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ABSTRACT

This dissertation aims to address the problem of the side-channels caused by the de-

terministic nature embedded in the real-time schedulers in preemptive real-time systems

(RTS). The dissertation explores the problem by postulating that there exist timing-based

side-channels (i.e., scheduler side-channels) that enable adversaries to gauge the behavior

of the system with high precision in preemptive RTS and that the RTS can be protected by

diversifying the real-time schedules. To validate this hypothesis, the work is divided into

three groups to tackle the following three key challenges:

• Validate the presence of the scheduler side-channels in preemptive RTS.

• Protect the RTS by diversifying the real-time schedule.

• Evaluate the risks against the scheduler side-channels and the efficacy of a defense

scheme.

The dissertation shows that the scheduler side-channels exist in both classes of widely used

preemptive RTS (i.e., fixed-priority RTS and dynamic-priority RTS) and can leak critical

task information using a user-space, non-privileged task. Such information can be leveraged

by other collaborative attacks (e.g., advanced persistent threat attacks) to pose a serious

threat to systems. A study on the schedule randomization technique as a defense strategy

is conducted and shows that, while being effective in disturbing the repeated patterns in

the schedule, there exist trade-offs (e.g., the scheduling overhead) and shortcomings (e.g.,

ineffectiveness in the face of real-time constraints.) Based on the lesson learned, the disser-

tation introduces the notion of “schedule indistinguishability” and presents a defense scheme

that provides security guarantees to critical tasks by achieving the schedule indistinguisha-

bility. The scheduler relaxes the real-time constraints and add random noise drawn from

bounded Laplace distribution to the task’s execution patterns to hide the repeated patterns

from the task schedule. The dissertation further introduces a security evaluation framework

consisting of diverse metrics that capture the unique characteristics of real-time schedules

and scheduler side-channels to better evaluate the risks for a given RTS. The work is con-

cluded by assessing the developed scheduler against scheduler side-channels with using the

introduced security evaluation framework.
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CHAPTER 1: INTRODUCTION

Real-time systems (RTS) such as autonomous cars, medicine/vaccine delivery drones,

space rovers (e.g., NASA’s Opportunity and Spirit), industrial robots, implanted medical

devices and power grid components, play a vital role in shaping today’s technological evo-

lution from everyday living to space exploration. In such systems, tasks delivering critical

functionality rely on an operating system (typically a real-time operating system or an oper-

ating system that supports a real-time scheduling policy) to fulfill their timing requirements

(e.g., the task must complete within a predefined time limit). Oftentimes, these tasks (e.g.,

PID control processes, sensor data collectors, motor actuators, etc. as exemplified in the sys-

tem shown in Figure 1.1) are designed as real-time tasks and executed in a periodic fashion

to guarantee responsiveness.

RC Input TaskNavigation Task

Battery Monitoring Task

Localization Task

AHRS Task

Actuation Task

Figure 1.1: A rover system that exemplifies a typical real-time system. This system consists
of six real-time periodic tasks that support an autopilot feature.

Due to the increased deployment of safety-critical systems that posses time-sensitive re-

quirements in day-to-day environment to provide a broad range of services, security in real-

time systems (RTS) is getting more focus in recent years. Traditionally, security has been

an afterthought in the design of RTS, but the situation has changed with the use of com-

modity off-the-shelf (COTS) components. As exhibited by an increased number of security

incidents [1, 2, 3, 4, 5, 6, 7, 8], RTS are undoubtedly becoming prone to attacks nowadays.

Consequently, safety of RTS is at stake and understanding security threats they face is

becoming more important every day.

To serve their safety-critical nature, RTS are designed with significant engineering effort

to operate in a predictable manner. For instance, (a) designers take great care to ensure that

the constituent tasks in such systems execute in an expected manner [9], (b) their interrupts

are carefully managed [10] (c) the memory management is deterministic [11] and (d) the

execution time is analyzed to great degree at compile time and run-time (e.g., [12, 13, 14]).

However, this predictability can be a double edged sword.

The predictability may introduce a timing-based side-channel in the system. A side-
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HP1 3 3 1 2 2 3 3 0 0 0 3 3 1 0 0 3 3 0 0 0
HP2 3 3 1 2 2 3 3 0 0 0 3 3 1 0 0 3 3 0 0 0
HP3 3 3 1 2 2 3 3 0 0 0 3 3 1 0 0 3 3 0 0 0
HP4 3 3 1 2 2 3 3 0 0 0 3 3 1 0 0 3 3 0 0 0
HP5 3 3 1 2 2 3 3 0 0 0 3 3 1 0 0 3 3 0 0 0
HP6 3 3 1 2 2 3 3 0 0 0 3 3 1 0 0 3 3 0 0 0
HP7 3 3 1 2 2 3 3 0 0 0 3 3 1 0 0 3 3 0 0 0
HP8 3 3 1 2 2 3 3 0 0 0 3 3 1 0 0 3 3 0 0 0
HP9 3 3 1 2 2 3 3 0 0 0 3 3 1 0 0 3 3 0 0 0
HP10 3 3 1 2 2 3 3 0 0 0 3 3 1 0 0 3 3 0 0 0
HP11 3 3 1 2 2 3 3 0 0 0 3 3 1 0 0 3 3 0 0 0
HP12 3 3 1 2 2 3 3 0 0 0 3 3 1 0 0 3 3 0 0 0
HP13 3 3 1 2 2 3 3 0 0 0 3 3 1 0 0 3 3 0 0 0
HP14 3 3 1 2 2 3 3 0 0 0 3 3 1 0 0 3 3 0 0 0
HP15 3 3 1 2 2 3 3 0 0 0 3 3 1 0 0 3 3 0 0 0

HP1 1 3 3 2 2 3 3 0 0 0 3 3 1 0 0 3 3 0 0 0
HP2 2 2 3 3 1 3 3 0 0 0 3 3 1 0 0 3 3 0 0 0
HP3 1 3 3 2 2 3 3 0 0 0 3 3 1 0 0 3 3 0 0 0
HP4 2 2 3 3 1 3 3 0 0 0 1 3 3 0 0 3 3 0 0 0
HP5 3 3 1 2 2 3 3 0 0 0 1 3 3 0 0 3 3 0 0 0
HP6 3 3 2 2 1 3 3 0 0 0 3 3 1 0 0 3 3 0 0 0
HP7 2 2 3 3 1 3 3 0 0 0 3 3 1 0 0 3 3 0 0 0
HP8 1 3 3 2 2 3 3 0 0 0 3 3 1 0 0 3 3 0 0 0
HP9 3 3 2 2 1 3 3 0 0 0 3 3 1 0 0 3 3 0 0 0
HP10 1 3 3 2 2 3 3 0 0 0 1 3 3 0 0 3 3 0 0 0
HP11 1 3 3 2 2 3 3 0 0 0 3 3 1 0 0 3 3 0 0 0
HP12 1 3 3 2 2 3 3 0 0 0 3 3 1 0 0 3 3 0 0 0
HP13 2 2 3 3 1 3 3 0 0 0 3 3 1 0 0 3 3 0 0 0
HP14 3 3 2 2 1 3 3 0 0 0 3 3 1 0 0 3 3 0 0 0
HP15 3 3 2 2 1 3 3 0 0 0 1 3 3 0 0 3 3 0 0 0

Figure 1.2: An example of the real-time schedule produced by a vanilla EDF scheduler. It
displays the schedules within a duration of 10 hyper-periods and shows that all hyper-periods
have identical execution patterns due to the determinism in RTS.

channel allows an attacker to learn valuable knowledge about the target system from its

implementation or behavior (e.g., power consumption [15], electromagnetic emanations [16]

and temperature [17].) To illustrate, Figure 1.2 shows the schedules of 10 hyper-periods that

are generated from a RTS consisting of three periodic real-time tasks. As displayed in the

figure, the execution pattern in the real-time schedule repeats after a hyper-period due to

the deterministic nature of the RTS, thus the schedule is highly predictable. It enables ad-

versaries to gauge the behavior of the system with high precision – I call such a vulnerability

the “scheduler side-channels”. Information leaked by using such side-channels can increase

the success rates for certain attacks such as side-channel [18] and covert-channel attacks [19].

To gain comprehensive understanding for the cause and impacts of the problem, studies are

conducted from both attacker’s and defender’s perspectives in this dissertation: (i) as an

adversary, I identify the scheduler side-channels in two classes of preemptive RTS (i.e., the

fixed-priority and dynamic-priority preemptive RTS) and showcase possible consequences

that result from a scheduler side-channel attack; (ii) as a defender, I present techniques to

increase the difficulty of exploiting the scheduler side-channels in both classes. What follows

presents the dissertation’s core problem and summary of the solutions.

1.1 RESEARCH GOAL AND CHALLENGES

The work in this dissertation starts off by making the following hypothesis:

There exist scheduler side-channels in preemptive RTS that can be defended against by
diversifying the real-time schedules.

Figure 1.3: The hypothesis made for this dissertation.

The objectives of this thesis are to provide an insight into the risks of scheduler side-
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channels and to offer a solution to protecting the critical components in RTS against such

side-channels. The key questions this dissertation aims to answer are:

1. How does an adversary attack the periodic (and critical) components and, thus, vali-

date the presence of the scheduler side-channels in preemptive RTS?

2. How does a system designer protect such critical components say, by diversifying the

real-time schedule?

3. What are metrics that can be used to evaluate the risk posed by scheduler side-channels

and the efficacy of defense schemes?

The challenges to answering these questions reside in the timing constraints imposed on

RTS. While the adversaries may exploit the deterministic characteristics to gauge the be-

havior of the system via scheduler side-channels, the extraction of the run-time information

is non-trivial. Main reasons include (a) the run-time schedule depends heavily on the state

of the system at startup, initialization variables and environmental conditions and (b) there

exist other real-time tasks (other than the attacker and the task being targeted) that can in-

fluence the task schedule. Even precise knowledge of all statically-known system parameters

is insufficient to reconstruct the future execution behavior of the victim as its arrival times

and start times are still unknown. While a privileged attacker could target the scheduler of

the system and extract the requisite information, such access typically requires significant

effort and/or resources. Therefore, there is a need to recognize the means for exploiting the

predictable nature to leak a task’s execution behavior.

On the other hand, a countermeasure that can protect the system from such side-channel

attacks is in need. However, as demonstrated in this work, a scheduler side-channel attack

requires only the minimum privilege to carry out (i.e., a user-space task.) This makes

it challenging (and possibly unrealistic) to completely eliminate scheduler side-channels.

Rather than trying to redesign the entire system, this dissertation explores countermeasures

on the real-time scheduler itself as it is where scheduler side-channels originate. To this

end, the defender’s limitations (e.g., negative effects on system performance, scheduling

constraints) must be identified for developing an effective defense approach.

1.2 SUMMARY OF SOLUTIONS

Based on the aforementioned challenges, the work is divided into three parts that are

introduced in Chapters 3, 4 and 5.

3



First, to understand the scope of the problem, the dissertation studies the task relationship

and the real-time schedules in the fixed-priority preemptive RTS and discovers the presence

of scheduler side-channels. I develop the ScheduLeak attack algorithms [20, 21] that enable

an unprivileged, low-priority task (that I call the “observer task”) to learn the precise timing

behavior of critical, periodic tasks (that I call the “victim tasks”) by simply observing its

own execution intervals and using a system timer. Based on ScheduLeak, similar attack

algorithms – the DyPS algorithms [22], are developed to demonstrate the presence of the

scheduler side-channels in dynamic-priority preemptive RTS where task priority relations

between the observer task and the victim task does not persist. These results suggest that

the scheduler side-channels can be exploited to infer the victim task’s execution information

with a high precision.

Second, with the knowledge obtained from the above attacks, I study a scheduling-based

defense approach that utilizes a randomization techniques to obfuscate task schedules and

disrupt the predictability of the real-time schedules. My experiments suggest that the pro-

posed schedule randomization approach can effectively break the determinism in the real-

time schedule. However, the results also show some shortcomings: (i) invoking a randomiza-

tion function in the scheduler can increase the overhead of a context switch; (ii) obfuscating

the task schedule is ineffective when the system utilization is high and, hence, the protection

of critical task(s) is not guaranteed.

To address these issues, I introduce the notion of “schedule indistinguishability” and

present a real-time scheduler that provides concrete security guarantees to critical tasks by

achieving system indistinguishability. The proposed schedule indistinguishability is inspired

by differential privacy [23, 24] in which random noise is added to protect data privacy in the

context of statistical queries on databases. The scheduler relaxes the real-time constraints

and add random noise drawn from bounded Laplace distribution to the task’s execution

patterns to hide the repeated patterns from the task schedules.

Next, to systematically evaluate the defense schemes as well as the scheduler side-channels,

I introduce a security evaluation framework consisting of diverse metrics that capture the

unique characteristics of real-time schedules and scheduler side-channels. This framework

can serve as a common tool to evaluate the degree of protection offered by a defense scheme

against the scheduler side-channels. The schedulers developed as part of this research (ε-

Scheduler, Chapter 4) are thoroughly assessed by using said security evaluation framework.
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CHAPTER 2: BACKGROUND AND RELATED WORK

2.1 REAL-TIME SYSTEMS AND SECURITY

Real-time tasks are usually constrained by their predefined minimum inter-arrival times

(i.e., periods), deadlines, the worst-case execution times (WCET) and real-time scheduling

algorithms (e.g., fixed-priority preemptive scheduling, earliest deadline first scheduling [9]).

These real-time constraints help system designers analyze the system as a whole and ensure

that all safety guarantees are met (e.g., no real-time tasks will miss their deadlines). As a

result, the system schedule (even a mix of both real-time and non-real-time tasks) becomes

deterministic and highly predicable.

There has been some work on security in RTS [25, 26, 27, 28, 29, 30]. Most of the work

focused on defence techniques against general attacks. Some researchers framed security

in RTS as a scheduling problem [31, 32]. Hasan et al. [33] discussed the considerations of

scheduling security tasks in legacy RTS. This is further extended to integrating security tasks

into more general RTS models [34, 35]. There exist another area of work focused on hardening

RTS from the architecture perspective. Mohan et al. [36] proposed to use a disjoint, trusted

hardware component (i.e., FPGA) to monitor the behavior of a real-time program running

on an untrustworthy RTS. Yoon et al. [37] created the SecureCore framework that utilizes

one of the cores in a multi-core processor as a trusted entity to carry out various security

checks for the activities observed from other cores. Abdi et al. [38, 39] developed a restart-

based approach that uses a root-of-trust (i.e., a piece of hardware circuit) and the trust

zone technology to enforce the system reboot process to evict any malicious dwellers when

necessary. While some of the techniques are useful for detecting anomalies and mitigating

the impact of the attacks, they do not protect RTS from (scheduler) side-channels.

The determinism and predictability, though favorable for the system analysis and safety,

is a double-edged sword – they create side-channels in RTS. There has been some work

(e.g., [19, 40, 41, 42, 43, 44, 45]) studying and demonstrating the existence of side-channels

and covert-channels as consequences of the determinism in RTS. In this dissertation, I’m

particularly interested in the scheduler side-channels that leak system timing behavior via

task schedules. The notion of the scheduler side-channels has been studied between two

network users with a shared traffic scheduler based on the first-come-first-serve scheduling

policy [46, 47]. In the RTS domain, my work [20] first introduced the scheduler side-channels

in fixed-priority preemptive RTS and proposed the ScheduLeak algorithms that can extract

execution behavior of critical real-time tasks from an observed task schedule at run-time. The
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work demonstrated that the leaked task information broadens the attack paths in RTS and

enables further advanced attacks such as overriding control signals in cyber-physical systems

and increasing accuracy of cache-timing side-channel attacks. Liu et al. [48] targeted the

same attack surface (i.e., the task schedule) and showed that precise period values of critical

real-time tasks can be uncovered by using frequency spectrum analysis (e.g., Discrete Fourier

Transform, DFT, analysis). Such period information, while seemingly subtle, is a crucial

stepping stone to the aforementioned and many attacks against RTS. The work also suggested

that the analysis is feasible against the task schedules that are collected either internally or

externally. Consequently, existing side-channels such as power consumption traces [15],

schedule preemptions [20, 44], electromagnetic (EM) emanations [16] and temperature [17],

etc., that are useful in monitoring the system status may be seen against RTS.

2.2 SCHEDULE OBFUSCATION

Collaborative work with Yoon [49] attempted to close the scheduler side-channels by in-

troducing a randomization scheduling algorithm that obfuscates the task schedules in the

fixed-priority preemptive RTS. This idea is then extended to multi-core environment [50].

Similarly, Krüger et al. [51] developed a combined online/offline randomization scheme to

reduce determinisms for time-triggered systems. Nasri et al. [52] conducted a comprehensive

study on the schedule randomization approach and argued that such techniques can expose

the fixed-priority preemptive RTS to more risks. While these work are centered on the prob-

lem of scheduler side-channels, they do not provide analytical guarantee for the protection

against scheduler side-channels. Additionally, the above works target hard RTS that are

highly constrained by strict real-time constraints and hence the effectiveness is limited by

the real-time nature (as discussed in Section 4.6.2). In contrast, in Section 4.4, I focus on

a more realistic RTS model that has flexible and more tolerable timing requirements. This

enables me to explore more aggressive defense strategy to achieve higher (and analyzable)

protection against the threats imposed by the scheduler side-channels.

2.3 DIFFERENTIAL PRIVACY AND RANDOMIZED MECHANISMS

2.3.1 Differential Privacy.

Differential privacy, along with the theorems and algorithms that build the foundation

for protecting data privacy, was introduced by Dwork [23, 24] originally in the context of

6



statistical queries on databases. It offers that an adversary looking at the output from any

of the differentially private query mechanisms cannot reason with high confidence about

the individual’s data and, most importantly, such protection is quantifiable based on the

foundation of randomized mechanisms (e.g., Laplace distribution for drawing noise added

to the output). It can be seen that differential privacy is used in many subjects addressing

the issue of data privacy [23, 53]. There is also a growing trend to extend such a notion

in the systems domain [54, 55, 56] to protect data privacy distributed among a group of

devices/entities.

While in this dissertation I focus on the system security rather than data privacy, the

high-level goal is somewhat similar to differential privacy and hence relevant techniques

may be adopted. In the context of real-time schedules, I define the notion of task/job in-

distinguishability that depicts the probability to distinguish the execution states from one

task/job to another in task schedules. Roughly speaking, a low indistinguishability enables

an adversary to extract a task’s execution from an observed task schedule with a high confi-

dence and hence the system is prone to compromises via scheduler side-channels. To address

such a problem, I propose the ε-Scheduler (Section 4.4) that offers ε-indistinguishability at

a job level and/or a task level, subject to the system constraints as well as the system de-

signer’s security goal. This is achieved by embedding a randomized scheduling mechanism

for adding noise to the inter-arrival times for each job at every scheduling point to abate the

predictability and determinism. To the best of our knowledge this dissertation is the first

work that adopts the foundation of differential privacy in the design of schedulers and to

address the security issues in RTS.

2.3.2 Laplace Mechanism.

The Laplace distribution has been used in the classic differential privacy problems for

generating random noise to achieve desired privacy protection [24]. Conventionally, the

Laplace distribution has a probability density function defined as:

Lap(x | µ, b) =
1

2 b
exp(−

|x− µ |
b

) (2.1)

location parameter

scale parameter

where µ is a location parameter and b > 0 is a scale parameter. The distribution has a

mean equal to µ and a variance equal to 2b2. In ε-Scheduler presented in this disserta-
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tion, I use Laplace distribution to generate randomized inter-arrival times for each job at

run-time. While there can be random noise drawn from other distributions (e.g., Gaussian

distribution [57, 58]) achieving the same level of indistinguishability, using Laplace distribu-

tion allows me to reuse existing mathematical and algorithmic components with great theory

foundation from the differential privacy domain.
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CHAPTER 3: EXPLOITATION OF SCHEDULER SIDE-CHANNELS

In this chapter, I intend to validate the hypothesis about the presence of the timing-based

side-channels in preemptive RTS. I show that such side-channels can leak execution behavior

of periodic tasks (i.e., the victim task) to unprivileged, user-space tasks (i.e., the observer

task) due to the deterministic nature embedded in the real-time schedulers (and hence I call

such side-channels the “scheduler side-channels”). The leakage allows the attacker to learn

the victim task’s phase (and hence being able to infer the future arrival time points) as a

step of reconnaissance for other advanced attacks that aim to create more severe damage

to the victim system. Therefore, while a scheduler side-channel attack itself may not cause

much loss, greater threats are posed in the aftermath of the leakage.

3.1 INTRODUCTION

Consider the scenario where an adversary wants to attack an embedded real-time system

(RTS) – parts of autonomous cars, industrial robots, anti-lock braking systems in modern

cars, unmanned aerial vehicles (UAVs), power grid components, the NASA rovers, implanted

medical devices, etc. These systems typically have limited memory and processing power,

have very regimented designs (stringent timing constraints for instance) and any unexpected

actions can be quickly thwarted. Therefore, the opportunity to either steal a critical piece

of information or the ability to launch that attack which takes control of the system can be

very limited. As a consequence, attacks on such systems require significant system specific

information. This “information” can take many forms – from an understanding of the design

of the system, to knowledge of the critical components (either software or hardware). The

exact knowledge depends on the type of attack and the target component. For example, say,

(a) to steal important information about when (and where) an on-board camera is used for

reconnaissance or (b) to take control away from the ground operator of a remotely-controlled

vehicle.

The one common underlying theme that pervades real-time systems (and something that a

would-be attacker should definitely address) is the importance of timing. “Timing” includes:

(i) when certain events occur, (ii) how often they occur, and, most importantly for this work,

(iii) when (and if) they will occur again in the future. In fact, a number of critical software

components in real-time systems are periodic in nature. As we shall see, these periodic tasks

present themselves as prime targets for attackers.

So, how does one attack such systems, especially the periodic (and critical) components?

9
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Figure 3.1: Overview of the work (using fixed-priority RTS as an example): I demonstrate
how an unprivileged, low-priority task (in user space) can use the ScheduLeak algorithms to
infer execution behaviors of critical, high-priority periodic task(s). The extracted informa-
tion is useful for helping other attacks achieve their primary goals (two such attack instances
are implemented in this dissertation as possible use cases).

