	6.1 Platform and Operating System
	6.2 Implementation of Epsilon-Scheduler

	7 Evaluation on Real Applications
	7.1 Autonomous Rover System
	7.2 Video Streaming over the Internet

	8 Design Space Exploration
	8.1 Experiment Setup
	8.2 Experiment Results

	9 Discussion and Conclusion
	Acknowledgments
	References
	A Proof of Theorem 4.3
	B A Laplace RNG in Linux Kernel
	C Autonomous Rover System
	C.1 The Route ``8'' Test
	C.2 The Kolmogorov-smirnov (K-S) Test

	D Video Streaming Eavesdropping Attack
	E Generation of Simulation Task Sets
	F Discrete Fourier Transform Analysis Setup