I have discovered the presence of a scheduler-based side-channel that leaks timing infor-

mation in real-time systems.

The scheduler-based side-channel enables an unprivileged, low-priority task (in the case

of fixed-priority RTS) to learn the precise timing behavior of the critical, periodic (victim)

task(s) by simply observing its own execution intervals using a system timer. This provides

an attacker with the ability to infer the phase of the victim task and precisely predict its

future arrival times at run-time. I name the algorithms that exploit this side-channel attack

“ScheduLeak” in fixed-priority RTS and “DyPS” in dynamic-priority RTS.

Figure 3.1 presents an overview of the side-channel and also how the attacker can benefit

from the scheduler side-channel-based information. The left side of the figure shows how

a real-time system consisting of real-time tasks (the boxes at the top – the victim is a

periodic task while all other tasks can be either periodic or sporadic) that results in a

schedule (dotted boxes in the middle, with each task being indistinguishable from the other

at run-time) can be analyzed to extract the precise future arrival time points (the green,

upward arrows) of the victim task. The right-hand side of the figure shows how this timing

information of the critical task can be used to launch other attacks that either leak more

important information or destabilize the real-time control system. Note that without this

precise timing information, an attacker is either forced to guess when the victim task(s) will

execute or launch the attacks at random points in time – both of which dilute the efficacy

of the attack or result in early termination of the system.
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The extraction of this run-time timing information is non-trivial; main reasons include (a)

the run-time schedule depends heavily on the state of the system at startup, initialization

variables and environmental conditions and (b) real-time systems typically include multiple

non-real-time tasks as well. Even precise knowledge of all statically-known system parame-

ters is insufficient to reconstruct the future arrival times of the victim. While a privileged

attacker could target the scheduler of the system and extract the requisite information, such

access typically requires significant effort and/or resources. On the other hand, the proposed

algorithms are able to reconstruct the information with the same level of precision using an

unprivileged user space application. This is achieved by letting the attacker’s application

keep track of its own scheduling information. Coupled with some easily obtainable informa-

tion about the system (e.g., the victim task’s period), the attacker can recreate the targeting

timing information with high precision.

The challenges can also be seen by examining some techniques that can potentially yield

the same information. A possible strategy is to utilize Linux commands ps and top. How-

ever, these commands provide only basic process information (e.g., priorities, runtimes) and

offer coarser time resolution (in seconds). Hence, information gained from Linux commands

is insufficient to determine the victim task’s future execution time points. Another strategy

is to employ Discrete Fourier Transform (DFT) that transforms a signals from the time to

the frequency domains that seems to work at a first glance. However, unlike different signals

accumulating as waveforms in the time domain, in a system schedule an execution interval

is partitioned and deferred in the case of preemption – this distorts the original periodic

signals in the frequency domain and hence makes the corresponding phase information un-

usable. Other factors that make DFT even more unfeasible include varying execution times

and existence of other sporadic tasks.

To be more specific, let’s say that we want to override the (remote) control of a rover.

In many such systems, a periodic pulse width modulation (PWM) task drives the steering

and throttle. Without knowledge of when the PWM task is likely to update the motor

control values, the attacker is forced to employ brute force or random strategies to override

the PWM values. These could either end up being ineffective or lead to the entire system

being reset before the attack succeeds (see Section 3.8 for more details on this and another

scenario). Armed with knowledge from ScheduLeak, our smart adversary can now override

the PWM values right after they have been written by the corresponding task – effectively

overriding the actuation commands.

Scheduler covert channels, where two processes covertly communicate using the scheduler,

have long been known (e.g., [19, 43, 44]). In contrast, the focus of this work is on a side-

channel that leaks execution timing behavior (not deliberately, as opposed to the scheduler
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covert channels) of critical, high-priority real-time tasks to unprivileged, low-priority tasks.

It is important for an attacker to stay within the strict execution time budgets allotted to the

unprivileged task – especially during the phases when it is trying to observe and reconstruct

the victim’s timing behavior. Failing this requirement will likely cause other critical real-

time functionality to fail or trigger a watchdog timeout that resets the system, leading to

premature ejection of the attacker. This property is crucial during the ‘reconnaissance’ phase

of what has come to be known as advanced persistent threat (APT) attacks [59, 60]. E.g.,

it has been reported that attackers had penetrated and stayed resident undetected in the

system for months before they initiated the actual attack in the case of Stuxnet [61]. Once

they had enough information about system internals, they were able to craft effective attacks

tailored to that particular system.

Next, I introduce the two attack algorithms, ScheduLeak and DyPS, that demonstrate

the presence of the scheduler side-channels in the fixed-priority and the dynamic-priority

preemptive RTS, respectively. Two attack cases that benefit from the inferences produced

by the introduced attack algorithms are presented in 3.8.

3.2 PRELIMINARIES

In this work, I assume that the attacker has access to a system timer on the target system

and therefore time measured by the attacker has the resolution equal to this system timer.

The timer can be either a software or a hardware timer (e.g., a 64-bit Global Timer in

FreeRTOS or a CLOCK MONOTONIC-based timer in Linux). I consider a discrete time model

[62]. I assume that a unit of time equals a timer tick (of the timer that the attacker can

access) and the tick count is an integer. All system and task parameters are multiples of a

time tick. I denote an interval starting from time point a and ending at time point b that

has a length of b− a by [a, b) or [a, b− 1].

3.3 THE SCHEDULEAK ATTACK ALGORITHMS

3.3.1 System and Adversary Model

I consider a uniprocessor (i.e., single-core), fixed-priority, preemptive real-time system

consisting of n real-time tasks Γ = {τ1, ...τn}. A task can be either a periodic or a sporadic

task1. Each task τi is characterized by (Ti, Di, Ci, φi, prii) where Ti is the period (or the

1A task may also be an aperiodic task. However, in systems like real-time Linux (i.e., Linux with the
PREEMPT RT patch), aperiodic tasks only get to run in slack time (i.e., when no real-time tasks are in the
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Table 3.1: A summary of the system and adversary model.

Real-Time System Assumptions
A1 A preemptive, fixed-priority real-time scheduler is used.
A2 The victim task is a periodic task.

Attacker’s Capabilities (Requirements)
R1 The attacker has the control of one user-space task (observer

task) that has a lower priority than the victim task.
R2 The attacker has knowledge of the victim task’s period.
R3 The attacker has access to a system timer on the system.

Attacker’s Goals
G1 Infer the victim task’s phase and predict future arrivals.

minimum inter-arrival time), Di is the relative deadline, Ci is the worst-case execution time

(WCET), φi is the task phase2 and prii is the priority. I assume that every task has a distinct

period3 and that a task’s deadline is equal to its period [9]. I use the same symbol τi to

represent a task’s job (or instance) for simplicity of notation. I assume that task release jitter

is negligible. Thus, any two adjacent arrivals of a periodic task τi has a constant distance

Ti. I further assume that each task is assigned a distinct priority and that the taskset is

schedulable by a fixed-priority, preemptive real-time scheduler. Let hp(τi) denote the set of

tasks that have higher priorities than that of τi and lp(τi) denote the set of tasks that have

lower priorities than τi. I define an “execution interval” of a task to be an interval of time

[a, b) during which the task runs continuously. If τi is preempted then the execution will be

partitioned into multiple execution intervals, each of which has length less than ei.

I assume that an attacker is interested in targeting one of the critical tasks in the system

that I henceforth refer to as a “victim task”, denoted by τv ∈ Γ. I also assume that τv is

a real-time, periodic task. Many critical functions in real-time control systems are periodic

in nature, e.g., the code that controlled the frequency of the slave variable-frequency drives

in the Stuxnet example [61]. In all such cases, the period of the task is strictly related to

the characteristics of the physical system and thereby can be deduced from the physical

properties; hence, I can assume that the attacker is able to gain knowledge of the victim

ready queue). As a result, aperiodic tasks do not influence how real-time tasks behave and thus are ignored
in this dissertation.

2The task phase is defined as the offset from the zero time point to any of the task’s arrival time points
projected on the period on the zero time point. Thus, φi < Ti. It should not be confused with the arrival
time point of the task’s first job.

3This assumption is in line with existing standards in the design of real-time tasks to ensure distinct
periods/priorities. For example, AUTOSAR (a standardized automotive software architecture) tools map
runnables/functions activated by the same period to a single task to reduce context switch/preemption
overheads.
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task’s period beforehand. It is common that, before attacking complex systems (e.g., CPS),

adversaries will study the design and details of such systems. However, the attacker does

not know the initial conditions at system start-up (e.g., the task’s phase) and may not have

information on all the tasks in the system. All other tasks in the system can be either

periodic, sporadic or non-real-time, depending on the design of the system. Hence, the

methods developed in this work can target systems that have a mix of periodic, sporadic

and non-real-time tasks.

The ultimate goal varies with adversaries and the systems under attack. For example,

in advanced persistent threat (APT) attacks [59, 60], one may plan to interfere with the

operations of critical tasks, eavesdrop upon certain information via shared resources or even

carry out debilitating attacks at a critical juncture when the victim system is most vulner-

able. Oftentimes, such attacks require the attacker to precisely gauge the timing properties

of victim tasks. In this work, I introduce attack algorithms that help an attacker obtain this

valuable information during the reconnaissance stage. In this context, the main goal of the

attacker is to precisely infer when the victim task is scheduled to run in the near future (i.e.,

the future arrival times).

Note that my focus in this work is on how to reconstruct the timing behavior of a higher-

priority periodic victim task using the scheduler side-channel without violating the real-time

constraints. I do this from the vantage point of a compromised, lower-priority (“observer”)

task. I do not focus on how attackers get access to the observer task. They could use any

number of known methods – from compromised insiders, to supply chain vulnerabilities in a

multi-vendor development model (as is usually practiced for the design and development of

large, complex systems such as aircraft, automobiles, industrial control systems, etc.) [32],

to vulnerabilities in the software and network among others. Recent work has demonstrated

that real-time systems like commercial drones contain design flaws and hence are vulnerable

to compromise [63, 64]. The details of gaining access to an observer task are out of scope for

this work. Nevertheless, it is important to note that the proposed attack algorithms do not

require the observer task to be a privileged task in the system. A summary of assumptions,

attacker’s capabilities and goals is given in Table 3.1.

As previously mentioned, I refer to the lower-priority task that the attacker controls as an

“observer task” and it is denoted by τo ∈ Γ. It can be a user-space task. The only constraint

I place on τo is that it has a lower priority than the victim task, priv > prio. The observer

task can be either a periodic or a sporadic task and its period (or its minimum inter-arrival

time) can be shorter or longer than the victim task. In particular, being a periodic task is a

more restrictive condition since it reduces the flexibility available to an attacker (this will be

clearer as I introduce the algorithms). That is, the case where a periodic observer task with
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a period To and priority prio can succeed, a sporadic observer task (by picking the same To

as the minimum inter-arrival time and the same priority prio) can also succeed. Therefore,

when analyzing the attack capabilities in Section 3.3.6, I will consider a periodic observer

task (or a sporadic observer task running at a constant inter-arrival time).

In this work, I use the observer task to infer the victim task’s phase φv that can be used to

predict future arrivals of the victim task. I let the observer task “monitor” its own execution

intervals by using a system timer. Note that reading system time does not require privilege in

most operating systems (e.g., invoking clock gettime() in Linux). The key idea here is that

the intervals when the observer task is active cannot contain the victim task’s execution or its

arrival time point since the victim would have preempted the observer task. However, there

are also other higher-priority tasks that can impact the observer task’s execution behaviors.

To the attacker, the challenge is to then filter out unnecessary information and extract the

correct information about the victim task. This is explained in the following section.

3.3.2 Overview of the ScheduLeak Algorithms

In what follows I introduce the core algorithms of ScheduLeak. The main idea is that the

victim task cannot run while the observer task is running since the latter has a lower priority.

By reconstructing the observer task’s own execution intervals and analyzing those intervals

based on the victim task’s period, I may infer the initial offset and future arrival times

for the victim task. A high-level overview of the various analyses stages in the proposed

ScheduLeak algorithms includes:

1. Reconstruct execution intervals of the observer task: first, the observer task uses a

system timer to measure and reconstruct its own execution intervals (i.e., times when

it itself is active). [Section 3.3.3]

2. Analyze the execution intervals: The reconstructed execution intervals are organized

in a “schedule ladder diagram” – a timeline that is divided into windows that match

the period of the victim task. [Section 3.3.4]

3. Infer the victim task’s phase and future arrivals: in the final step, the phase for the

victim task is inferred. This information is then used to predict the future arrivals of

the victim. Since the victim task is periodic in nature, the offset from the start of its

own window translates to the offset from startup when the first instance of the victim

task executed. [Section 3.3.5]
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Algorithm 3.1: E(Co, C
′
o, λ) Reconstructing an Execution Interval

Input:
Co: the worst case execution time of τo
C ′o: remaining execution time of present job of τo
λ: maximum reconstruction duration in a period
Output:
tbegin, tend: start, end time of the detected interval
C ′o: updated remaining execution time of present job of τo

1 t0 = ST // system timer
2 tbegin = t0
3 tstop = tbegin + C ′o − (Co − λ)
4 duration = 0
5 while duration ≤ loop execution time unit and t0 < tstop do
6 t−1 = t0
7 t0 = ST
8 duration = t0 − t−1

9 end
10 if duration > loop execution time unit then
11 tend = t−1

12 else
13 tend = t0
14 end
15 C ′o = C ′o − (tend − tbegin)
16 return {tbegin, tend, C ′o}

3.3.3 Reconstruction of Execution Intervals

The first step is to reconstruct the observer task’s execution intervals. I implement a

function (Algorithm 3.1) in the observer task that keeps track of time read from the system

timer. By examining the polled time stamps, preemptions (if any) can be identified and the

execution intervals of the observer task can be reconstructed.

Algorithm 3.1 takes the observer task’s worst case execution time Co, the remaining execu-

tion time of the present instance C ′o and the maximum reconstruction duration λ as inputs.

It outputs the start time tbegin and end time tend of the detected execution interval as well as

the updated remaining execution time of the present instance C ′o. Lines 1 –4 initialize the

variables to be used by the algorithm. Specifically, line 3 computes the point in time (the

stop condition) when the algorithm reaches the given maximum reconstruction duration λ

for the present instance. Lines 5 – 9 are used to detect a preemption and check if current

time exceeds the computed stop time point. These lines keep track of the time difference

between each loop by reading present time from a system timer and comparing it to the
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time from the previous loop. If the time difference exceeds what I anticipate (the execution

time of the loop), I know that a preemption occurred (i.e., one or more higher-priority tasks

executed). The loop exits either when a preemption is detected or the present time exceeds

the computed stop time point. Lines 10 – 12 determine the end time of the reconstructing

execution interval. If the loop exits because of a preemption, the last time point before

the preemption is taken as the end time of that execution interval (line 11 ). Otherwise,

no preemption is detected, all λ duration is used up and the latest time point is taken as

the end time of the execution interval (line 13 ). Line 15 updates the remaining execution

time of the present job for the next invocation. Line 16 returns the reconstructed execution

interval and the updated remaining execution time.

Algorithm 3.1 returns one execution interval of the observer task for every invocation. If

required, the attacker can invoke this algorithm multiple times to reconstruct the execution

intervals in detail. While this function seems straightforward, ensuring that it respects real-

time constraints (i.e., all real-time tasks must meet their deadlines) is critical. That is, the

observer task should not run more than its WCET, Co. Furthermore, even if the attacker

does not exceed the allocated execution budget for itself, it may want to save some budget

for other purposes such as performing the analyses to reconstruct the timing information

of the victim. Hence, I define a parameter, λ, whose value is set by the attacker, to limit

the running time of the aforementioned function for the observer task in each period. This

“maximum reconstruction time”, λ, is an integer in the range 0 ≤ λ ≤ Co. The total length

of the reconstructed execution intervals is λ in each period and this leaves the timespan

Co − λ for the observer task to carry out other computations. As a result, the service

levels guaranteed by the original (clean) system is still maintained – thus reducing the risk

of triggering system errors. On the flip side, the attacker may not be able to capture all

possible execution intervals and this could reduce the fidelity/precision of the final results.

Section 3.3.7 discusses how to compute good values for λ. Figure 3.2 shows examples of

reconstructed execution intervals.

3.3.4 Analysis of Execution Intervals

Once the observer task’s execution intervals are reconstructed, I analyze the data to extract

information about the victim task. I organize the observer’s execution intervals into a

timeline split into lengths of the victim task’s period Tv (recall that Tv is one of the known

quantities for the attacker). The purpose of this step is to place the execution intervals of the

observer task within periodic windows of the victim task. The timeline split into windows

of length that matches the victim task’s period allows the attacker to see how the observer
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(b) Some tasks τi ∈ hp(τo) preempt τo.

Figure 3.2: Examples of reconstructed execution intervals of the observer task. The total
length of the reconstructed execution interval(s) is λ that leaves Co − λ for τo to perform
original task functions.

task’s execution intervals are influenced by the victim task as well as other higher-priority

tasks.

To better illustrate the idea of the timeline and the proposed algorithms, I will use a

“schedule ladder diagram” (defined below) to represent the construction of the timeline in

this work. The rows in the schedule ladder diagram can be merged into a single-line timeline

(and is just an analytical “trick”). A schedule ladder diagram is a skeleton consisting of

a set of adjacent timelines of equal lengths – that match the victim task’s period Tv. The

start time of the top section can be an arbitrary point in time assigned by the attacker (e.g.,

the time instant when the algorithms are first invoked). The columns in the schedule ladder

diagram are “unit time columns”. So, there are Tv time columns. That is, the schedule

ladder diagram has the same time resolution as the reconstructed execution intervals. The

skeleton of a schedule ladder diagram is illustrated in Figure 3.3. From the diagram, plotted

based on Tv, I make the following observation:

Observation 3.1. Any schedule ladder diagram of τv must contain exactly one arrival

instance of τv in every row. All arrivals of τv are located in the same time column.

This observation is true because τv is a periodic task that arrives every Tv time units and

the schedule ladder diagram is plotted with its interval equal to Tv. I define the column

where the arrivals of the victim task are located as the “true arrival column”, denoted by

δv. Thus, the correlation between the initial offset φv and the true arrival column δv can
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Figure 3.3: The skeleton of a schedule ladder diagram. It is used by the observer to organize
its execution intervals. The start time t of the schedule ladder diagram (i.e., the beginning
of the top timeline) is an arbitrary point in time, as assigned by the attacker. The width
of each timeline matches the victim task’s period Tv. The relative offset between the start
time t and the true arrival column is defined by δv.

be derived by (t + δv − φv) mod Tv = 0, where t represents the (arbitrary) start time of

the schedule ladder diagram assigned by the attacker. This is also depicted in Figure 3.3.

Based on this observation, I define the following theorem with respect to the observer task’s

executions on the schedule ladder diagram:

Theorem 3.1. The observer task’s execution intervals do not appear at the time columns

[δv, δv + bcetv), where bcetv is the best case execution time of τv.

Proof. From Observation 3.1, the victim task τv arrives regularly at time column δv. If there

exists lower priority tasks lp(τv) in execution at δv column, the victim task preempts such

tasks until it finishes its job with length of bectv at a minimum. In the case that there exists

higher priority tasks hp(τv) that are executing or arriving during [δv, δv + bcetv), the victim

task τv is preempted. Under this circumstance, if the observer task τo had arrived during

[δv, δv + bcetv), as a lower priority task, it is also preempted. Therefore, the time columns

[δv, δv + bcetv) cannot contain the execution intervals of the observer task. QED.

In other words, the time columns where the observer task τo can ever appear are not the

true arrival column δv. To this end, it’s easier to think of the problem as the process of

eliminating those such time columns. If I place the obtained execution intervals of τo on the

schedule ladder diagram and remove the corresponding time columns, then, there must exist

at least an interval of continuous time columns, of which the length is equal to or greater

than bcetv, that is not removed in the end. Those time columns are candidates for the true

arrival time of τv. There may also exist time columns that are not removed due to other

higher-priority tasks. Yet, since other tasks have distinct arrival periods (or random arrivals

for sporadic tasks), those time columns tend to be scattered (compared to [δv, δv+bcetv)) and
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are expected to be eliminated as more execution intervals of the observer task are collected.

In practice, the experiment results indicate that this process works effectively and is mostly

stabilized after an attack duration of 5 · LCM(To, Tv) (see Section 3.7.1).

Example 3.1. Consider an RTS consisting of four tasks Γ = {τ1, τo, τv, τ4}. For the sake of

simplicity, I assume that all tasks are periodic in this example (though my analysis can work

with periodic, sporadic and mixed systems as well). The task parameters are presented in

the table below (on the left). Note that prii > prij means that τi has a higher number than

τj. Thus, task τ1 has the lowest priority while task τ4 has the highest priority and τv has

higher priority than τo. Let the maximum reconstruction duration λ be 1 and the start time

of the attack be 0 (as a result, φv equals δv in this example). Assuming the attacker has

executed the first step/algorithm for some duration, the table below lists the reconstructed

execution intervals of the observer task.

Table 3.2: An RTS task set.

Ti Ci φi prii

τ1 15 1 3 1
τo 10 2 0 2
τv 8 2 1 3
τ4 6 1 4 4

Table 3.3: Reconstructed execution intervals.

Intervals

[0,1)
[12,13)
[20,21)
[30,31)
[43,44)

Note that since τ1 has priority lower than the observer task τo, it does not influence

the execution of τo. Then, I place the reconstructed execution intervals in a schedule ladder

diagram of width equal to the victim task’s period Tv. This operation is shown in Figure 3.5.

To better understand the effectiveness of the schedule ladder diagram in profiling the victim

task’s behavior, I plot the original, complete, schedule on the ladder diagram in Figure 3.4

so that readers get a better sense of it. This gives us an insight into the relation between

the execution intervals of τo and that of the victim task.

From the schedule ladder diagram in Figure 3.5, I remove the time columns that are

occupied by the observed execution intervals. The results are shown at the bottom of Figure

3.5. What’s left are candidate time columns that contain the true arrival times for the

victim that I want to extract. These intervals are passed to the final step to infer the initial

offset/arrival times of the victim task.

3.3.5 Inference of Initial Offset and Future Arrival Instants

I now get to the final step – inferring the future arrival instants of the victim task – our

original objective. But, first, I need to calculate the initial offset of the victim task. What
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Figure 3.4: The schedule of the task set in Example 3.1 plotted on a schedule ladder diagram
with a width of Tv. It shows that time columns [1, 3) are always occupied by either the victim
task or other higher priority tasks. Therefore, the execution intervals of the observer task
will not land on these time columns where the true arrival column is enclosed. This fact is
what the proposed algorithms is based on.

I get from the previous step is a set of intervals of candidate time columns that contains

the true arrival column of the victim task. The number of intervals depends on the number

of collected execution intervals as well as the “noise” introduced by other, higher-priority,

tasks (hence, there is no guarantee that all false time columns can be eliminated in the

end). However, as observed from our experiments and based on Theorem 3.1, the false

time columns tend to be scattered. Therefore, I take the largest interval as our inference

that may contain the true arrival column of the victim task. I then pick the start of this

interval as the inferred true arrival column, denoted by δ̂v. While this strategy is not always

guaranteed to succeed, the evaluation (both performance evaluation in Section 3.7 and case

studies in Section 3.8) shows that the proposed algorithms are able to achieve a high degree

of precision for the inference. The required initial offset, denoted by φ̂v, can then be derived

as φ̂v = (t+ δ̂v) mod Tv, where t represents the start time of the schedule ladder diagram.

Example 3.2. The intervals obtained from Example 3.1 correspond to the time columns

[1, 3), [5, 6) and [7, 8). According to the algorithm, the largest interval, [1, 3), is selected.

The starting point of such an interval is then taken as the inference of the victim task’s true

arrival column, which becomes δ̂v = 1. In this example, the true arrival column is δv = 1.

Therefore, the algorithms correctly infer the true arrival column of the victim task and the

21



𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠	𝑜𝑓	𝜏! 	(𝛿! = 1)

…

0

8

16

24

40
𝑇! = 8

𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒𝑑	𝑡𝑖𝑚𝑒	𝑐𝑜𝑙𝑢𝑚𝑛𝑠

c𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠	𝑓𝑜𝑟	𝑡ℎ𝑒	𝑡𝑟𝑢𝑒	𝑎𝑟𝑟𝑖𝑣𝑎𝑙	𝑐𝑜𝑙𝑢𝑚𝑛𝑠

32

Figure 3.5: The processed schedule ladder diagram for Example 3.1.

initial offset can be derived accordingly.

Now, the future arrivals of the victim task can easily be computed by φ̂v + Tv · α, α ∈ N,

where φ̂v is the inferred initial offset of τv, Tv is the period of τv and α is the desired arrival

number. The result of this calculation is the exact time of the αth arrival of the victim task.

3.3.6 Analyzing Attack Capability

In this section, I discuss how to determine the attack capability or effectiveness of the

observer task with respect to the victim task. That is, in this context, whether the observer

task can remove all false time columns, and hence, correctly infer the arrival information of

the victim task. Note that the analysis presented in this section focuses on the observer task

being a periodic task since, as mentioned in Section 3.3.1, it is a more restrictive condition

to an attacker. Given the same target system, a sporadic observer task may perform better

as the sporadic task naturally has more flexible arrivals that are constrained only by its

minimum inter-arrival time. A conservative condition ensuring that all false time columns

can be removed from the schedule ladder diagram of τv is: when the observer task’s execution

intervals appear in all possible time columns. Therefore, I first analyze how the observer

task’s execution relates to the victim task’s execution. When considering both τv and τo as

periodic tasks, I have the following observation and theorem:

Observation 3.2. In the schedule ladder diagram, the offset between the time column

of each observer task’s arrival (i.e., the scheduled execution) and the true arrival column
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repeats after their least common multiple, LCM(To, Tv).

Theorem 3.2. If the given observer task τo and the victim task τv satisfy the inequality

Co ≥ GCD(To, Tv), then the scheduled execution of τo is guaranteed to appear in all time

columns of the schedule ladder diagram of τv.

Proof. From Observation 3.2, the time column offset of the observer task’s execution repeats

every LCM(To, Tv). Therefore, the aforementioned condition (i.e., the scheduled execution

of τo appears in all possible time columns) can be described by the inequality LCM(To,Tv)
To

·
Co ≥ Tv. Then, by using LCM(To, Tv) = ToTv

GCD(To,Tv)
, I can derive a condition for Co that

guarantees that the observer task can detect the arrivals of the victim task to be Co ≥
GCD(To, Tv). QED.

From Theorem 3.2, I find that the observer task’s scheduled execution can appear in some

of the time columns more than once during LCM(To, Tv) when Co > GCD(To, Tv). The

redundant coverage means that the false time columns will be visited by τo more frequently

when compared to the lower ratio of Co to GCD(To, Tv). In contrast, if Co < GCD(To, Tv),

then not all the false time columns can be covered and examined by the observer task. To

better profile the observer task’s coverage, I further define a coverage ratio that depicts the

observer task’s capability against the victim task as follows

Definition 3.1. (Coverage Ratio) The coverage ratio, denoted by C(τo, τv), is computed by

C(τo, τv) =
Co

GCD(To, Tv)
(3.1)

viable observation length

greatest common divisor of To and Tv

The coverage ratio can be loosely interpreted as the proportion of the time columns where

the observer task can potentially appear in the schedule ladder diagram. If all Tv time

columns can be covered by the observer task, then C(τo, τv) ≥ 1. Otherwise 0 ≤ C(τo, τv) < 1.

3.3.7 Choosing The Maximum Reconstruction Duration λ

Recall that, the maximum reconstruction duration λ is used to limit the amount of execu-

tion time (in a period) taken up by the observer task for running the attack algorithms. As

the attacker wants to stay stealthy and minimize disruption to the original functionality, it

is desirable to use a λ value as small as possible. The remaining execution time Co − λ can

23



then be used by the attacker to deliver the original functionality of τo while making progress

on the capturing of execution data. Based on this idea, λ can be determined by:

λ =

GCD(To, Tv) if C(τo, τv) ≥ 1

Co otherwise
(3.2)

In the case of C(τo, τv) ≥ 1, the observer task has redundant coverage. Since a one-time

coverage is sufficient for the observer task to examine all Tv time columns, the additional

coverage can be traded for other purposes. Otherwise (C(τo, τv) < 1), the attacker may need

to utilize all its computational resource for the attack.

3.4 THE DYPS ATTACK ALGORITHMS

One important challenge to leaking information via scheduler side-channels in dynamic-

priority RTS, e.g., the earliest-deadline first (EDF) algorithm, is that (relative) task priorities

are not constant and vary at run-time. In the ScheduLeak attack that targets FP RTS, the

observer task has a priority lower than the victim task at all times. This determinism ensures

that the execution of the observer task is always preempted or delayed by the victim task

when both are ready to run and this is vital for inferring the arrival times of the victim. In

contrast, in an EDF RTS, task priorities are determined dynamically based on each job’s

absolute/relative deadline at each scheduling point. That is, no task will always have a higher

priority relative to another task in the system. Hence, the ScheduLeak assumption about

a persistent (relative) priority relationship between any two tasks in the system becomes

invalid in EDF RTS.

3.4.1 System and Adversary Model

In this work, I consider a uni-processor, single-core, preemptive, dynamic-priority RTS

running the EDF scheduling algorithm. The system consists of n real-time tasks Γ =

{τ1, τ2..., τn}, each of which can be either a periodic or a sporadic task. A task τi is modeled

by Ci, Ti, Di, φi where Ci is the worst-case execution time (WCET), Ti is the period (or

the minimum inter-arrival time for a sporadic task), Di is the relative deadline and φi is the

task phase4. I assume that every task has a distinct period (or the minimum inter-arrival

4The task phase is defined as the offset from the zero time point to any of the task’s arrival time points
projected on the period on the zero time point. Thus, φi < Ti. It should not be confused with the arrival
time point of the task’s first job.
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time) and that Di = Ti [9]. I denote the k-th job of the task τi by τ ki and it is modeled by

cki , a
k
i , s

k
i , d

k
i where cki denotes the execution time (cki ≤ Ci), a

k
i is the absolute arrival time,

ski is the start time and dki is the absolute deadline. For simplicity, I use ci, ai, si, di when

referring to an arbitrary job of τi if the job ordering is unimportant and I use “task” and

“job” interchangeably. I only consider the task set that is schedulable by the EDF scheduling

algorithm. Thus,
∑

τi∈Γ

Ci
Ti
≤ 1. I assume that the task release jitter is negligible, and thus

ak+1
i − aki = Ti for a periodic task and ak+1

i − aki ≥ Ti for a sporadic task.

In EDF scheduling, a job with smaller absolute deadline gets to run first and is considered

to have higher priority among other ready jobs that have greater absolute deadlines. In the

case that multiple ready jobs have the same absolute deadline, they are considered to have

the same priority and the EDF scheduler randomly selects one of the jobs to run. I define a

task’s “execution interval” to be an interval during which the task runs continuously.

Similar to the adversary model introduced in ScheduLeak, I assume that the attacker is

interested in learning the task phase (and then inferring the future arrival time points) of a

critical, periodic task (the victim task, denoted by τv) in the system. This is considered to

be part of a reconnaissance phase that can be a part of a larger attack. Such an attack will

benefit from the inferences of the task’s future arrival time points. The attacker launches

the proposed DyPS attack algorithms that exploit the scheduler side-channels using an

unprivileged, periodic task (the observer task, denoted by τo) running on the same victim

system. Once the inference of the victim task’s phase is obtained, it is up to the attacker

to decide if further attacks should be launched using the same observer task or via other

attack surfaces. The ultimate goal of the attacks varies with the adversaries. Two examples

of how the inferred information can be used to carry out further attacks are presented in

Section 3.8.

The DyPS attack requires only the observer task to ensure the success for the attack

algorithms introduced in this work. I assume that the observer task has access to a system

timer that has a resolution that is coarser than or equal to a time tick. The observer task

uses the timestamps read from such a system timer to reconstruct its own execution intervals

and infer the victim task’s phase. However, this method only works when the victim task

has a priority higher than the observer task [20, Theorem 1], which is not always true under

the EDF scheduling algorithm. More specifically, in the case of EDF RTS, the work is more

interested in the priority relationships between tasks at the instant when the victim task

arrives. To better clarify the relation between the observer task and the victim task, I define

the term “observability” as follows:

Definition 3.2. (Observability) A victim task’s arrival at av is said to be observable by the
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observer task if the observer task has a priority lower than the victim task at av.

In an FP RTS, it is trivial to see that every arrival of the victim task is observable by the

observer task if the victim task has a fixed, higher priority than the observer task. In an

EDF RTS, it depends on both the tasks’ periods and the absolute deadlines at run-time. I

first determine the observability of a given observer and victim task pair by:

Theorem 3.3. For the EDF scheduling algorithm, given an observer task τo and a victim

task τv whose periods are To and Tv respectively and To 6= Tv, the victim task’s arrivals may

be observable by the observer task only if To > Tv.

Proof. Definition 3.2 for EDF means that the observer task has a larger deadline when the

victim task arrives. That is, ao ≤ av and do > dv (or ao + To > av + Tv) for some jobs of

τo and τv. Rewriting the above deadline inequality as To − Tv > av − ao indicates that To

must be greater than Tv since av− ao ≥ 0. Now let’s consider the case when To < Tv. It can

be seen that when both tasks arrive at the same time (which is the case when the observer

task has the largest possible deadline relative to the victim task), the observer task still has

a deadline smaller than the victim task (i.e., ao = av and thus ao+To < av +Tv ⇒ do < dv).

Therefore, no victim task’s arrival can be observed by the observer task if To < Tv. QED.

Based on Theorem 3.3, I make an assumption that the observer task must have a period

larger than the victim task (i.e., To > Tv) in this work.

3.4.2 Challenges and Overview of the DyPS Algorithms

The scheduler side-channels in the FP RTS enable an unprivileged, low-priority task to

learn precise timing information of a periodic, critical task. Similar scheduler side-channels

exist in the EDF RTS due to the fact that both types of RTS are preemption-based systems.

However, because of the dynamic nature, there are additional conditions and restrictions to

be considered for making the attack succeed under the EDF scheduling algorithm. In this

section, I present these constraints along with the details of the proposed DyPS algorithms.

In this work, the attacker’s goal is to infer the victim task’s phase and then predict its

future arrival time points. This is achieved by allowing the observer task to reconstruct and

analyze its own execution intervals. When the victim task arrives with a priority higher

than the job of the observer task that has been scheduled, the execution of the latter is

either delayed or preempted. As a result, the victim task’s execution (including the arrival

instant) is enclosed in the observer task’s execution intervals. By reconstructing execution

intervals for a sufficiently long duration (see Section 3.7.2 for the evaluation of the attack

26



Observer

Victim
𝑡𝑖𝑚𝑒

𝑎1 observable

𝑎1

𝑎5

𝑑1

𝑑5

𝜏1

𝜏5

(a) dv < do and thus av is observable by τo

𝑎" not	observable

𝑎"

𝑎.

𝑑"

𝑑.

𝑡𝑖𝑚𝑒
Observer

Victim
𝜏"

𝜏.

(b) dv > do and thus av is not observable by τo

Figure 3.6: Examples of the two conditions (the victim task’s arrival, av, being observable
and not observable by the observer task under the EDF scheduling) elaborated in Exam-
ple 3.3.

duration), it is possible to infer the victim task’s phase. Yet, even if I assume that To > Tv

(Theorem 3.3) for a given observer and victim task pair, it is not guaranteed that every

arrival of the victim task is observable by the observer task due to the dynamic priority in

EDF.

Example 3.3. Consider an observer task τo (To = 10, Co = 4) and a victim task τv (Tv = 8,

Cv = 2). Without making any assumption on the task phases, Figure 3.6 demonstrates how

dynamic priorities impact the observability in EDF schedules. In Figure 3.6(a), both τo and

τv arrive at the same time point (i.e., ao = av). Since τv has a higher priority (because

dv < do), the execution of τv delays τo that is supposed to start at ao. As a result, the arrival

at av can be observed by τo. In Figure 3.6(b), τv arrives at a point when do < dv. As τo is

currently executing and has a higher priority at the arrival point av, the execution of τv is

delayed by the execution of τo. Consequently, the observer task fails to observe the victim

task’s arrival at av.

Apart from the fact that not all the observer task’s execution intervals encapsulate the

victim task’s arrivals, the above example also hints at the fact that a part of an execution

interval may still be admissible even when such an execution interval is considered invalid

w.r.t. the observation of the victim task’s arrivals. To illustrate, let’s consider the observer

task’s execution interval starting at ao in Figure 3.6(b). It is in fact safe to leverage the

first half of the execution interval to infer there is no arrival. This is because if the victim

task arrived within this interval it would have higher priority (earlier deadline) and would

preempt the observer task. But considering the second half of the execution interval to make
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the same inference would cause a false negative observation (i.e., no arrival is inferred while

there is one) and mislead the attack results. To identify the part of the execution interval

that is valid for observing the victim task’s arrivals, I present the following theorem:

Theorem 3.4. For a given job of the observer task arriving at ao, only the execution

interval(s) within [ao, ao + To − Tv) is valid for observing the arrivals of the victim task.

Proof. The observer task may observe the victim task’s arrivals if ao ≤ av and do > dv.

However, it is unknown to the attacker when a job of the victim task would arrive, so the

attacker must assume that the victim task may arrive at any time point and exclude the

part of the execution intervals that may contain false information. For the jobs of τo whose

deadlines satisfy do > dv, all the execution intervals in such jobs provide valid observations

of the victim task’s arrivals. That is, for a given ao of a job whose deadline meets do > dv,

all the execution intervals within the range [ao, ao + To) are valid.

In contrast, when do ≤ dv, the execution of τo may interfere5 with the victim task’s arrivals.

From τo’s point of view, the earliest victim task’s arrival that may be interfered by τo occurs

when do = dv and that arrival time point can be represented by av = dv − Tv = do − Tv =

ao + To − Tv. Hence, it is possible for the observer task’s execution to interfere with any

arrivals of the victim task if it spans across the time point ao + To − Tv. Therefore, only

the execution intervals within [ao, ao + To − Tv) is valid for the observer task to observe the

victim task’s arrivals. QED.

Using Theorem 3.4, it is possible for the observer task to reconstruct only the valid part

of the execution intervals. However, the attacker may not directly use such a theorem as it

requires ao (or more precisely, the task phase φo) to be known. If the attacker is already

present when the system starts, φo may be known to the attacker. However, in most attack

cases where the attacker enters the victim system after the system starts, the attacker may

not be able to easily learn the exact value of φo without further reconnaissance. In such

cases, the attacker must first obtain φo before employing Theorem 3.4 and proceeding to

infer the victim task’s phase.

The rest of this section details every step of the proposed DyPS algorithms that account

for the aforementioned challenges. An overview of the attack steps is given next:

1. Reconstruct φo: the first step is to reconstruct the observer task’s phase in order to

identify the range specified in Theorem 3.4. [Section 3.4.3]

5By “τi interferes with an arrival of τj” I mean that τi has a priority higher than τj at the arrival point
of τj and hence the start of τj will be delayed by the execution of τi.
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2. Reconstruct execution intervals: with the reconstructed φo, the observer task then

is able to reconstruct only the valid part of the execution intervals for observing the

victim task’s arrivals. [Section 3.4.4]

These preceding two steps are introduced in DyPS for overcoming the challenges posed by

the dynamic priorities in EDF. The information extracted using these two steps is compatible

with the ScheduLeak algorithms. Hence, in this work I reuse existing work and toolboxes to

carry out analysis. In particular, I leverage the following two parts of ScheduLeak:

1. Compute candidates: the observer task analyzes the reconstructed execution intervals

and compute a list of time points as candidates for the final inference. [Section 3.4.5]

2. Infer φv and predict future av: a time point is selected from the candidate list as the

inference of the victim task’s phase. A future arrival time point of the victim task can

then be predicted by using the inferred task phase. [Section 3.4.6]

3.4.3 Reconstructing The Observer Task’s Phase

Reconstructing the observer task’s phase, φo, can be carried out by the observer task

itself. When a new job of the observer task is scheduled to run, ao is unknown since there

might be higher priority tasks delaying the observer task’s execution. However, what the

observer task itself can learn is the job’s start time si (by reading the time stamp right as

the job starts) which is bounded by ao ≤ so ≤ do − Co. Let φ̃o be the reconstructed task

phase of the observer task. For a given job, I may compute φ̃o from the start time so by

φ̃o = so mod To where To is known to the attacker. Intuitively, the closer so is to ao, the

more accurate φ̃o will be. By collecting and examining more start times, the attacker may

further improve φ̃o by first determining the closest so to ao and then computing φ̃o using

the aforementioned equation. When there exists one job whose so is equal to ao, the correct

task phase can be reconstructed (i.e., φ̃o = φo). In Section 3.4.7 I discuss the factors that

impact the reconstruction of the task phase and how likely it is for the attacker (observer

task) to observe a situation where so = ao in a given task set. I now formally describe the

algorithms.

Consider the observer task launching the attack on its k-th job (k is an arbitrary num-

ber that is unknown to the attacker) and collecting its own job start times for m jobs.

What the observer task captures is a set of start times of consecutive jobs Sobservedo =

{sko , sk+1
o , ..., sk+m−1

o }. Our goal is to find the start time that is closest to its arrival time. I

do this by comparing the start times using the following proposition:

29



Proposition 3.1. Given two start times sko and sk+p
o where p ≥ 1 and thus sko < sk+p

o , I can

determine the start time that is closer to its arrival time to besko if sko < sk+p
o − p · To

sk+p
o otherwise.

(3.3)

where To and p are known.

In the above proposition, the given start time pair, sko and sk+p
o , represents two jobs

differing in p periods. Therefore, the start time of the (k + p)-th job can be shifted to the

same period as the k-th job by sk+p
o − p · To since the observer task arrives periodically (i.e.,

ako = ak+p
o − p · To). As a result, the two start times in the same period (sko and the shifted

sk+p
o − p · To) are comparable. The smaller one is closer to its arrival time since ao ≤ so.

By employing Proposition 3.1, I can determine the start time that is closest to its arrival

time using Sobservedo . The inference of the task phase for the observer task is computed by

φ̃o = min(sk+p
o − p · To | 0 ≤ p < m) mod To (3.4)

where To is the period known to the attacker and k can be unknown. Then, given a start

time so, the attacker can compute its projected arrival time ão by

ão = so − j̃o (3.5)

where j̃o = (so − φ̃o) mod To represents the delay such a job may have experienced.

Example 3.4. Consider the observer task τo in a task set of 4 periodic tasks (extended from

Example 3.3) as shown in the table below.

Table 3.4: An RTS task set of 4 periodic tasks.

Ti Ci φi

τ1 15 1 3
τo 10 4 1
τv 8 2 2
τ4 6 1 4

Let’s assume the system begins at t = 0 and the observer task starts collecting its start

times for 10 instances from t = 41. The collected start times are {41, 53, 61, 71, 81, 92,

101, 111, 121, 133}. By using Equation 3.4, the observer task’s phase φ̃o can be computed

by min(41, 43, 41, 41, 41, 42, 41, 41, 41, 43) mod 10 = 1. In this example, φ̃o = φo = 1 and

thus the correct observer task’s phase is obtained.
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3.4.4 Reconstructing The Observer Task’s Execution Intervals

Based on Theorem 3.4 and Equation 3.5, I developed the following proposition to recon-

struct the execution intervals in a period:

Proposition 3.2. Assume that, in a DyPS attack, the attacker has reconstructed the ob-

server task’s phase as φ̃o. Then, for a given job of the observer task starting at so, the

observer task reconstructs only the execution intervals within [ão, ão + To − Tv) where ão is

calculated using Equation 3.5.

To implement Proposition 3.2, I employ Algorithm 3.1 but make the following modifica-

tions: (i) at the beginning of the execution of each period, I let the observer task compute

ão by using Equation 3.5; (ii) the observer task stops reconstructing execution intervals in

a period if the current time stamp exceeds ão + To − Tv.
The end result of this step is a set of reconstructed execution intervals, denoted by

Erecon
o = {e1

o, e
2
o, e

3
o, ...} where ero := [beginro, end

r
o) is the r-th reconstructed execution in-

terval starting at the time point beginro and ending at the time point endro. Note that the

number of reconstructed execution intervals are dependent on the duration of the attack

that is determined by the attacker. The impact of the attack duration is evaluated in Sec-

tion 3.7.2.

3.4.5 Computing The Candidates

To compute the candidate time points for the phase of the victim task, the reconstructed

execution intervals are organized on a timeline with length equal to the victim task’s period

Tv. To facilitate understanding, let us use the schedule ladder diagram introduced in Sec-

tion 3.3.4 (of width Tv) to illustrate how the reconstructed execution intervals are processed.

On a schedule ladder diagram, the victim task’s arrivals are always present in the same

column (since the width equals Tv.) Let’s define such a column as the “true arrival column”

that has an offset of φv from the leftmost time column. As the reconstructed execution

intervals of τo are ensured to have priorities lower than the victim task, those execution

intervals will not appear in the true arrival column (because otherwise the victim task would

have executed instead). In other words, the time columns where the reconstructed execution

intervals of τo appear even once cannot be the true arrival column.

Given a reconstructed execution interval ero ∈ Erecon
o , the time columns where ero is present

are determined by {t mod Tv | beginro ≤ t < endro ∧ t ∈ Z}. For simplicity, let’s de-

fine ero mod Tv := {t mod Tv | beginro ≤ t < endro ∧ t ∈ Z}. Therefore, the time

columns where the reconstructed execution intervals appear at least once can be calculated
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Figure 3.7: A schedule ladder diagram demonstrated for Example 3.5. Both valid and invalid
execution intervals are plotted in the diagram for reference. In the DyPS algorithms, only
the valid execution intervals are taken into account for inferring the victim task’s phase
(Proposition 3.2.)

by
⋃
ero∈Erecono

(ero mod Tv) which represents a set of “false” time columns that do not include

the true arrival time column. Thus, the set of candidate time columns can be obtained by

{col | 0 ≤ col < Tv ∧ col ∈ Z} −
⋃
ero∈Erecono

(ero mod Tv) (3.6)

all time columns of τv

a set of “false” time columns

3.4.6 Inferring The Victim Task’s Phase

Next, I take the beginning of the longest contiguous time columns in the candidate list

as the inference of the victim task’s phase, φ̃v. Then, the future arrival time of the victim

task can be calculated by φ̃v + k · Tv where k is the desired arrival number. Alternatively,

given a time point t, the subsequent arrival time of the victim task can be predicted by

t+ (φ̃v − t) mod Tv.

Example 3.5. Let’s consider the task set from Example 3.4. Assume that the observer task

has collected its execution intervals for a duration of LCM(To, Tv)
6 (i.e., 40 time units in this

example) since the job starts at t = 41. The reconstructed execution intervals are Erecon
o =

{[41, 42), [61, 63), [71, 73)} and they correspond to the time columns {1}, {5, 6} and {0, 7},
respectively. Figure 3.7 displays the reconstructed execution intervals on a schedule ladder

6As we will see in Section 3.7.2, the attack duration is evaluated with using LCM(To, Tv) as an unit since
the offset between the arrivals of τo and τv resets every LCM(To, Tv).
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Figure 3.8: An example of the arrival time correlation between τo and τ1 for Theorem 3.5. In
this example, an observer task τo (To = 10) and a periodic task τ1 (T1 = 8) are considered.
It shows that the projected arrivals of τo appear every σ(To, T1)T1 = 2 time columns.

diagram and the timeline at the bottom shows the union of the time columns, {0, 1, 5, 6, 7},
in which the reconstructed execution intervals appear at least once. The candidate time

columns are then computed as {0, ..., 7} − {0, 1, 5, 6, 7} = {2, 3, 4} (Equation 3.6) and the

inference is determined as φ̃v = 2 (i.e., the first time column of the longest contiguous time

columns, {2, 3, 4}) which matches the ground truth, φv = 2.

It is worth mentioning that the correct φv may not be inferred in Example 3.5 if Propo-

sition 3.2 is not enforced. If all the execution intervals (both valid and invalid execution

intervals in Figure 3.7) are considered when calculating the union of the time columns, the

true arrival column will be excluded from the candidate time columns.

The aforementioned situation may happen if an incorrect task phase for the observer task

is reconstructed in the first place. While it may cause some issues when φ̃o 6= φo, our

analysis in Section 3.4.7 shows that it can happen only under certain rare conditions. The

experimental results presented in Section 3.7.2 further show that the attacker can get a high

inference precision even in those conditions due to the presence of run-time variations.

3.4.7 Impact on The Reconstruction of Observer Task’s Phase

In Section 3.4.3 I presented algorithms that reconstruct the observer task’s phase by using

the start times of its own jobs. When there exists at least one job of the observer task whose

arrival time equals its start time (i.e., the job is not delayed by any higher priority task and

thus ao = so), the correct task phase can be reconstructed. On the other hand, the correct

inference cannot be made if the start of the observer task jobs consistently experience delays
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in every period. Here I explore and characterize the factors that may contribute to the delays

in the observer task’s start times by analyzing a simple task set with just two tasks.

Theorem 3.5. Given an observer task τo and a periodic task τi, the maximum proportion

of the arrivals of τo that may experience interference solely due to task τi is computed by

ψ(τo, τi) =

⌈
ui

σ(τo,τi)

⌉
σ(τo,τi) (3.7)

utilization of τi

the number of arrivals of τo in a LCM(To, Ti)

where ui = Ci
Ti

is the utilization of τi, σ(τo,τi) = To
LCM(To,Ti)

is the inverse of the number of

arrivals of τo in a LCM(To, Ti) and ψ(τo, τi) is a fraction in the range 0 < ψ(τo, τi) ≤ 1.

Proof. Since both tasks are periodic, the schedule of the two tasks repeats after their least

common multiple, LCM(To, Ti). There are LCM(To,Ti)
To

arrivals of τo in a LCM(To, Ti). By

projecting these arrivals of τo onto a timeline with length equal to the period of τi, an arrival

of τo appears every 1
LCM(To,Ti)

To

· Ti = σ(τo,τi)Ti time units and repeats after each LCM(To, Ti)

[20, Observation 2], as illustrated in Figure 3.8. The most number of arrivals of τo that

may experience interference due to the execution of τi in one LCM(To, Ti) is computed

by
⌈

Ci
σ(τo,τi)

Ti

⌉
=
⌈

ui
σ(τo,τi)

⌉
which happens when there exists an instant at which both tasks

arrive at the same time, e.g., when φo = φi or (φo mod Ti) = φi. In this case, the maximum

proportion of the arrivals of τo may be interfered by τi in one LCM(To, Ti) can be computed

by ψ(τo, τi) =
⌈

ui
σ(τo,τi)

⌉
σ(τo,τi). Since this relation is the same across all LCM(To, Ti), the

calculated ψ(τo, τi) applies to the whole schedule. QED.

When ψ(τo, τi) < 1, it means that at least 1−ψ(τo, τi) of the arrivals of τo are not interfered

by τi. In contrast, when ψ(τo, τi) = 1, it is possible for the execution of τi to interfere all the

arrivals of τo, which would result in an inaccurate φ̃o. Intuitively, it can happen when τi has

a period in harmony with that of τo. An example is given below.

Example 3.6. Consider an observer task τo (To = 10, Co = 4) and a task τ1 (T1 = 5,

C1 = 2). They are in harmony because To mod T1 = 0. Then ψ(τo, τ1) is computed by

σ(τo,τ1) =
To

LCM(To, T1)
= 1 (3.8)

ψ(τo, τ1) =

⌈
u1

σ(τo,τ1)

⌉
σ(τo,τ1) = du1e = 1 (3.9)
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(a) When φ1 = 0 and φo = 1, all arrivals of τo experience interference due to the harmonic task τ1.
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(b) When φ1 = 0 and φo = 2, no arrival of τo experiences interference due to the harmonic task τ1.

Figure 3.9: Schedules of the task set Γ = {τo, τ1} given in Example 3.6. The To and Ti are
in harmony and thus ψ(τo, τ1) = 1.

which indicates that all the arrivals of τo may experience interference due to τ1. Figure 3.9

illustrates two possible schedules for the given task set. Figure 3.9(a) shows the case where

φo = 1 and φ1 = 0, all the arrivals of τo are interfered by τ1. Figure 3.9(b) shows the case

where φo = 2 and φ1 = 0, all the arrivals of τo are no longer interfered by τ1.

This example shows a crucial fact that ψ(τo, τi) only represents the upper bound of the

interference (when only one task is considered). That is, having ψ(τo, τi) = 1 does not mean

all the arrivals of τo are absolutely interfered. With the same task set but different task

phases (which can vary across systems and every time the system restarts), the impact of

the interference can be quite different, as shown in Example 3.9.

On the other hand, the schedules presented in Figure 3.9 are generated based on WCETs.

However, the actual execution times at run-time in real systems can vary throughout. As

a result, the run-time task utilization is in fact smaller and, based on Equation 3.7, the

proportion of arrivals of the observer task is also smaller.

Taking the schedule in Figure 3.9(a) as an example, if the first instance’s execution time

of τ1 is c1
1 = 1 (rather than its WCET), then the arrival a1

o of the observer task will not

experience any interference. In such a case, s1
o = a1

o and reconstructing the correct task phase

becomes possible. Therefore, the actual impact is highly dependent on the task phases as

well as the run-time variations.

3.4.8 Coverage Ratio in EDF

The coverage ratio C(τo, τv) = Co
GCD(To,Tv)

[20, Definition 1] is used to estimate the propor-

tion of the time columns that can be covered by the execution of the observer task in the FP
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RTS. When a given observer task and victim task pair satisfies C(τo, τv) ≥ 1, the execution

of the observer task may cover all the time columns on the schedule ladder diagram and

observing the victim task’s arrivals is possible. Since the coverage ratio and the inference

precision have a positive correlation, it is useful for evaluating the attacker’s capabilities

against the victim task.

While the idea of the coverage ratio can be applied in the case of DyPS, the calculation

must be revised to reflect the scope of the reconstructed execution intervals specified in

Proposition 3.2 before it can be used. Therefore, I redefine the coverage ratio for DyPS as

follows:

Definition 3.3. (CDyPS(τo, τv) DyPS Coverage Ratio) The coverage ratio of DyPS in EDF,

denoted by CDyPS(τo, τv), is computed by

CDyPS(τo, τv) =
min(Co, To − Tv)

GCD(To, Tv)
(3.10)

viable observation length

greatest common divisor of To and Tv

It represents the proportion of the time columns where the observer task’s (valid) execution

can potentially be present in the schedule ladder diagram. If all Tv time columns can be

covered by the observer task, then CDyPS(τo, τv) ≥ 1. Otherwise 0 < CDyPS(τo, τv) < 1.

3.5 IMPLEMENTATION IN REAL-TIME LINUX

I implemented both the ScheduLeak algorithms and the Dyps algorithms in both a Linux-

based platform and a simulator. In this section I introduce the implementation in Linux.

Design space exploration through simulations is presented in Section 3.7.

3.5.1 Platform and Operating System

I used a Raspberry Pi 3 Model B (RPi3B) development board as the base platform to im-

plement the ScheduLeak and the DyPS algorithms. RPi3B is equipped with a 1.2 GHz ARM

Cortex-A53 CPU and runs on a vendor-supported open-source operating system, Raspbian

(a variant of Debian Linux). Specifically, I used a real-time Linux kernel (i.e., a Linux kernel

with a PREEMPT RT patch applied) and configured the system correspondingly as detailed in

Table 3.5 for satisfying the introduced real-time system model. To run real-time tasks, I
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Table 3.5: Summary of the Implementation Platform

Artifact Parameters

Platform Raspberry Pi 3 Model B (RPi3B) Development Board
Specifications ARM Cortex-A53, 1.2 GHz 64-bit processor, 1 GB RAM
Operating System Debian Linux (Raspbian) Kernel 4.19.59-rt24
Kernel Configuration CONFIG PREEMPT RT FULL enabled
Boot Commands maxcpus=1
Run-time Variables sched rt runtime us=−1, scaling governor=performance

Scheduler SCHED DEADLINE

used the built-in real-time scheduler, SCHED DEADLINE [65] that has been maintained in the

mainline Linux kernel since version 3.14 as an EDF scheduler and SCHED FIFO as an RM

scheduler.

3.5.2 Implementation Details

My implementation of the attack algorithms is wrapped in a periodic real-time task acting

as an observer task. For the purpose of testing, the observer task is made configurable by

accepting arguments passed from the command line interface upon creation. This allows

me to easily create an observer task with desired period, WCET, ladder diagram width and

attack duration in experiments.

In the implementation of DyPS, I combined the first two steps (Section 3.4.3 and 3.4.4)

by making use of the same set of execution intervals for inferring the observer task’s phase

and extracting the valid part of the execution intervals. To do so, I first let the observer task

collect its start times and reconstruct the whole part of the corresponding execution intervals

(which would include both valid and invalid parts) for a given attack duration. Then, the

start times are used to infer the observer task’s phase which is further used to exclude

the invalid part of the reconstructed execution intervals. The resulting, valid execution

intervals are consumed for producing an inference of the victim task’s phase, as introduced

in Section 3.4.5 and 3.4.6. Note that, while most of the algorithm implementation involves

mathematical computation, the implementation for reconstructing the execution intervals is

hardware-dependent. I now elaborate on the latter part using RPi3B as an example.

For an observer task to reconstruct its own execution intervals it needs the ability to

monitor any preemptions that occur during its execution. In a Linux system, this can be

done by letting the observer task consistently read time counts from the CLOCK MONOTONIC

clock source by invoking the unprivileged system call clock gettime() that yields counts in

nanoseconds. When no preemption has occurred, the difference between two adjacent time
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counts should contain only the minimum computation overhead (i.e., a time reading call and

a condition check for the loop that encapsulates this procedure.) On RPi3B, this overhead

is 441.56ns (averaged from 1000 samples.) This measurement can be used as a reference to

determine if a preemption has occurred. In my implementation, I take a tenfold threshold

(5000ns) to leave sufficient room for variations. When the difference between two adjacent

time counts is greater than 5000ns, the execution is deemed being preempted which signals

the end of the previous execution interval and the start of a new execution interval.

3.6 EVALUATION METRICS AND SETUP

3.6.1 Evaluation Metrics

There are mainly two attack stages in the DyPS algorithms: (i) reconstructing φo for

determining valid execution intervals and (ii) inferring φv for predicting future arrival time

points. While both stages target the computing of a task’s phase, they have very different

characteristics due to how they are inferred. I use two different metrics to evaluate the

results from the two stages as defined next.

Reconstructing The Observer Task’s Phase. As introduced in Section 3.4.3, the

observer task’s phase is reconstructed based on the collected start times where so ≥ ao (i.e.,

the start times are always on the right of the corresponding arrival times), thus the distance

between φ̃o and φo, denoted by ∆φ̃o = (φ̃o − φo) mod To, should always be positive. Based

on this fact, I define the error ratio for φ̃o as follows:

Definition 3.4. (Eo Error Ratio) The error ratio of φ̃o, denoted by Eo, is computed by

Eo =
∆φ̃o

To
(3.11)

distance between φo and a projected φ̃o on its right

the observer task’s period

where ∆φ̃o = (φ̃o− φo) mod To represents the distance between φo and a projected φ̃o on its

right. The resulting Eo value is a real number in the range 0 ≤ Eo < 1. A smaller Eo means

that the reconstructed φ̃o has less error when compared to the true φo.

Note that Eo is bounded by 1 because the start times used for computing φ̃o are bounded

by ao ≤ so < ao + To.
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Inferring The Victim Task’s Phase. The second stage of the attack is to infer the

task phase of the victim task which is the same as the main stage in the ScheduLeak attack

in the FP RTS. In contrast to the observer task’s phase, I’m only concerned with how close

the inference φ̃v is to the actual φv and φ̃v can be on either side of φv. Here, I define inference

precision Iov as follows:

Definition 3.5. (Iov Inference Precision of φ̃v) The inference precision, denoted by Iov, is

computed by

Iov =

∣∣∣∣ ε
Tv/2

− 1

∣∣∣∣ (3.12)

the smallest distance between the inferred and the true task phases

where ε =
∣∣∣φ̃v − φv∣∣∣. The resulting Iov value is a real number in the range 0 < Iov ≤ 1. A

larger Iov indicates that the inference φ̃v is more precise in inferring φv.

Based on the inference precision, I further define an inference to be successful if the

attacker is able to exactly infer the victim task’s phase. Therefore, the result of an inference

is either true or false. The inference success rate is then defined as the percentage of the

tested task sets in which the inferences are successful for a given test condition.

3.6.2 Experiment Setup

I test the introduced attack algorithms with randomly generated synthetic task sets. The

task sets are grouped by CPU utilization from [0.001 + 0.1 · x, 0.1 + 0.1 · x] where 0 ≤
x ≤ 9. Each utilization group consists of 6 subgroups that have a fixed number of tasks

(5, 7, 9, 11, 13, 15). Each subgroup contains 100 task sets. In each task set, 50% of the tasks

are generated as periodic tasks (3, 4, 5, 6, 7, 8 periodic tasks for each subgroup respectively)

while the rest of the tasks are generated as sporadic tasks. The task periods are randomly

drawn from [100, 1000] and I assume that the attacker has access to the system time with

a resolution of 1. The task initial offset is randomly selected from [0, Ti). In the case of

sporadic tasks, I take the generated task period as the minimum inter-arrival time. In the

case of ScheduLeak against FP RTS, the task priorities are assigned using the rate-monotonic

algorithm [9]. I only pick those task sets that are schedulable.

The observer task and the victim task are assigned when generating the task sets. In

simulations, I consider a periodic observer task because it represents the worst case attack

scenario for the adversary, as discussed in Section 3.3.6. In the case of ScheduLeak in

FP RTS, since only the tasks with higher priorities influence the observations, I skip the
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generation of lower-priority tasks lp(τo). Thus, the observer task always has the lowest

priority (i.e., prio = 1) in these generated task sets. For the victim task, two conditions

are considered: (i) priv = 2 and (ii) priv = |hp(τo)|. This is to test the two boundary

conditions. Further, I set the coverage ratio to be C(τo, τv) ≥ 1 when generating the task sets

(except for evaluating the impact of the coverage ratio), to evaluate whether the algorithms

can truly produce confident inferences while the attacker has theoretical guarantees of the

attack capability (i.e., having full coverage of all Tv time columns, as per Theorem 3.2). The

maximum construction duration λ is set as per Section 3.3.7. Thus, λ = GCD(To, Tv).

In the case of DyPS in DP RTS, the observer task and the victim task in a task set are

selected from the generated tasks based on the task periods. To illustrate, let us consider a

task set consisting of n tasks Γ = {τ1, τ2, ...τn} whose task IDs are ordered by their periods

(i.e., T1 > T2 > ... > Tn). The observer task is then selected as the (
⌊
n
3

⌋
+1)-th task and the

victim task is selected as the (n −
⌊
n
3

⌋
)-th task. This assignment ensures that To > Tv (an

assumption from Theorem 3.3) and that there exist other tasks with diverse periods (i.e.,

some with smaller periods and some with larger periods compared to To and Tv.) The task

sets are generated with CScheduLeak ≥ 1 (except for the experiment that evaluates the impact

of the ScheduLeak coverage ratio). It is to examine the performance of the ScheduLeak

algorithms under the best case (i.e., all Tv time columns on the schedule ladder diagram

may be covered by the observer task’s execution.)

For varying the execution times of the tasks and adding jitter to the inter-arrival times

(for the sporadic tasks), I use the normal and Poisson distributions respectively. Note that

Poisson distribution is used for inter-arrival time variation because the probability of each

occurrence (i.e., each arrival of the sporadic task) is independent in such a distribution

model.

First, a schedulable task set is generated (using the aforementioned parameters). Then,

for a task τi, the average execution time is computed by wceti · 80%. Next, I fit a normal

distribution N (µ, σ2) for the task τi. I let the mean value µ be wceti · 80% and find the

standard deviation σ with which the cumulative probability P (X ≤ wceti) is 99.99%. As a

result, such a normal distribution produces variation such that 95% of the execution times are

within ±10% ·wceti. To ensure that the task set remains schedulable, I adjust the maximum

modified execution time to be equal to WCET if it exceeds WCET. For sporadic tasks, the

average inter-arrival time is computed by Ti ·120%. I use a Poisson distribution with Ti ·120%

as its mean value to generate the varied inter-arrival times during the simulation. Similarly,

so as to not violate the given minimum inter-arrival time for a sporadic task, I regenerate

the modified inter-arrival time if it drops below Ti.
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Figure 3.10: The results of the success rate and the inference precision ratio by running
the algorithms for different lengths of time. It indicates that longer attack durations can
increase the chance of success and yield better inference precision. The points are connected
only as a guide.

3.7 EVALUATION RESULTS

3.7.1 The ScheduLeak Attack

Attack Duration. Our first goal is to understand the effects of how long attacks last.

Recall that the coverage of the schedule ladder diagram repeats every LCM(To, Tv) (Obser-

vation 3.2). Therefore, I use LCM(To, Tv) as the unit of time to evaluate the algorithms.

Taking the Ardupilot software as an example, the largest LCM of any real-time task (i.e., a

AP HAL thread) pairs is 20ms. While LCM(To, Tv) varies system to system, this gives us an

insight into the scale of LCM(To, Tv). In this experiment, I generate task sets as explained

in Section 3.6.2 and run the ScheduLeak algorithms with a fixed duration of 10·LCM(To, Tv)

for every task set. Figure 3.10 shows the results of this experiment. In Figure 3.10, each

point of the inference precision ratio is the mean of the individual inference precision ra-

tios of 12000 task sets for a given attack duration. The results suggest that the longer the

attack is sustained, the higher success rate and precision ratio the algorithms can achieve.

This is because a longer attack time means more execution intervals are reconstructed by

the observer task. On the other hand, both success rate and precision ratio plateau after

5 · LCM(To, Tv) with the success rate and the precision ratio higher than 97% and 0.99

respectively. This shows that the proposed algorithms can produce inference with precision

in a very short time and the additional gains obtained from running longer are minuscule.

For this reason, I evaluate the algorithms with a duration of 10 ·LCM(To, Tv) for the rest of

the experiments below.
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Figure 3.11: The impact of the number of tasks in a task set and the task set utilization.
The result shows that the algorithms perform better with small number of tasks and high
task set utilization.

The Number of Tasks and Task Set Utilization. Figure 3.11 displays a 3D graph

that shows the averaged inference precision ratio for each combination of the number of tasks

and the task utilization subgroup. The results suggest that (i) the inference precision ratio

decreases as the number of tasks in a task set increases and (ii) the inference precision ratio

increases as the task set utilization increases. The worst inference precision ratio happens

when there are 15 tasks in a task set with the utilization group [0.001, 0.1] – these are

boundary conditions for both the number tasks and the utilization in this experiment.

The impact of the number of tasks is straightforward as having more tasks in hp(τo)

means that τo will be preempted more frequently. This makes it hard for the observer

task to eliminate the false time columns. For the impact of the task set utilization, a low

utilization value implies that the execution times of the tasks are small and there exists a

lot of gaps in the schedule. Hence, the observer may get many small and scattered intervals.

Since I let the algorithms pick the largest interval to infer the true arrival column, multiple

small intervals are problematic – the algorithm has a hard time picking the right interval

that contains the true arrival. Hence errors are compounded.

Priority of the Victim Task. Here I analyze the impact of the victim task’s priority

in a task set. From Section 3.6.2, I consider two boundary conditions for the victim task’s

position: (i) priv = 2 and (ii) priv = |hp(τo)|. Figures 3.12(a) and (b) present the experiment

results for the two conditions. Figure 3.12(a) shows that the huge drop in Figure 3.11 (as the

number of tasks increases) is mainly caused by the condition priv = |hp(τo)|. Figure 3.12(b)
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Figure 3.12: The impact of the victim task’s position in a task set. It suggests that a victim
task with higher priority makes it hard for the algorithms to make a correct inference. This
result stands throughout different number of tasks in a task set as well as different task
set utilization. Also, a high priority victim task with low task set utilization reduces the
inference performance. This explains the huge drop in Figure 3.11.

also shows the similar indication that the drop in low utilization groups in Figure 3.11 is a

result of the condition priv = |hp(τo)|. It’s worth noting that, since I use the rate-monotonic

algorithm to assign the priority, priv = 2 means that τv has a large period, hence potentially

has greater execution time. It benefits the algorithms as I pick the largest interval to make

an inference in the final step.

Sporadic and Periodic Tasks. I examine the impact of the mix of sporadic and periodic

tasks. I generate task sets with 0%, 25%, 50%, 75% and 100% sporadic tasks in a task set.

The rest of the tasks in a task set are periodic tasks. Comparing the result of all periodic tasks

and the result of all sporadic tasks shown in Figure 3.13, I find that the algorithms perform

better with more sporadic tasks. It shows an ascending trend as the proportion of sporadic

tasks increases. However, the change in the performance is less than 1%, which is subtle.

Hence, our inference algorithms are fairly agnostic to the actual mix of sporadic/periodic

tasks in the system.

Coverage Ratio and The Maximum Reconstruction Duration. The experiments

above show that the algorithms can reach certain inference success rates and precision when

C(τo, τv) ≥ 1 and λ = GCD(To, Tv). However, attackers may face a victim system where

C(τo, τv) < 1. That is, the observer task’s execution is not guaranteed to appear in all

Tv time columns. To evaluate the performance of the algorithms against such a case, I
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Figure 3.13: The impact of sporadic tasks and periodic tasks. It indicates that the algorithms
perform better with sporadic tasks, with a (slightly) ascending trend as the proportion of
sporadic tasks increases.
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Figure 3.14: The performance of the algorithms when the coverage ratio is less than one.

generate task sets with 0 < C(τo, τv) < 1 (thus λ = Co) and run the algorithms for a

duration of 10 · LCM(To, Tv). In this experiment, task sets are grouped by coverage ratio

from [0.001 + 0.1 · x, 0.1 + 0.1 · x] where 0 ≤ x ≤ 9. Figure 3.14 shows the results. It

suggests that the attacker may fail to completely infer the victim task’s initial offset when

the coverage ratio is low. Yet, the algorithms can still succeed in some cases due to the fact

that Theorem 3.1 holds even with a low coverage ratio. When the observer has about half

coverage of the time columns (the group of [0.401, 0.5]), it yields 59.9% in success rate and

0.819 for the averaged inference precision ratio. As more time columns are observed by the

observer task, the precision and success rate increase. This is because higher coverage ratios

give the algorithms a higher chance to capture the true arrival column and remove others.

As a result, the inference success rate is about proportional to the coverage ratio.
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Figure 3.15: The number of start times the DyPS algorithms needs for processing each of
the 6000 task sets (without harmonic tasks) to get the observer task’s correct phase. Each
dot in the figure represents the result of a task set. It shows that more start times are
needed when the task set utilization is higher. Yet, the worst case (i.e., 15 start times which
corresponds to 15 · To attack duration) is reasonably small and manageable.

3.7.2 The DyPS Attack

Reconstructing The Observer Task’s Phase. As introduced in Section 3.4.3, the

observer task’s phase has to be reconstructed before inferring the victim task’s phase. There-

fore, I evaluate the factors that impact the reconstruction of the observer task’s phase.

I first test the DyPS algorithms without any tasks that are in harmony with the observer

task. The result shows that the correct φo (i.e., φ̃o = φo or Eo = 0) can be reconstructed in

all of the tested 6000 task sets (without harmonic tasks). The number of start times that

the DyPS algorithms process to get Eo = 0 is plotted in Figure 3.15. The figure shows a

trend that it requires more start times for the DyPS algorithms to reconstruct correct φo

when the utilization is higher. This is because a higher utilization implies higher chances

of preemptions and delays in task executions. Nevertheless, even in the worst case, of 6000

tested task sets, a reasonably small number of start times were required (i.e., 15 start times).

This shows that the DyPS algorithms are practical for reconstructing φo.

Next I evaluate the impact of harmonic tasks. As pointed out in Section 3.4.7, a task with a

period that is in harmony with the period of the observer task can contribute a constant delay

to the observer task’s start times. Therefore, I regenerate 6000 task sets with at least one

task in harmony with the observer task in each task set and test with the DyPS algorithms.

In this experiment, I let DyPS collect start times within a duration of 10·LCM(To, Tv). Each

task set is tested with two conditions: (i) without run-time variations and (ii) with run-time

variations. It is to examine the impact of the constant delay caused by the harmonic tasks

in both a static and a more realistic RTS environment. Without run-time variations, the
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Figure 3.16: The impact of the start time delays caused by the tasks in harmony with the
observer task on error ratio. The tested 6000 task sets are generated with at least one task
in harmony with the observer task in each task set. Each task set is tested with run-time
variations and without run-time variations. The results show that the impact of the start
time delays becomes subtle in the presence of run-time variations.

task’s execution times will run up to the WCET in every job instance which should retain

the constant delay contributed by the harmonic tasks (or any potential delay contributed

by other tasks). In contrast, with run-time variations, the task’s execution times include

variations that are drawn from a normal distribution that gives a more realistic run-time

result. The results are plotted in Figure 3.16 and show that, without run-time variations,

the error ratio Eo is proportional to the ratio of the constant delay caused by the harmonic

tasks and the observer task’s period To. The outliers for the triangular points are the cases

when there are other tasks contributing to the start time delays within the tested attack

duration (i.e., 10 · LCM(To, Tv)). It is worth noting that only 6.75% of the task sets have

constant delay and Eo > 0 since the task phases are randomly generated and hence it is not

guaranteed that the harmonic tasks can always interfere with the observer task’s arrivals.

This also indicates that having harmonic tasks does not necessarily downgrade the proposed

attack. On the other hand, with execution time variations, the impact of the constant start

time delay is significantly reduced due to the varied execution times. The DyPS algorithms

yield better error ratios in all of the 6000 task sets (88.4% of the task sets that have Eo > 0

without run-time variations yield Eo = 0 with run-time variations.)

To understand the impact of the error ratio of φ̃o on the inference precision of φ̃v, I test

the aforementioned 6000 task sets with synthetically generated φ̃o from {φo + (0.01x)To |
0 ≤ x ≤ 10 ∧ x ∈ Z} which is expected to yield error ratio in {0, 0.01, ..., 0.1}. This range

is chosen based on the experiment results shown in Figure 3.16 where overall error ratio is

smaller than 0.034 with run-time variations. The experiment is carried out with a duration
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Figure 3.17: The impact of the error ratio on the inference precision. Each bin is the
result of the 6000 task sets (with harmonic tasks) with synthetically generated φ̃o from
{φo + (0.01x)To | 0 ≤ x ≤ 10∧ x ∈ Z}. It shows that the error ratio has negative impact on
the inference precision.

of 10 · LCM(To, Tv) and with run-time variations enabled. Results shown in Figure 3.17

indicate that the error ratio has considerable negative impact on the inference precision.

For example, inference precision I0
v reduces to 0.79 when Eo = 0.01 from I0

v = 0.98 when

Eo = 0. Nevertheless, considering only 0.7% of the task sets have Eo > 0 due to the run-time

variations and the varied task phases, a high Eo is arguably uncommon in real cases.

Inferring The Victim Task’s Phase. I now focus on evaluating the inference precision

of φ̃v. Note that the complete DyPS algorithms (including inferring φ̃o) are tested in the

experiments here. I first examine the impact of the attack duration on the attack results. I

use LCM(To, Tv) as an unit of the attack duration to evaluate DyPS since the offset between

the observer task and the victim task repeats every LCM(To, Tv). Task sets are tested with

the attack duration varying from LCM(To, Tv) to 10·LCM(To, Tv) and the results are plotted

in Figure 3.18. As shown, a longer attack duration leads to a higher inference precision. It is

because more execution intervals are reconstructed as the attack lasts longer. The inference

precision reaches Iov = 0.978 at 10 ·LCM(To, Tv) and plateaus afterward. Therefore, I choose

10 · LCM(To, Tv) as an attack duration for the experiments presented in this section unless

otherwise stated.

Next I break down the number of tasks in a task set and the task utilization to evaluate

their impact on the inference precision. The experiment results are plotted in Figure 3.19.

Each grid in the figure shows the mean inference precision of 100 task sets with the corre-

sponding number of tasks in a task set and the task utilization. A brighter grid has a lower

inference precision while a darker grid indicates that the attack yields a better inference
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Figure 3.18: The inference precision with
varying attack duration. It shows that the
longer the attack persists the higher infer-
ence precision DyPS can achieve. The in-
ference precision reaches Iov = 0.978 at 10 ·
LCM(To, Tv) and plateaus afterward.
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Figure 3.19: The impact of the number of
tasks in a task set and the task set utiliza-
tion on the inference precision. Each grid
displays the mean inference precision for the
corresponding number of tasks (Y-axis) and
task utilization (X-axis). A darker grid shows
a higher inference precision.

precision. The resulting heat map gives an intuition for the distribution of the inference

precision with varying number of tasks and the task utilization. The figure shows a small

degradation when the number of tasks in a task set is high and the utilization is low. It is be-

cause a task set with a higher number of tasks can have more tasks preempting and delaying

the observer task’s execution and this introduces more perturbations to the algorithms. On

the other hand, a low utilization implies a low execution time for the observer task which

results in shorter execution intervals to be reconstructed. This fact makes it difficult to

effectively eliminate false time columns and leads to more scattered candidate time slots for

the last step of the algorithms, which causes more uncertainty to the inferences.

Impact of DyPS Coverage Ratio. The DyPS coverage ratio CDyPS represents the

proportion of the time columns in a schedule ladder diagram that can be covered by the

observer task’s execution. In the previous experiments with CDyPS ≥ 1, I showed that

the DyPS algorithms are able to yield competitive inference precisions in various task set

conditions. Here, I evaluate the case when the DyPS coverage ratio is less than one (i.e.,

0 < CDyPS < 1.) In this experiment, I generate 6000 task sets for each of the DyPS coverage

ratio groups from {[0.001 + 0.1 · x, 0.1 + 0.1 · x) | 0 ≤ x ≤ 9 ∧ x ∈ Z}. The mean inference

precision is then taken from each DyPS coverage ratio group and the results are plotted in

Figure 3.20. It shows that the DyPS algorithms get worse results as the DyPS coverage ratio
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Figure 3.20: The inference precision with varying the DyPS coverage ratio in the range of
0 < CDyPS < 1. It suggests that the DyPS algorithms get better performance as the DyPS
coverage ratio increases. The DyPS algorithms perform better than a random guess when
CDyPS ≈ 0.

drops. When CDyPS ≈ 0, the DyPS algorithms yield a inference precision (Iov = 0.61) that

is close to, but still better than, a random guess. Conversely, a higher DyPS coverage ratio

has better inference precision since the observer task can cover more time columns on the

schedule ladder diagram and hence has a higher chance to encapsulate the true time column.

Comparison with ScheduLeak. The main challenge in attacking the EDF RTS is the

existence of the invalid part of the execution intervals. To understand the impact on the

ScheduLeak algorithms and how the DyPS algorithms handle such intervals, I test both

algorithms in the EDF RTS with 6000 newly generated task sets (with Co > (To− Tv), task

utilization drawn from [0.001, 1.0)) in which the presence of the invalid execution intervals

is guaranteed. Results presented in Figure 3.21 show that the DyPS algorithms outperform

the ScheduLeak algorithms in handling the invalid execution intervals. As the attack lasts

longer, more invalid execution intervals are collected in the case of ScheduLeak that leads

to worse inference precision. The ScheduLeak algorithms yield a mean inference prevision

of 0.54 at 10 · LCM(To, Tv). This is only sightly better than a naive attack with random

guesses indicating ScheduLeak is inadequate for attacking the EDF RTS.

Attack Overhead in Linux. As introduced earlier, my implementation of DyPS mainly

has two execution phases: reconstruction and inferences. Here I’m interested in learning

the attack overhead for the inferences. To measure the actual overhead on RPi3B, I test

my DyPS implementation against 6000 real-time task sets with synthetic task loads. To

generate the task parameters for these task sets, I employ the task set generator used in the
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Figure 3.21: The results of employing the state-of-the-art (ScheduLeak) and the proposed
ScheduLeak algorithms in the scheduler side-channel attack against the EDF RTS. The end
(mean) inference precision of ScheduLeak is 0.54 that is only slightly better than a naive
attack with random guesses.

simulation and all generated values are taken as milliseconds. For each test against a task

set, I let the observer task observe (i.e., reconstruct execution intervals) for 5 seconds and

then measure its computation overhead while producing its inferences.

I first focus on inferring the observer task’s phase. Here, the observer task iterates through

each of the collected start times to compute the inference. This process has a linear time

complexity that is proportional to the number of collected start times. Figure 3.22(a) shows

the actual overhead measurement for the 6000 task sets tested on the RPi3B. As each

iteration mainly consists of a simple integer comparison, the actual overhead is small (all

overhead measurements are smaller than 155us in this experiment) and thus the linearity is

not noticeable from the resulting plot.

Next I focus on inferring the victim task’s phase. In this step, the observer task first

excludes the invalid part of the execution intervals, computes a candidate list and then

yields an inference. This process has a time complexity of O(nm) where n is the number of

reconstructed execution intervals and m is the number of disjoint intervals that exist in the

timeline for computing the inference candidates. The actual overhead measurement is shown

in Figure 3.22(b). The resulting data points display a trend that matches the aforementioned

complexity. As more execution intervals are reconstructed and processed, the computation

overhead increases. It is worth noting that 99.6% of the resulting computation overhead is

below 4000us in a 5-second duration. Considering that the task parameters are on the order

of 100 to 1000 milliseconds, inference overheads of 5ms or less seem practical. Further, a

smarter attack implementation can spread the inference computation across many observer

task periods so the execution can stay well within its WCET.
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(a) Inferring the observer task’s phase.
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(b) Inferring the victim task’s phase.

Figure 3.22: The computation overhead measured on the RPi3B platform. Each data point
in the figures represents the result from a task set and there are 6000 task sets tested. The
X-axis in (a) is the number of collected start times and the x-axis in (b) is the number of
reconstructed execution intervals over a 5-second duration. The y-axis in both figures is the
corresponding computation overhead for processing the collected/reconstructed information.

3.8 CASE STUDIES ON REAL PLATFORMS

In what follows, two attack cases based on ScheduLeak in FP RTS are presented. They

benefit from the information obtained by the proposed algorithms and utilize such informa-

tion to accomplish their primary attack goals. The demo videos for these attack cases can

be found at https://scheduleak.github.io/.

3.8.1 Overriding Control Signals

Attack Scenario and Objective: A large number of real-time control systems encap-

sulate subsystems that control actuators. For instance, in modern automotive systems, the

engine control unit (ECU) controls the valve in the electronic throttle body (ETB) to enable

electronic throttle control (ETC). In most unmanned drones, the flight controller manages

the rotary speed of the motors via the electronic speed controller (ESC). In these systems,

the actuation signals such as PWM signals are periodically updated to guarantee a fast and

consistent response for the control mission.

Let’s consider an attacker who wants to be able to stealthily override the control in such

systems – for the purpose of bad control by causing misbehavior or even taking over the

control of the system for a short time span. To do so, the attacker gets into the system as a

malicious task and tries to override the control signals. A brute force strategy of excessively
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Figure 3.23: An illustration of PWM channels on a rover system. (a) The PWM outputs
are updated periodically by a 50Hz task. (b) A naive attack issuing the PWM updates at
random instants may not be effective. (c) By carefully issuing the PWM updates right after
the original updates, the PWM outputs can be overridden.

overriding the control signals will not work in this scenario because its high attack overhead

can cause other real-time tasks to miss their deadlines and lead to a system crash. In this

case, knowledge of exact timing when the control signals are updated and overriding them

at the right instants allow the attacker to effectively take control with a low overhead.

Implementation: I implement this attack on a custom rover. Its control system is

built with a Raspberry Pi 3 Model B board. A Navio2 module board that encapsulates

various inertial sensors is attached to the Raspberry Pi board. The system runs Real-

Time Linux (i.e., Raspbian, kernel 4.9.45 with PREEMPT RT patch) with Ardupilot [66]

autopilot software suite (one of the most popular open-source code stack in the remote and

autonomous control communities). It consists of a set of real-time and non-real-time tasks

to perform control-related jobs such as refreshing GPS coordinates, decoding remote control

commands, performing PID calculation and updating output signals. One of the tasks

periodically updates the PWM values, with a period of 20ms, for steering and throttle. The

updates are sent over Serial Peripheral Interface (SPI) to the Navio2 module that outputs

the PWM signals to a servo and a ESC. Figure 3.23(a) shows an illustration of the PWM

output channels working under normal circumstances.

In this attack, I assume that the attacker has access to a low-priority, periodic task (as the

observer task, To = 50ms) and a non-real-time Linux process (for launching the PWM over-

riding attack). The attacker’s ultimate objective is to override the control signals updated

by the victim task (i.e., the 50Hz periodic task). In this implementation, the observer

task uses a system call, clock gettime(), to obtain clock counts (in nanoseconds) from

CLOCK MONOTONIC. Time measurement is further rounded up to microseconds when running

the ScheduLeak algorithms since all task parameters are multiples of 1us in Ardupilot. Once

the victim task’s initial offset is determined, the attacker engages the non-real-time process
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to issue the PWM updates over the same interface that the victim task uses. Note that this

is possible due to a lack of authentication between the Raspberry Pi board and the Navio2

module by design. This process keeps track of time by using clock gettime() and issues

two PWM updates (one for the steering and one for the throttle) whenever it determines

that it has passed a victim task’s arrival instant (i.e., t − φ̂v mod Tv ≥ 0, where t is the

present time and φ̂v is the inferred victim task’s initial offset). The process remains idle

between two PWM updates to reduce the attack footprint.

Attack Results: Figures 3.23(b) and 3.23(c) show that the PWM output may be over-

ridden using a different value to the PWM hardware. However, without exact schedule

information, the attacker can only periodically send the updates with a randomly selected

initial offset (Figure 3.23(b)). The random initial offset can be any point in the 20ms pe-

riod. From the experiments, only the attack with an initial offset in the range between φv

and φv + 8.3ms can produce an effective override of the steering and throttle controls. As

a result, the attacker has a chance of 41.5% to select a valid initial offset and lead to an

effective attack.

On the other hand, the attacker, after launching the ScheduLeak attack and knowing

exactly when the victim task arrives, can carefully issue PWM update right after the original

update to override the PWM output (Figure 3.23(c)). In this case, the attacker firstly runs

the ScheduLeak algorithms in the observer task, yielding 0.9985 for the inference precision

ratio (for inferring the victim task’s initial offset) in a duration of 1 second. This allows

the attacker to launch the PWM overriding attack in the non-real-time process with the

precise inference of the victim task’s initial offset. Note that an attacker’s PWM update

attempted at a victim task’s arrival instant is executed after the victim task’s job is finished

(and hence after the original PWM update) since the non-real-time process has a priority

lower than the victim task. Consequently, the attacker can take over control of the steering

and throttle. By probing the PWM signals, I observe that the overridden PWM signals are

active 85% of the time. As a result, I see that the rover no longer responds to the original

control. Instead, the rover is driven by the attacker’s commands. Since the attacker’s task

remains idle between two PWM updates, it takes up CPU utilization as small as 2.6%.

3.8.2 Inferring System Behaviors

Attack Scenario and Objective: Let’s consider a UAV system executing a surveillance

mission. It captures high resolution images when flying over locations of high-interest. In

this case, the attacker’s goal is to extract the locations targeted by the UAV. The strategy
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(c) HIL simulator recorded data.

Figure 3.24: Results of the cache-timing side-channel attacks in Section 3.8.2. (a) demon-
strates that a random mechanism launching the attack at arbitrary instants will lead to
many indistinguishable cache usage results. (b) shows a successful attack in which four cam-
era activation events (numbered by 1 to 4) are identified from the cache probes using precise
time information (inferred by ScheduLeak). (c) visualizes the UAV’s trajectory (bold line),
true locations-of-interest (green circles) and the attacker’s inference (red pins) for the attack
(b). The result shows that the attacker’s inference matches the ground truth.
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is to monitor when the surveillance camera on the UAV is switched to a execution mode

in which high-resolution images are being processed. This can be done by exploiting a

cache-timing side-channel attack to gauge the coarse-grained memory usage behavior of the

task that handles the images. A high cache usage by this task would indicate that a high-

resolution image is being processed; otherwise it would use less cache memory. However, a

random sampling of the cache will result in noisy (and often useless) data since there exist

other tasks in the system that also use the cache. In contrast, knowing when the task is

scheduled to run allows the attacker to execute prime and probe attacks [67, 68] very close

to the targeted task’s execution.

Implementation: This attack is implemented in a hardware-in-the-loop (HIL) simulation

with a Zedboard running FreeRTOS that simulates the control system on a UAV. The system

consists of an image processing task (the victim task, Tv = 33ms) handling photos at a rate

of 30Hz and four other tasks (unknown to the attacker) – all running in a periodic fashion.

The victim task processes a large size of data when the UAV reaches a location of interest on

a preloaded list. Other tasks consume differing amounts of memory. In this case, I assume

that the attacker enters the system as the lowest-priority periodic task, To = 40ms. The

attacker uses this task for both running the ScheduLeak algorithms and carrying out the

cache-timing side-channel attack. The attacker’s final goal is to observe the victim task’s

memory usage and learn the system behavior.

Attack Results: First, I consider an attacker who does not employ a ScheduLeak attack.

The attacker launches the cache-timing side-channel attack during every period to try and

estimate the cache usage of the victim. As shown in Figure 3.24(a), this produces many

cache probes and it is hard to distinguish the cache usage of the victim task from other

tasks. This results in an unsuccessful attack since no usage patterns from the victim task

can be identified.

Next, let’s consider the case in which the attacker leverages the ScheduLeak attack. In

this case, the algorithms yield an inference precision ratio of 0.99 within a window of 3 ·
LCM(To, Tv) (i.e., 4 seconds). Then, the attacker is able to launch the cache-timing side-

channel attack right before and after the victim is executed and skip those instants that

are irrelevant. Figure 3.24(b) shows the result of the precise cache probe against the victim

task. I see that the attack greatly reduces the noise caused by other tasks (96.9% of the

cache probes are omitted) and is able to precisely identify the victim task’s memory usage

behavior. As a result, four camera activation instants can be identified from the spikes (red

triangular points) shown in Figure 3.24(b). When coupled with the flight route information
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that the attacker obtains through other measures, it becomes possible to infer the locations

of high-interest, as shown in Figure 3.24(c).

3.9 DISCUSSION

From the evaluation results, DyPS in EDF RTS performs well in inferring the victim task’s

phases and has similar performance characteristics to ScheduLeak in FP RTS under various

task set conditions. As a result, given the same task set, running either FP scheduling

or EDF scheduling does not seem to make a significant difference in terms of resisting the

attacks. However, the DyPS algorithms do require an extra step to reconstruct the observer

task’s phase before proceeding to inferring the victim task’s phase, which is the crucial point

that distinguishes the scheduler side-channels in FP RTS and EDF RTS. As analyzed in

Section 3.4.7, the observer task may suffer constant start time delays when there exist some

harmonic tasks that have ψ(τo, τi) = 1 and φi aligned with φo. Having such tasks may lead to

an inaccurate φ̃o and further reduce the inference precision as evaluated in the experiments.

This offers one potential effective measure for defending EDF RTS against the DyPS attack.

Consequently, employing the EDF scheduling algorithm and adjusting the task parameters

to satisfy the aforementioned conditions can be a simple yet cost effective defense. However,

any change in the task parameters must fulfill both real-time requirements as well as the

required performance. Thus, changing the task parameters may not always be applicable in

RTS especially the legacy systems that are already deployed.

3.10 CONCLUSION

Successful security breaches in control systems (including cyber-physical systems) with

real-time properties can have catastrophic effects. In many such systems, knowledge of the

precise timing information of critical tasks could be beneficial to adversaries. The work

presented in this chapter demonstrates how to capture this schedule timing information

in a stealthy manner – i.e., without being detected or causing any perturbations to the

original system. This result answers the first key research question raised in Section 1.1

and validates my hypothesis with respect to the existence of the scheduler side-channels in

preemptive RTS. Designers of such systems now need to be cognizant of such attack vectors

and design the system to include countermeasures that can thwart potential intruders.
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CHAPTER 4: DIVERSIFICATION OF REAL-TIME SCHEDULES

In this chapter I intend to validate the hypothesis that it is possible to protect the RTS

by diversifying the real-time schedule. By increasing randomness in the real-time schedule,

its inferability is expected to reduce. Thus, even if an observer is able to record the exact

schedule for a period of time, there is no guarantee that the next period will show the exact

same order (and timing) of execution for the tasks.

4.1 INTRODUCTION

Obfuscating the schedules, i.e., introducing randomness into the execution patterns of

real-time tasks, could be one way to improve the security of RTS. This must be done in

a careful manner, so as to not interfere with the timing guarantees that the system can

provide, while still introducing diversity into the schedule. In this chapter I first introduce

a schedule randomization protocol (Section 4.3.4) that I named REORDER (REal-time

ObfuscateR for Dynamic SchedulER). I achieve this by using bounded priority inversions at

run-time (see Section 4.3.3 for more details). REORDER obfuscates the earliest deadline

first (EDF) scheduling policy; EDF is a dynamic task scheduler that can, theoretically,

utilize a CPU to its fullest. It is widely supported by many real-world RTS and operating

systems, e.g., Erika Enterprise [69], RTEMS [70], etc. and even Linux [65]. Existing work

on protecting real-time schedulers [49, 51] is (a) focused on static scheduling algorithms

and (b) inadequate for measuring the effects of obfuscation. Obfuscating the schedules for

dynamic priority algorithms such as EDF, to achieve a high level of randomization, is a

much harder proposition than that for static algorithms. One important problem is how to

bound the time allocated for allowing priority inversions since the job deadlines dynamically

change as the execution proceeds1. REORDER guarantees that if a given real-time system

was schedulable (i.e., meets all of its timing and deadline constraints) by the vanilla EDF

scheduler, then the obfuscated schedule will also meet the same guarantees.

While the goal of the protocol is to increase as much randomness as possible in the schedule,

it is restricted when the task set utilization is high due to the tight real-time constraints,

making it less effective against scheduler side-channel attacks. Additionally, it does not offer

any security guarantee with respect to the degree of protection. As a result, a system designer

employing TaskShuffler [49] or REORDER may not get the desired protection against the

scheduler side-channels.

1In static algorithms, these bounds can easily be computed offline and stored in lookup tables.
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To address the problem of the scheduler side-channels, I propose the notion of “schedule

indistinguishability” that captures the difficulty of identifying a task/job from another in the

schedule. I then propose an ε-Scheduler that implements the schedule indistinguishability.

At a high level, my goal is to abate the determinism and periodicity by adding sufficiently

large noise to the task schedules, albeit with strong analytical guarantees to achieve a desired

schedule indistinguishability. This is strategy is similar to differential privacy in the context

of databases where Laplace distribution-based noise is added to statistical query outputs.

In ε-Schedulers, noise derived from bounded Laplace distribution is added to the task’s

inter-arrival times to obscure the periodicity embedded in the task schedule. It creates

diversified schedules that protect the tasks from the scheduler side-channels. Such a scheduler

is particularly suitable for the applications and systems that can tolerate deadline misses

and varied execution frequencies. As a demonstration for the type of systems to which ε-

Scheduler is applicable, I conduct experiments on a real platform running a real application,

presented in Section 4.7.6.

4.2 PRELIMINARIES

The sets of natural numbers and real numbers are denoted by N and R. For a given n ∈ N,

the set [n] represents {1, 2, ..., n}. I denote the Laplace distribution with location µ and scale

b and Lap(b) by Lap(µ, b) and I write Lap(b) when µ = 0. For a random variable x, taking

values from a Laplace distribution is denoted by x ∼ Lap(·). For convenience, I sometimes

abuse notation and denote a random variable x ∼ Lap(·) simply by Lap(·).
I consider a discrete time model [62]. In this context, I mainly focus on the issue that is

concerned with the timing in a single RTS. I assume that a unit of time equals a timer tick

governed by the operating system and the corresponding tick count is an integer. That is,

all system and real-time task parameters are multiples of a time tick. I denote an interval

starting from time point a and ending at time point b that has a length of b− a by [a, b) or

[a, b− 1].

4.3 THE REORDER SCHEDULER

4.3.1 System and Adversary Model

Let us consider the problem of scheduling a set of n periodic tasks Γ = {τ1, τ2, · · · , τn}
on a single processor, using the EDF scheduling policy. For simplicity of notation, I use the
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same symbol τi to denote a task’s jobs and use the term task and job interchangeably. I

also denote di as the absolute deadline of τi (i.e., deadline of any given job of τi). I assume

cache related preemption delay is negligible compared to WCET of the tasks. I do not

consider any precedence or synchronization constraints among tasks and Ci, Ti, Di ∈ N+,.

I further assume that the tasks have constrained-deadlines, i.e., Di ≤ Ti and the task set

is schedulable by the EDF scheduling policy, that is the worst-case response time (WCRT)

of each task is less than its deadline – since REORDER will be trivially ineffective for an

unschedulable task set.

Under the periodic task model, the schedule produced by any preemptive scheduling policy,

for a periodic task set, is cyclic i.e., the system will repeat the task arrival pattern after an

interval that coincides with the task set’s hyper-period , denoted by L.

I assume that the attackers have access to the timing parameters of the task sets and also

have knowledge of which scheduling policy is being used. The adversary’s objective is to get

detailed information about the execution patterns of the real-time tasks and cause greater

damage, to the system by exploiting the precise schedule information.

The attacker may exploit some side-channels (e.g., power consumption, schedule preemp-

tions, electromagnetic (EM) emanations and temperature) to observe and reconstruct the

system schedule. A smart attacker possessing sufficient system information can carry out

more advanced attacks under the right conditions, to move the system to an unsafe state.

For example, in the now famous Stuxnet attack [1, 61], the malware was remnant in the

system for months to collect sensitive information before the main attack. It is possible for

a denial-of-service attack to target only a specific service handled by a critical task when the

precise schedule information is obtainable.

A side-channel attack [68, 71] is also another typical class of attacks that can benefit

from such schedule reconstruction attacks. For example, one of the case studies presented

in Section 3.8 shows that the precise schedule information can be exploited to assist in

determining the prime and probe [67, 68] instants in a cache side-channel attack to increase

the chance of success [20].

I further assume that the scheduler is not compromised and the attacker does not have

access to the scheduler. Without this assumption, the attacker can undermine the scheduler

or directly obtain the schedule information. The objective of this work, then, is to reduce the

inferability of the schedule for real-time tasksets (and also reduce possibility of other attacks

that depend of predictable schedules) while meeting real-time guarantees. The randomness

introduced to the schedule increases variations in the system and hence makes attacks that

rely on the determinism of the real-time schedule, harder.
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4.3.2 Overview of REORDER

The focus of the design of REORDER is such that, even if an observer is able to capture

the exact schedule for a period of time (for instance, for a few hyper-periods), REORDER

will schedule tasks in a way that succeeding execution traces will show different orders (and

timing) of execution for the tasks. The main idea is that at each scheduling point, the

scheduler pick a random task from the ready queue and schedule it for execution. However

such random selection may lead to priority inversions [72] and any arbitrary selection may

result in missed deadlines – hence, putting at risk the safety of the system. REORDER

solves this problem by allowing bounded priority inversions. It restricts how the schedule

may use priority inversions without violating real-time constraints (e.g., deadline) of the

tasks. To ensure this, REORDER calculates an “acceptable” priority inversion budget. If

the budget is exhausted during execution, then I stop allowing lower priority tasks to execute

ahead of the higher priority task that has the empty budget.

4.3.3 Randomization with Priority Inversion

A key step that is necessary for randomization is to calculate the maximum amount of

time that lower priority jobs, lp(τi), can execute before τi. This is much harder in EDF

compared to the fixed-priority system (that prior work, TaskShuffler [49], was focused on)

due to the dynamic nature of EDF (i.e., the task priority varies at run-time). Therefore I

define the worst-case inversion budget (WCIB) Vi that represents the maximum amount of

time for which a job of some task τi with relative deadline di may be blocked by a job of some

task τj ∈ Γ, j 6= i with dj > di (and hence lower relative priority than τi). In the following I

illustrate how I calculate WCIB for each task by utilizing the response time analysis [73, 74]

for EDF.

Bounding Priority Inversions. The WCRT of τi is the maximum time between the

arrival of a job of τi and its completion. Our idea of bounding priority inversions is to

calculate the slack times for each task (e.g., difference between deadline and response time)

and allow low priority tasks to execute up to that amount of time. I therefore define the

WCIB of τi as follows:

Vi = Di −Ri. (4.1)

where Ri represents an upper bound of WCRT. The Vi represents the maximum amount

of time for which all lower priority jobs lp(τi) (e.g., dj > di) are allowed to execute while

an instance of τi is still unfinished without missing its deadline, even in the worst-case
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scenario. The REORDER protocol guarantees that the real-time constraints are satisfied

by bounding priority inversions using Vi,∀τi ∈ Γ. Note that WCIB can be negative for some

τi – although non-positive WCIB does not attribute that the taskset is unschedulable. At

each scheduling point t, our idea is to execute some low priority job τj with Vj > 0 up to

min(Ĉt
j , Vj) additional time-units before it leaves the processor for highest priority job where

Ĉt
j represents the remaining execution time of τj at t.

I enforce the WCIB at run-time by maintaining a per-job counter, remaining inversion

budget (RIB) vi, 0 ≤ vi ≤ Vi. RIB is initialized to Vi upon each activation of the jobs of τi

and decremented for each time unit when τi is blocked by any lower priority job. When vi

reaches zero no job with absolute deadline greater than di is allowed to run until τi completes.

Note that not all the jobs of τi may need Ci time unit for computation (recall that Ci is

the worst-case bound of the execution time). If some low-priority job τj (e.g., dj > di) that

blocks τi finishes earlier than Cj, the RIB vi will not be decreased accordingly.

For a given non-negative WCIB, jobs of τi can be delayed for up to Vi by priority inversions.

The WCRT of τi is bounded by Ri + Vi = Ri +Di −Ri = Di. Hence, τi is schedulable with

the REORDER protocol and I can assert the following:

Proposition 4.1. If Γ is schedulable under EDF, WCIB is non-negative for some τi and

low priority jobs of τi do not delay τi more than Vi then REORDER will not violate the

real-time constraints of τi.

Selection of Candidate Jobs for Randomization. As mentioned earlier, when the

run-time counter RIB (i.e., vi) reaches zero, no jobs with deadline greater than di can run

while τi has an outstanding job. However, lower priority jobs could cause τi to miss its dead-

line by inducing the worst-case interference from the higher priority jobs, i.e., ∀dj < di, due

to the chain reaction. Therefore, to preserve the schedulability of such jobs I must prevent

it from experiencing such additional delays. I achieve this by the following “randomization

priority inversion policy” (RPIP):

If RIB vi < 0 for some τi ∈ Γ, no job τj with dj > di is allowed to run while any of high

priority job τk with dk < di has an unfinished job.

In order to enforce RPIP at run-time, at each scheduling decision point, I now define the

variable minimum inversion deadline mt
i for jobs of τi as follows:

mt
i = min{dj|τj ∈ Rt

Q, dj ≥ di ∧ vj ≤ 0}. (4.2)

where Rt
Q is the ready queue at scheduling point t. When there is no such task as τj, m

t
i is
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set to an arbitrarily large (e.g., infinite) deadline. The variable mt
i allows us to determine

which jobs to exclude from priority inversions. That is, no job that has a higher deadline

than mt
i can be scheduled as long as τi has an unfinished job. Otherwise, the job with relative

deadline mt
i (not the job τi) could miss its deadline.

Example 4.1. The taskset Γex1 = {τ1, τ2, τ3, τ4} contains the following parameters:

Table 4.1: An RTS task set of 4 periodic tasks.

Ci Ti = Di Vi

τ1 4 10 1
τ2 1 20 −2
τ3 1 5 −2
τ4 2 12 −1

At t = 0, d1 = 10, d2 = 20, d3 = 5, d4 = 12. For notational convenience, let us denote m0
i

as mi. Hence m1 = 12, m2 = ∞, m3 = 12 and m4 = 20. Therefore at t = 0 the job τ2 and

τ4 are not allowed to participate in priority inversion (since d2, d4 > mi, i ∈ {1, 3} and τ1, τ3

have not completed.

It can be shown that at any scheduling point t I can enforce RPIP by only examining the

inversion deadline of highest priority (e.g., shortest deadline) job, mt
HP [49]. Hence, at each

scheduling decision, REORDER excludes all ready jobs from the selection that have higher

deadline than mt
HP .

4.3.4 The Randomization Protocol

The REORDER protocol selects a new job using the following sequence of steps at every

scheduling decision point.

1. Candidate Selection: At each scheduling point t, the REORDER protocol searches for

possible candidate jobs (that can be used for priority inversion) in the ready queue.

Let us denote Rt
Q as the set of ready jobs, τHP ∈ Rt

Q is the highest priority (i.e.,

shortest deadline) job in the ready queue and CtL represents the set of candidate jobs

at some scheduling point t.

• I first check the RIB of the highest priority job τHP ∈ Rt
Q. If the RIB is zero,

then τHP is added to the candidate and REORDER moves to Step 2 since priority

inversion is not possible due to its inversion budget being non-positive.
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• When RIB is non-negative (i.e., vHP > 0), I iterate through the ready queue

and add the job τi ∈ Rt
Q to the candidate list CtL if its deadline is less than or

equal to mt
HP (i.e., the minimum inversion deadline of the highest-priority job at

scheduling point t).

2. Randomizing the Schedule: This step selects a random job from the ready queue for

execution. The selected job will run until the next scheduling decision point t′. I

randomly pick a job τR from CtL and set the next scheduling decision point as follows:

• If τR is the highest priority job in the ready queue, the next decision point t′ will

be either when the job finishes or a new job of another task arrives.

• Otherwise, the next decision2 will be made at when τR completes or the inversion

budget expires, that is,

t′ = t+ min( Ĉt
R , v̂ ) (4.3)

remaining execution time of τR

maximum remaining priority inversion budget

unless a new job arrives before time t′ where v̂ = min(vj|τj ∈ Rt
Q ∧ dj < dR)

and Ĉt
R represents the remaining execution time of τR. Note that the variable v̂

is always positive since every job with a higher priority than the selected job has

some remaining inversion budget. Otherwise, τR would not have been added to

the candidate list in Step 1.

Algorithm 4.1 formally presents the proposed schedule randomization protocol. This

event-driven algorithm executes at the scheduler-level and takes the task set (with idle time)

Γ′ = Γ ∪ {τI} as an input. At each scheduling decision point t, a ready job is (randomly)

selected for scheduling and the next scheduling decision point t′ is determined.

In Lines 1-7, the algorithm first selects the set of candidate jobs CtL using the procedure

described in Section 4.3.4 (see Step 1). If the highest priority job RHP
Q has negative inversion

budget (e.g., vHP ≤ 0), it will be scheduled for execution (Line 10). Otherwise it schedules

a random job from the candidate list (Line 14). If the selected job is the highest priority

job, the next scheduling point t′ is set when the job completes or a new job of another task

arrives (Line 14 and 19). If the selected job is not the highest priority one, the algorithm

selects t′ when the current inversion budget expires, unless the job completes or a new job

arrives before t′ (Line 20).

2Section 4.3.5 presents another approach to trigger scheduling decisions.
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Algorithm 4.1: Schedule Randomization Protocol

Input: Augmented task set Γ′ = Γ ∪ {τI} and current scheduling point t
Output: The randomized schedule St and the next scheduling point t′

1 Rt
Q := set of ready jobs

2 Add the highest priority job to the candidate list, i.e., CtL := {RHP
Q }

3 /* Search candidate jobs if the highest priority job has non-zero inversion budget */
4 if vHP > 0 then
5 foreach τj ∈ Rt

Q do
6 if dj ≤ mt

HP then
7 Rt

Q := Rt
Q ∪ {τj} /* add τj to candidate list */

8 if CtL = {RHP
Q } then

9 /* schedule the highest priority (shortest deadline) job */
10 St := RHP

Q
11 Set next scheduling point t′ := when new job arrives or current job completes

12 else
13 /* randomly select a job τR from CtL */
14 St := τR
15 if τR = RHP

Q then
16 Set next scheduling point t′ := when new job arrives or current job completes
17 else
18 /* set the next random scheduling point t′ as a function of current job

completion or budget expiration time (unless a new job arrives before t′) */

19 ∆t := rand(1,min(Ĉt
R, v̂))

20 Set next scheduling point t′ := t+ ∆t

21 /* return the scheduled job and the next scheduling point */
22 return (St, t

′)

The algorithm iterates over the jobs in the current ready queue Rt
Q once and makes a

single draw from the candidate list CtL ⊆ Rt
Q. Assuming a single draw from a uniform

distribution (Line 14 and 19) takes no more than O(|Rt
Q|), the complexity of each instance

of the algorithm is O(|Rt
Q|) .

4.3.5 Randomization Modes

Unused Time Reclamation. As mentioned earlier, not all the jobs of a task may

require worst-case unit of time for its computation. I propose to reclaim this unused time

(e.g., difference between WCET and actual execution time) to increase the inversion budget

for lower priority jobs. In the case that the (randomly) selected job finishes earlier (i.e.,

the actual execution time is smaller than its WCET), the unused time that is reserved for
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this job can be transferred to its lower priority jobs (i.e., those ready jobs that have higher

deadlines at the moment) as extra inversion budget. Therefore, when enabling this feature,

the RIBs of the lower priority jobs are updated (at the scheduling point t′ when the selected

job τR finishes its execution) as follows: vj = vj +δt
′
R, τj ∈ Rt′

Q∧dj > dR where δt
′
R represents

the unused time over WCET and Rt′
Q is the ready queue at time t′. Note that the real-time

constraints (i.e., deadlines) are respected since Eq. 4.1 for every ready job at time t′ still

holds (i.e., Vj + δt
′
R = Dj − (Rj − δt

′
R)) with the unused time transferring.

When there are no tasks in the ready queue (e.g., during slack time), the processor is idle,

e.g., nothing is executing in the system. Although REORDER brings variations between the

hyperperiods when compared to the vanilla EDF, randomizing only real-time tasks results

in the schedule being somewhat predictable since the idle times (i.e., slack) appear in nearly

same slots. I address this problem by scrambling the idle times along with the real-time

tasks in the next section.

Idle Time Scheduling. One of the limitations of randomizing only the tasks is that

the task execution is squeezed between the idle time slots and the latter remain predictable.

The work-conserving nature of EDF causes separations between task executions and idle

times. Hence some tasks appear at similar places over multiple hyperperiods. One way to

address this problem and improve schedule randomness is to idle the processor, intentionally,

at random times [49]. I achieve this by considering idle times as instances of an additional

task, referred to as the idle task, τI . Then, the randomization protocol can be applied over

the augmented taskset Γ′ = Γ ∪ {τI}.
It can be noted that τI has infinite period, deadline and execution time, and hence always

executes with the lowest priority. Hence τI can force all other tasks τi ∈ Γ to maximally

consume their inversion budgets. During randomization the idle task will convert a work-

conserving schedule to a non-work-conserving one, but it will not cause any starvation for

other tasks. This is because Step 2 of the REORDER protocol (see Section 4.3.4) selects

candidate tasks in a way that real-time constraints for all tasks in the system will always

be respected. Randomizing the idle task effectively makes tasks appear across wider ranges

and thus reduces predictability. As a result, the schedule can be less susceptible to attacks

that depend on the predictability of RTS.

Fine-Grained Switching. In TaskShuffler [49] I proposed to decrease the inferability of

the fixed-priority scheduler by randomly yielding a job, early, during execution. As a result

the schedule will be fragmented at different time-points and thus will bring more variations

across execution windows. The proposed REORDER protocol can also be modified to

65



incorporate such a feature. Recall that the scheduling decisions in my scheme are made

either when: (i) a new job arrives, (ii) a job completes, or (iii) the inversion budget expires

(refer to Step 2 in Section 4.3.4). Therefore I can achieve fine-grained switching by modifying

the next scheduling decision point t′ in Eq. (4.3) as follows: t′ = t + rand(1,min(Ĉt
R, v̂))

where the function rand(a, b) outputs a random number between [a, b].

4.4 THE ε-SCHEDULER

4.4.1 System and Adversary Model

In this work, I consider a single processor, preemptive real-time system in which deadline

misses are tolerable [75, 76]. The system contains a task set consisting of N real-time

tasks Γ = {τi | i ∈ [N ]}, schedulable by a dynamic-priority scheduler (e.g., an Earliest

Deadline First, EDF, scheduler [9]). I assume the real-time tasks are independent (i.e., no

dependencies between tasks). A real-time task can be a periodic task (that has a fixed period)

or a flexible task (that has flexible period choices within a predefined range)3 [77]. I model

a real-time task τi by a tuple (Ti,Di, Ci, ηi) where Ti = {Ti,k | k ∈ N} is a set of admissible

periods, Di = {Di,k | k ∈ N} is a set of implicit, relative deadlines (i.e., Di,k = Ti,k,∀k ∈ N),

Ci is the worst-case execution time (WCET) and ηi is a task inter-arrival time function

to be defined below. It can be easily seen that a periodic task is a flexible task with the

choice of periods limited to a constant value. That is, Ti = {Ti,1} when τi is a periodic

task and I sometimes use Ti to denote such a fixed period for a task for simplicity. A task’s

execution instance is aborted upon missing its current deadline and it shall not impact the

release of the task’s next execution instance. Under this assumption, I further assume that

applications running on the real-time tasks should be able to work with, and tolerate, the

dynamic changes in the task’s run-time frequencies.

To easier formulate the problem and better profile the task’s periodicity, let’s assume the

system behaves deterministically and thus a task’s execution behavior w.r.t. its inter-arrival

time sequence is modeled by a task inter-arrival time function (each task has a dedicated

function.)

Definition 4.1. (Task Inter-Arrival Time Function.) For a task τi, its task inter-arrival

time function is defined as

ηi : N→ Ti (4.4)

3The system can also contain other sporadic and aperiodic tasks. Yet, these types of tasks do not naturally
demonstrate periodicity by design and thus are not of interest in our context. For this reason, I intentionally
exclude these types of tasks in the task model to be focused on the periodic components.
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and ηi(j) gives the task’s inter-arrival time at jth instance. The resulting inter-arrival time

is a value in the task’s inter-arrival time set, ηi(j) ∈ Ti.

Note that a strict periodic task (i.e., Ti = {Ti,1}) always gets a constant output from

its inter-arrival time function, ηi(j) = Ti,1,∀j ∈ N. Then, based on the above function,

the system’s scheduling behavior w.r.t. the task deadlines and inter-arrival times can be

modeled by ηi,∀τi ∈ Γ. That is, when a task τi arrives as the jth instance, the scheduler

obtains its currently desired period from ηi(j) and configures the current absolute deadline

as well as the next consecutive arrival time accordingly.

I’m mainly concerned about the scheduler side-channels that are exposed by the periodic

nature of RTS. I assume that an adversary observes the system schedule via some existing

side-channels such as power consumption traces [15], schedule preemptions [20, 44], electro-

magnetic (EM) emanations [16] and temperature [17]. I further assume that the scheduler

is not compromised and the adversary does not have access to the scheduler. Without

this assumption, the adversary can undermine the scheduler or directly obtain the schedule

information without using the side-channels.

Some existing attacks have demonstrated that the periodicity can be exploited to learn a

targeted task’s execution state which can be used to launch further attacks causing greater

damages to the system with a high precision [20, 48]. These types of attacks rely on the fact

that periodicity exists in the real-time tasks being targeted. In this work, I aim to eliminate

scheduler side-channels by obscuring the task periodicity in the schedule. To this end, my

goal in this work can be seen as to achieve schedule indistinguishability in the system and

depending on the attacker’s intent it can be further defined and categorized into two (i)

job-level indistinguishability and (ii) task-level indistinguishability :

• Job-level indistinguishability. The job-level indistinguishability refers to the diffi-

culty of distinguishing a task’s job from another of the same task in a task schedule.

As introduced earlier, a flexible task can have multiple predefined periods that are

associated to different execution modes and purposes. For instance, a feedback control

task in a cyber-physical system can adjust its period based on the severity of error

the physical asset under control is experiencing [77]. Leaking which period the control

task is running at reveals the system’s internal state as well as the physical asset’s

external state. Achieving a job-level indistinguishability for such a task weakens the

adversary’s ability to reason about the task’s period.

• Task-level indistinguishability. On the other hand, the task-level indistinguisha-

bility refers to the difficulty of distinguishing a task from another in a schedule. In an
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RTS in which all tasks are strictly periodic, it is generally not hard to distinguish and

identify each individual task’s period from a schedule (see Section 4.7.1 for an exempli-

fied analysis). As a result, tasks are at risk leaking critical information. For instance,

in the ScheduLeak attack [20], the adversary exploits the periodicity to extract the

execution behavior of a target real-time task from an observed schedule. Achieving

a task-level indistinguishability weakens the adversary’s ability to learn information

about a specific task from the schedule.

It’s intuitive to see that the job-level indistinguishability is a necessary condition for the

task-level indistinguishability. That is, if the task-level indistinguishability can be achieved,

the job-level indistinguishability for each task is also achievable. It’s worth pointing out

that the inverse relation does not hold: achieving individual job-level indistinguishability

does not automatically grant the task-level indistinguishability. Yet, in practice, there exist

real-time constraints that restrict the degree of timing for each task we can tweak. In such a

case, the task-level indistinguishability may be infeasible to achieve. In this work, I propose

an extended task model and a real-time scheduler with an inter-arrival time randomized

mechanism to achieve the job-level indistinguishability and, when feasible, the task-level

indistinguishability.

4.4.2 Randomizing Inter-Arrival Times

Let’s consider a task τi and its inter-arrival time function ηi. The function produces a

constant inter-arrival time (i.e., period) if the task is strictly periodic for a given duration.

Such consistent inter-arrival times constitute periodicity within the given duration. To break

its periodicity, I intend to randomize each inter-arrival time. To this end, I propose a inter-

arrival time randomized mechanism, denoted by R(·), that is placed in the scheduler to

generate a randomized version of the inter-arrival time obtained from ηi by adding random

noise. The inter-arrival time randomized mechanism is defined as

R(τi, j) = b ηi(j) + Y e (4.5)

the jth inter-arrival time of the task τi

random noise drawn from some distribution centered at 0

where τi ∈ Γ, j ∈ N represent that the jth inter-arrival time of the task τi is being generated

and Y is a random noise value drawn from some distribution centered at 0. Note that the

noise Y is presented separately for the purpose of illustration. Such a representation is the

same as drawing a random value from some distribution centered at ηi(j) – which is what
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ε-Scheduler is eventually based on. The outcome is rounded to the nearest integer and taken

as the randomized inter-arrival time.

The added random noise Y creates inconsistent inter-arrival times for a task and breaks

the task’s periodicity. Yet, without specifying a noise distribution, it may be insufficient

to obscure the task’s periodicity, for example, when the noise’s variance is insignificant.

In advance of examining the noise addition mechanism, I first formally define the indistin-

guishability in our context.

4.4.3 Inter-Arrival Time Indistinguishability

As introduced in Section 4.4.1, I’m concerned with the job/task-level indistinguishabili-

ties. To provide guarantees for such indistinguishabilities with the defined randomized mech-

anism, the inter-arrival time indistinguishability that’s similar to the notion of differential

privacy [23, 24] is used.

Definition 4.2. (ε-Indistinguishability Inter-Arrival Time Randomized Mechanism.) An

inter-arrival time randomized mechanism R(·) is ε-indistinguishable if

Pr[R(τ, j) ∈ S] ≤ eεPr[R(τ ′, j′) ∈ S] (4.6)

any randomized inter-arrival time of any given task τ

any randomized inter-arrival time of any given task τ ′

for all τ, τ ′ ∈ Γ, j, j′ ∈ N and S ⊆ Range(R).

That is, R(·) enables the inter-arrival time indistinguishability for a single job instance if

Equation 4.6 is satisfied.

Note that Definition 4.2 is general enough to consider both the job-level and task-level in-

distinguishabilities. When τ 6= τ ′, the task-level indistinguishability is implied; whenτ = τ ′,

the job-level indistinguishability is implied. It is worth noting that we can maintain an inde-

pendent εi value for each task τi and each of them achieves their own εi-indistinguishability.

The indistinguishability for the whole task set is determined by the worst of the εi [78] (which

corresponds to the task-level indistinguishability).

4.4.4 Inter-Arrival Time Sensitivity and Laplace Noise

To determine the degree of noise to be added to make two inter-arrival times indistin-

guishable, I define a inter-arrival time sensitivity. Intuitively, the value of the inter-arrival
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time sensitivity is assigned by the largest possible difference between two inter-arrival times.

However, the true assignment depends on the protection goal (i.e., whether to achieve the

job-level indistinguishability or the job-level indistinguishability).

Definition 4.3. (Inter-Arrival Time Sensitivity.) The inter-arrival time sensitivity reflects

the sensitivity of the function ητ (·). The sensitivity is defined depending on the desired

indistinguishability goal:

(i) Job-level indistinguishability: the inter-arrival time sensitivity for the job-level indistin-

guishability, denoted by ∆ητ for a given task τ , is defined as

∆ητ =: max
j,j′∈N
j 6=j′

| ητ (j)− ητ (j′) | (4.7)

distance between any two inter-arrival times of the task τ

that is task-specific.

(ii) Task-level indistinguishability: the inter-arrival time sensitivity for the task-level indis-

tinguishability, denoted by ∆ηΓ, is defined as

∆ηΓ =: max
τ,τ ′∈Γ
j,j′∈N

| ητ (j)− ητ ′(j′) | (4.8)

distance between any two inter-arrival times of any two tasks in the task set Γ

that is task-set-dependent.

For simplicity, I use ∆η to represent either of the sensitivities when the context is clear.

Then, the use of the Laplace distribution Lap(ητ ,
∆η
ε

) for generating the randomized inter-

arrival times preserves ε-indistinguishability defined in Definition 4.2 for a single job instance.

This property can be easily proved by expanding Equation 4.6 with the probability density

function of the Lap(ητ ,
∆η
ε

) distribution [24, Theorem 3.6]. Therefore, the job-level indis-

tinguishability is achieved when ∆η = ∆ητ and the task-level indistinguishability can be

achieved when ∆η = ∆ηΓ.

4.4.5 ε-Indistinguishability in J Instances

The randomized mechanism R(·) with Laplace noise Lap(∆η
ε

) offers ε-indistinguishability

for a single instance. However, an attacker typically observes a longer schedule. There-

fore, I’m more interested in the conditions for achieving ε-indistinguishability for a certain

duration.
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As a noise draw occurs in every job instance, based on the theorem of Sequential Com-

position [78, Theorem 3], the privacy degradation is cumulative as the number of draws

increases. A smart attacker may be able to sort out the distribution by collecting sufficient

samples. Therefore, it is crucial to understand the condition for providing the same level of

indistinguishability for a certain duration. To this end, I measure the duration in the num-

ber of job instances (which corresponds to the number of noise draws for the corresponding

inter-arrival times). Then, I use the following theorem to determine the scale of the noise

for preserving ε-differential privacy up to J job instances.

Theorem 4.1. The Laplace randomized mechanismR(·) with the scale J∆η
ε

is ε-indistinguishable

up to J job instances.

Proof. Let RJ(τi, j) = {R(τi, k)|j ≤ k < j + J} be a set of R(·) invocations. By the

definition of the inter-arrival time indistinguishable, it must satisfy

Pr[RJ(τ, j) ∈ W ] ≤ eεPr[RJ(τ ′, j′) ∈ W ] (4.9)

for all τ, τ ′ ∈ Γ, j, j′ ∈ N and W ⊆ Range(RJ).

Let w = {ωk|k ∈ [J ]} be an inter-arrival time sequence generated by RJ(τ, j). Then

Pr[RJ(τ, j) = w] =
∏
k∈[J ]

Pr[R(τ, j + k − 1) = ωk] (4.10)

where ωk is calculated by ητ (·) + Lap(b) in which b is the Laplace distribution parameter.

Expanding with the probability density function given in Equation 2.1, the right term in the

above equation can be rewritten as

∏
k∈[J ]

1

2b
exp(−|ωk − ητ (j + k − 1)|

b
) (4.11)

Then

Pr[RJ(τ, j) = w]

Pr[RJ(τ ′, j′) = w]
=
∏
k∈[J ]

1
2b

exp(− |ωk−ητ (j+k−1)|
b

)
1
2b

exp(− |ωk−ητ ′ (j
′+k−1)|
b

)
(4.12)

=
∏
k∈[J ]

exp(
|ητ (j + k − 1)− ητ (j′ + k − 1)|

b
) (4.13)

The term |ητ (j + k − 1)− ητ (j′ + k − 1)| represents the difference between two inter-arrival

times which can be replaced with ∆η for the worst case (i.e., the largest possible difference
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defined in Definition 4.3). The above becomes

∏
k∈[J ]

exp(
∆η

b
) = exp(

∑
k∈[J ]

∆η

b
) (4.14)

= exp(
J∆η

b
) (4.15)

Using Equation 4.9, we can derive b from

exp(
J∆η

b
) ≤ exp(ε)⇒ b ≥ J∆η

ε
(4.16)

Therefore, the Laplace distribution with the scale b = J∆η
ε

preserves ε-indistinguishability

up to J instances. QED.

The assignment of J for a given task set is discussed in Section 4.4.9.

4.4.6 Bounded Laplace Randomized Mechanism

While the introduced Laplace randomized mechanism offers ε-indistinguishability, the un-

bounded output domain for the randomized inter-arrival times makes it infeasible to adopt

in real systems. To address this problem, I introduce the bounded Laplace randomized

mechanism. That is, the randomized inter-arrival time drawn from a Laplace distribution is

bounded by a given range. There are typically two solutions for bounding the value drawn

from a distribution: (i) truncation and (ii) bounding [79]. Truncation is to project values

outside the domain to the closest value within the domain. Bounding, used in this work, is

to continue sampling independently from the distribution until a value within the specified

range is returned. Let’s denote such a bounded Laplace distribution by L̃(µ, b, T⊥, T>) of

which the drawn value is in the range [T⊥, T>].

Using such a bounded Laplace distribution allows a randomized mechanism to return ran-

domized inter-arrival times within a range that’s feasible for the given underlying scheduler.

However, it is known that the bounded Laplace distribution cannot preserve the same level

of probabilistic guarantee (i.e., the ε-indistinguishability in our context) with the same scale

parameter as a pure Laplace distribution and a doubling of the noise variance is required to

compensate the loss [79, 80]. Based on this condition and Theorem 4.1, I define the bounded

inter-arrival time Laplace randomized mechanism as follows:

Definition 4.4. (Bounded Inter-Arrival Time Laplace Randomized Mechanism.) Let [T⊥i , T
>
i ]

be the feasible inter-arrival time range for a given task τi, the bounded inter-arrival time
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Laplace randomized mechanism is defined as

R̃(τi, j) = L̃( ηi(j) ,
2Ji∆ηi
εi

, T⊥i , T>i ) (4.17)

jth inter-arrival time of τi scale of the noise distribution

bounds for randomized inter-arrival time

where L̃(·) is the bounded Laplace distribution of which the drawn values are bounded

in the range [T⊥i , T
>
i ] based on a pure Laplace distribution Lap(ηi(j),

2Ji∆ηi
εi

) in which the

distribution is centered at the target inter-arrival time ηi(j).

The variables T⊥, T>, ∆ηi, Ji and εi are extended task parameters of τi to be formalized

in Section 4.4.7. Following Theorem 4.1, the bounded inter-arrival time Laplace randomized

mechanism R̃(τi, j) is ε-indistinguishable up to J job instances.

4.4.7 Extended Real-Time System Model

With the components elaborated in previous sections, I now introduce the proposed real-

time scheduler, ε-Scheduler, that uses R̃(·) for randomizing inter-arrival times. In this

section I first introduce an extended RTS task model that supports ε-Scheduler, followed by

discussion for how the extended task parameters should be determined for a given system

to achieve job/task-level indistinguishability.

The basic RTS task model presented in Section 4.4.1 is extended to include parameters

necessary for ε-Scheduler to achieve desired indistinguishability. In ε-Scheduler, a task τi

is characterized by (Ti,Di, Ci, ηi, T⊥i , T>i ,∆ηi, Ji, εi) where [T⊥i , T
>
i ] is a range of tolerable

periods, ∆ηi ≥ 0 is the inter-arrival time sensitivity parameter, Ji is the task’s effective

protection duration, and εi > 0 is the indistinguishability scale parameter. At each new job

arrival, ε-Scheduler invokes R̃(τi, j) = L̃(ηi(j),
2Ji∆ηi
εi

, T⊥i , T
>
i ) to determine the next job’s

arrival time point from the drawn, randomized inter-arrival time (which also determines the

deadline of the current job since I assume a implicit deadline model).

In this extended task model, the parameters Ti,Di, Ci, ηi, T⊥i and T>i are given based on the

system’s dynamics. The additional parameters ∆ηi, Ji and εi are to be given by the system

designer. As the degree of noise added to a task’s inter-arrival time relies on the extended

parameters, it is crucial to assign proper values based on the desired indistinguishability

goal. I discuss the considerations for determining their values next.
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4.4.8 Determining Inter-Arrival Time Sensitivity ∆ηi

∆ηi represents the degree of random noise needed to make two inter-arrival times indistin-

guishable and can be determined based on Definition 4.3. The value of ∆ηi should be fixed

throughout the run-time once assigned. In the case that the job-level indistinguishability is

to achieve for a given task τi, the value of ∆ηi is determined solely by the task’s period set

Ti. In this case, each task’s sensitivity is independently considered can have different values.

On the other hand, the task-level indistinguishability requires that the sensitivity reflects

the period range of all tasks in the task set. Hence, the sensitivity for the task-level indis-

tinguishability is task set specific and all tasks are assigned with the same sensitivity value.

It is straightforward to see that the task-level sensitivity will be greater than the job-level

sensitivity of any task (and hence larger noise will be added). It is up the system designer to

decide, taking potential performance degradation into account, if either indistinguishability

should be achieved.

4.4.9 Calculating Protection Duration Ji

With R̃(·), ε-Scheduler is able to preserve εi-indistinguishability up to Ji job instances for a

given task. As pointed out in Section 4.4.5, the more noise samples collected by an attacker

the more likely the attacker is able to reconstruct the distribution and reveal the task’s

internal state. Therefore, εi-indistinguishability can’t be guaranteed for an infinite time. For

this reason, ε-Scheduler should be used with other security measures for a comprehensive

protection against the scheduler side-channels.

There exist some security schemes that work well together in this context. For instance,

one can integrate security tasks to perform periodic security checks to detect possible intru-

sion and anomalies [33]. With this scheme, the period of the security task (i.e., the distance

between two security checks) can be used as a reference to compute the protection duration

parameter Ji. Another feasible scheme is the restart-based mechanism [38, 39] that enforces

a reboot once a while. In such a case, the maximum time to restart can be used to compute

Ji. In both schemes, the adversary’s attack progress is disrupted once the corresponding

security measure kicks in and ε-Scheduler offers security guarantee before the system may

be compromised via scheduler side-channels. Note that Ji is defined in the number of job

instances as each job arrival draws a random value from the distribution. When the job-level

indistinguishability is considered, each task’s Ji is computed independently based on the the

task’s period, so the value can be different across tasks. Let λ be the protection duration in

time, then
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Figure 4.1: The noise scale of Lap(0, 2Ji∆ηi
εi

) at 95th percentile with ∆ηi = 190ms and varying

εi and Ji. The X-axis is εi and the Y-axis is the corresponding 95th percentile noise scale.
Both axes are displayed in a base 10 logarithmic scale. The result suggests that, in the
context of RTS schedule, a reasonable εi is above one order of magnitude.

Ji =

⌈
λ

min(Ti)

⌉
(4.18)

desired protection duration

the smallest period in the period set of τi

offers εi-indistinguishability to τi within λ time. In the case of task-level indistinguishability,

Ji for all tasks must be equal to offer desired indistinguishability guarantee (which is subject

to εi). That is,

Ji = max(

 λ

min(Tj)

 | τj ∈ Γ) (4.19)

desired protection duration

the smallest period in every task period set in the task set Γ

where λ is a global protection duration in time.

4.4.10 Choosing Indistinguishability Parameter ε

With ∆ηi and Ji determined for a given task set, εi is the major variable that a system

designer specifies to secure the desired degree of protection. Ideally, a smaller εi value gives

a better indistinguishability by generating randomized inter-arrival times with larger noise
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Figure 4.2: Probability density of the randomized inter-arrival times for the task τi with
Ti = {33.33, 100}. The blue and green lines show the distribution when the desired pe-
riod is at 33.33ms and 100ms respectively. In this case, ε-Scheduler offers a job-level ε-
indistinguishability for τi with εi = 100, ∆ηi = 190 and Ji = 16.

scale. However, a large noise scale may sometimes be impractical for real-time applications.

Figure 4.1 shows examples of noise scales (the y-axis, represented by the 95th percentile) with

varied εi values (the x-axis) for a fixed ∆ηi = 190ms and various Ji settings. It suggests

that an εi value above an order of magnitude can be practical to most RTS. Yet, a suitable

value is highly system-dependent. Ultimately, it is up to the system designer to select a

best-fit value based on the overall security and performance goals. Note that all tasks must

be assigned an identical ε value to achieve task indistinguishability while each task can have

an independent ε value when job indistinguishability is considered.

4.5 IMPLEMENTATION IN REAL-TIME LINUX

I implemented both the REORDER scheduler and ε-Scheduler in both a simulator and

real-time Linux kernel running on an embedded platform. In this section I provide the plat-

form information (summarized in Table 4.2) and a high level overview of the implementation

in real-time Linux kernel.

4.5.1 Platform and Operating System

I used a Raspberry Pi 4 (RPi4) Model B4 development board as the base platform for

my implementation. The RPi4 is equipped with a 1.5 GHz 64-bit quad-core ARM Cortex-

A72 CPU developed on top of Broadcom BCM2711 SoC (System-on-Chip). RPi4 runs on

4https://www.raspberrypi.org/products/raspberry-pi-4-model-b/.
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Table 4.2: Summary of the Implementation Platform

Artifact Parameters

Platform ARM Cortex-A72 (Raspberry Pi 4)
System Configuration 1.5 GHz 64-bit processor, 4 GB RAM
Operating System Debian Linux (Raspbian)
Kernel Version Linux Kernel 4.19.71-rt24-v7l+
Kernel Configuration
(make defconfig)

CONFIG SMP disabled
CONFIG PREEMPT RT FULL enabled

Boot Commands maxcpus=1
Run-time Variables sched rt runtime us=−1

scaling governor=performance

Base Scheduler SCHED DEADLINE

a vendor-supported open-source operating system, Raspbian (a variant of Debian Linux). I

forked the Raspbian kernel and modified it to implement the proposed ε-Scheduler. Since I

focus on the single core environment in this work, the multi-core functionality of RPi4 was

deactivated by disabling the CONFIG SMP flag during the Linux kernel compilation phase.

The boot command file was also set with maxcpus = 1 to further ensure the single core

usage.

4.5.2 Real-time Environment

The mainline Linux kernel does not provide any hard real-time guarantees even with

the custom scheduling policies (e.g., SCHED FIFO, SCHED RR, SCHED DEADLINE). However the

Real-Time Linux (RTL) Collaborative Project [81] maintains a kernel (based on the mainline

Linux kernel) for real-time purposes. This patched kernel (known as the PREEMPT RT)

ensures real-time behavior by making the scheduler fully preemptable. In this work, I use a

PREEMPT RT-patched kernel (4.19.71-rt24+) to enable the real-time functionality.

To further enable the fully preemptive functionality from the PREEMPT RT patch, the

CONFIG PREEMPT RT FULL flag was enabled during the kernel compilation phase. Further-

more, the system variable sched rt runtime us was set to −1 to disable the throttling

of the real-time scheduler. This setting allowed the real-time tasks to use up the entire

100% CPU utilization if required5. Also, the active core’s scaling governor was set to

performance mode to disable dynamic frequency scaling during the experiments.

5This change in system variable settings was mainly configured for the purpose of experimenting with the
ideas of ε-Scheduler only. For most real use-cases, users can keep this system variable untouched for more
flexibility.
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4.5.3 Vanilla EDF Scheduler

Since Linux kernel version 3.14, an EDF implementation (SCHED DEADLINE) is available in

the kernel code base [65]. As the PREEMPT RT-patched kernel supports SCHED DEADLINE,

I used this as the baseline EDF implementation and extended the scheduler to implement

ε-Scheduler.

In Linux the system call sched setattr() is invoked to configure the scheduling policy

for a given process. By design, SCHED DEADLINE has the highest priority among all the

supported scheduling policies (e.g., SCHED NORMAL, SCHED FIFO and SCHED RR). It’s also

worth noting that the Linux kernel maintains a separate run queue for SCHED DEADLINE

(i.e., struct dl rq). Therefore, it is possible to extend SCHED DEADLINE while keeping

other scheduling policies untouched.

4.5.4 Implementation of REORDER

,struct sched_dl_entity {

,/* task specific parameters */

, u64 dl_runtime; // WCET

, u64 dl_deadline; // relative deadline

, u64 dl_period; // period

, s64 reorder_wcib; // worst -case inversion budget

,

,/* task instance (job) specific parameters */

, s64 runtime; // remaining runtime

, u64 deadline; // absolute deadline

, s64 reorder_rib; // remaining inversion budget

, ....

,/* Other variables are omitted for readability. */

,};

Listing 4.1: REORDER parameters added to the existing data structure.

Task/Job-specific Variables. The Linux kernel defines a structure, struct sched dl entity,

dedicated to SCHED DEADLINE, to store task and job-related variables (both run-time and

static variables). They include typical EDF task parameters (e.g., period, deadline and

WCET). To implement REORDER I added two additional variables, named reorder wcib

and reorder rib, both s64 (signed 64 bit integer) type variables, to store the WCIB for the

task and to track the RIB for the task’s active job at any given moment, respectively. Each
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task’s reorder wcib is initialized and updated when a new task is created. The job-specific

run-time variable, reorder rib, is initialized to the precomputed reorder wcib every time

when a new job arrives. During run-time, the inversion budget was updated (i.e., decreased

by the elapsed time in the case of priority inversion) along with other SCHED DEADLINE

run-time variables in the function update curr dl(). It is used to determine whether the

inversion budget was consumed and a random selection of a job was allowed at a scheduling

point. In my implementations I did not use any external libraries and only used the built-in

kernel functions. Listing 4.1 shows a part of the existing variables as well as the newly added

ones (the highlighted lines).

Task Selection Function. The REORDER protocol was implemented as a function,

named pick rad next dl entity(), that selects a task and sets the next scheduling point

based on the REORDER algorithm. It replaces the original SCHED DEADLINE function,

pick next dl entity() (i.e., one that picks the task that has the next absolute deadline

from the run queue, viz., the leftmost node in the scheduler’s red-black tree). This func-

tion is indirectly called by the main scheduler function schedule() when the next task for

execution is needed.

Randomization Function. I used the built-in random number generator in the kernel.

It supports the system call get random bytes() defined in linux/random.h. It is used by

the function pick rad next dl entity() to select a random task and a random execution

interval for the next scheduling point as explained in Algorithm 4.1.

Schedule Timer. A high-resolution timer (i.e., struct hrtimer) was used to trigger

the additional scheduling points introduced by the REORDER protocol, as described in

Algorithm 4.1 (Line 22 and 23). Since this timer is a scheduler-specific timer, it is stored in

dl rq, as reorder pi timer. It is worth noting that hrtimer is also used by SCHED DEADLINE

to enforce the task periods.

Idle Time Scheduling. As introduced in Section 4.3.5, idle times are considered when

the idle time scheduling scheme is deployed. In my Linux kernel implementation, I uti-

lized the native idle task maintained under the SCHED IDLE scheduler for this purpose.

The REORDER protocol yields its scheduling opportunities (to other schedulers such as

SCHED IDLE) if τI , the idle task in the REORDER protocol, is selected and running. The

subsequent scheduling point is enforced by reorder pi timer.
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4.5.5 Implementation of ε-Scheduler

In my implementation I make ε-Scheduler as a scheduling mode under SCHED DEADLINE

that can be enabled/disabled by setting a custom kernel parameter6. The ε-Scheduler’s

main functionality is implemented in the function replenish dl entity() that gets invoked

whenever a new job of a real-time task arrives. In this function, ε-Scheduler generates a

randomized inter-arrival time based on the Laplace distribution associated with the current

task (detailed next). The generated inter-arrival time is used to compute the absolute

deadline for the newly arrived job. This value is also used in the function start dl timer()

to schedule the arrival of the next job.

ε-Scheduler requires to generate random numbers based on Laplace distribution for ob-

taining randomized inter-arrival times. However, the Linux kernel code is self-contained

(i.e., it does not depend on the standard or any other C libraries) and thus a random num-

ber generator that’s based on Laplace distribution is not natively supported. While it is

possible to build such a generator out of the existing random number generation function

get random bytes(), the required mathematics calculation (e.g., logarithm calculation) will

be costly. Considering that the task set parameters are fixed at the design stage, the Laplace

distributions needed by each task are fixed and known as well. Therefore, rather than build-

ing a common Laplace distribution-based random number generator, we may convert each

required Laplace distribution’s percent point function (PPF) into an array and store each

of them in the kernel. Then, a Laplace distribution-based random number can be drawn by

randomly pick (with using get random bytes()) a number from the array that’s associated

with the desired Laplace distribution.

The conversion is done by using Algorithm 4.2. This algorithm takes as input a function of

PPF of the target distribution (centered at 0) and the desired number of the points (steps)

to convert into an integer array as the output (arrayPPF ). In this algorithm, the PPF

function takes as input a percentile value (ranged from 0 to 1.0) and gives the corresponding

distribution sample value at the given percentile. An example of the PPF function is provided

in Figure 4.3 as the dash curve. Line 3 computes the resolution of the percentage each point

in the array represents. Line4 to line 7 iterate through each of the computed percentile to

obtain and store the corresponding percent point value in the output array. Line 8 returns the

array which stores PPF points above the 50-th percentile. In other words, the array contains

only half part of the distribution (as demonstrated by the bars shown in Figure 4.3). It is

done to save memory space as a Laplace distribution is symmetric. I then use Algorithm 4.3

to obtain a random number from the PPF array.

6The custom kernel parameter is accessible at /proc/sys/kernel/sched dl mode.
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Figure 4.3: Chart of the percent of function (PPF) based on a Laplace distribution with
εi = 100, ∆ηi = 190 and Ji = 16 (the same as that shown in Figure 4.2). The dash line
represents the true PPF curve and the bars are reconstructed by the 100 PPF points stored
in the PPF-based distribution array converted using Algorithm 4.2.

Algorithm 4.3 takes as input the aforementioned PPF array (arrayPPF ) and draw a ran-

dom number that is equivalent to a random draw from the underlying distribution. Line 2

obtains a random number from a common random number generator (based on a uniform

distribution) with a range of [0, 2 · len(arrayPPF ) − 1] (i.e., two times of the length of the

PPF array). Line 3 to line 6 convert the random number into a feasible index to obtain a

sample value from the PPF array. If the random number is greater than the array’s length,

a negative sample value is generated. Otherwise a positive value is obtained and returned.

While this method allows us to draw a Laplace distribution-based random number with

a cost of a get random bytes() call, each distribution requires some memory space to store

an array converted from PPF. Yet, as demonstrated by my implementation, an u32 (i.e.,

unsigned int) array storing 100 PPF points (which takes up 400 bytes space) is sufficient

to produce the desired distribution. An example of the histogram for the generated random

inter-arrival times drawn by the implemented ε-Scheduler in RT Linux for a task with a

target period 100ms is shown in Figure 4.4.

4.6 EVALUATION METRICS AND SETUP

The proposed REORDER and ε-Scheduler are evaluated in a simulation platform as well

as a real hardware platform (i.e., RPi4). The simulation enables us to explore a larger

design space while the hardware platform enables us to understand the true scheduling over-

head in realistic environment. Furthermore, to demonstrate the applicability of ε-Scheduler,
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Algorithm 4.2: PPF-Based Distribution and Array Conversion

Input:
PPF =: the PPF of the target Laplace distribution
steps =: the number of PPF points to expand
Output:
arrayPPF the array storing the PPF points

1 arrayPPF = []
2 step = 0
3 resolution = (1− 0.5)/(steps− 1)
4 while step < steps do
5 percentile = step · resolution+ 0.5
6 arrayPPF [step] = int(PPF (percentile))
7 step = step+ 1

8 return arrayPPF

Algorithm 4.3: PPF-Based Random Number Generator

Input:
arrayPPF =: an array storing expanded PPF points
Output:
sample =: a random value equivalent to the corresponding distribution

1 sizearray = len(arrayPPF )
2 radidx = RANDint(0, len(arrayPPF · 2− 1))
3 if radidx > (sizearray − 1) then
4 sample = −arrayPPF [radidx − sizearray]
5 else
6 sample = arrayPPF [radidx]

7 return sample

additional tests are conducted on a 1/18 scale RC rover running a real application (i.e.,

RoverBot7, an open source autopilot system) on the RPi4 platform. In this section I first

introduce metrics for evaluating ε-Scheduler, followed by experiment setup. The evaluation

results are presented in next section.

4.6.1 Evaluation Metrics

Discrete Fourier Transform-Based Analysis. Since we are concerned about the

periodic components in the task schedules, frequency spectrum analysis tools such as Discrete

Fourier Transform (DFT) can be useful. To adequately utilize such a tool, the task schedule

7https://github.com/bo-rc/Rover
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Figure 4.4: Histogram of the randomized inter-arrival times generated by ε-Scheduler for the
task τi with a desired period 100ms running in RT Linux. The extended task parameters are
assigned to be εi = 100, ∆ηi = 190 and Ji = 16 (the same as that shown in Figure 4.2). The
plot shows that the generated inter-arrival times are distributed under the desired Laplace
distribution indicated by the dash line.

must be transformed into a sequence of equal-spaced samples that represent the states when

CPU is busy and idle. In my analysis, a sample is taken at each time tick and hence the

Nyquist frequency is half of the tick rate. Differing from the prior work [48] where busy and

idle states are translated into binary values 1 and 0, I translate them into 1.0 and −1.0 to

reduce noise in the spectrum caused by the positive-biased sample values. The outcome of

the transformation is a sequence of 1.0 and −1.0 numbers that is then analyzed by using

DFT. In the end, only the first half part of the analysis result is taken since the DFT output

is known to be conjugate symmetric.

As shown in Figure 4.5, the resulting frequency spectrum is useful for uncovering the

degree of periodicity introduced by the scheduling of the real-time tasks. Additionally, it

can also be seen that the peaked frequencies encapsulate the the true frequencies of the

tasks in the demonstrative task set, annotated by the red dashed lines. It’s worth noting

that the spectrum can contain peaked aliasing frequencies that are in harmony with the true

frequencies. These harmonic peaks in fact are helpful for adversaries to identify and verify

the true frequencies of interest.

Differing from the prior work [48] that focuses on identifying exact periods, I’m more

interested in the amount of information that an adversary can learn from the DFT analysis

w.r.t. task’s periodicity. By the nature of DFT, the amplitude in the spectrum has a positive

correlation with the degree of periodicity encapsulated in the sample sequences and the peaks

that stand out are particularly helpful to adversaries in gaining more knowledge about the

schedule.
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To this end, I use a Z-score based peak detection algorithm [82, 83] to count the number

of outstanding peaks in the spectrum. The peak detection algorithm uses a moving mean

with a 10Hz window to detect the outstanding peaks that are 3.5 standard deviations away.

As shown by the green line in Figure 4.5, such a moving threshold can effectively identify

the peaks that are significant while filtering out the base noise.

Upper-Approximated Schedule Entropy and Average Slot Entropy. The notion

of Schedule Entropy was first introduced by Yoon et al. [49] to calculate the randomness

given to a task schedule by the TaskShuffler scheduling algorithm. Yoon then proposed

Upper-Approximated Schedule Entropy to empirically estimate the schedule entropy of a

given task set. A bound is then derived by Vreman et al. [84] showing the legitimacy of such

estimation. The upper-approximated schedule entropy is calculated by [49, Definition 5]

H̃Γ(S) =
L−1∑
t=0

HΓ ( St ) (4.20)

slot entropy function

slot t in the schedule vector S

where S is a L-dimensional random vector S = (S0, ..., SL−1) that represents a task schedule

of length L and HΓ(·) is the slot entropy calculated by

HΓ(St) = −
N∑
st=1

Pr(st) log2 Pr(st) (4.21)

probability mass function of a task appearing at a time slot t

where Pr(st) is the probability mass function of a task appearing at a time slot t. As shown

in Equation 4.20, the scale of the resulting entropy depends on the length of the schedule

under analysis. In this work, I use Average Slot Entropy [84] that calculates the mean slot

entropy based on the upper-approximated schedule entropy (i.e., H̃Γ(S)
L

).

ScheduLeak Inference Precision and Inference Success Rate. I test the developed

schedulers against the introduced scheduler side-channel attack (i.e., DyPS in DP RTS).

Therefore the inference precision, Iov (Definition 3.5), introduced in Section 3.6.1 as well as

the inference success rate are used as metrics to evaluate the effectiveness of defense.

Quality-of-Service (QoS). Other than the security part of the metrics, it is also impor-

tant to understand the impact on the timing properties (e.g., deadlines misses, periodicity
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of the task execution) that are vital to delivering promised services in RTS applications.

What follows describes a set of metrics I use to examine the quality-of-service with respect

to fulfilling the RTS timing requirements.

• Deadline miss ratio. A deadline miss ratio is commonly used as a measure of QoS

for a real-time task. It is defined as the ratio of the number of deadline misses to the

total number of completed and aborted task instances [76].

• The number of consecutive deadline misses. While deadline misses are generally

tolerable to the RTS in our context, an unbounded number of consecutive deadline

misses can disrupt the service delivery depending on the application of the real-time

tasks [75].

• Mean task frequency. Given that a real-time task is initially designed to deliver

services at a certain frequency, a biased frequency can disturb the task’s ability to

accomplish such a target. A task’s mean frequency is calculated by the inverse of the

mean inter-arrival times.

• Under-performance ratio. While the mean task frequency gives us an insight into

the overall performance of the service delivery, it is crucial to know how often the task

is performing at a frequency below than expected (i.e., with inter-arrival times larger

than the desired period) as a under-performing execution usually has direct impact on

the task’s commitment to the service delivery. I measure such a property for a task

by calculating the ratio of the number of under-performing inter-arrival times to the

total number of generated inter-arrival times.

4.6.2 Evaluation Setup

A synthetic task set with timing parameters of an avionic system from prior work [32] that

has a task set utilization 0.64 is used to specifically examine the outcome of the proposed

scheduler in the first part of the evaluation. The task set parameters are shown in Table 4.3.

The proposed scheduler is also tested using extensive synthetic task sets that are generated

from a generation mechanism similar to that in earlier research [20, 33, 49, 85]. A total of

6000 task sets are grouped by utilization from {[0.001+0.1·x, 0.1+0.1·x) | 0 ≤ x ≤ 9∧x ∈ Z}.
Each group contains subgroups that have a fixed number of tasks from {5, 7, 9, 11, 13, 15}.
A total of 100 task sets are generated for each of the 60 subgroup. The utilization of each

individual task in a task set is generated from a uniform distribution by using the UUniFast
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Table 4.3: Timing Parameters of a Avionics Demonstrator [32]

Task Name WCET (ms) Period (ms)

Software Control Task 2 20
Mission Planner 0.002 100

Encryption 3 42
Image Encoding 18 42

Image I/O 1.46 42
Network Manager 0.03 10

algorithm [86]. Each task’s period Ti is randomly drawn from [10ms, 200ms] and the worst-

case execution time Ci is computed based on the generated task utilization and period. The

task phase is randomly selected from [0, Ti).

To explore the best-case protection as well as the most impact on the system performance,

I configure the extended task parameters based on the requirements for achieving the task-

level indistinguishability. The efficacy of the job-level indistinguishability is specifically

examined against the ScheduLeak attack in which a specific victim task is targeted and hence

constituting an ideal scenario for testing the job-level indistinguishability (results presented

in Section 4.7.3). To achieve the task-level indistinguishability in the experiments, ∆η is

assigned to be 200ms−10ms = 190ms. Ji for each task is calculated by using Equation 4.19

with a protection duration of 500ms that has been demonstrated to be practical to perform

periodic security checks to provide consistent and effective protection in RTS [33]8. I consider

two ε settings 10 and 103 which represent two end values that one may reasonably choose

based on the noise range shown in Figure 4.1. In the experiments, I use a fixed simulation

duration 5000ms so that I’m able to compare the experiment results across different task

sets. Besides the proposed REORDER and ε-Scheduler, I also include the vanilla EDF

scheduler for comparison in the evaluation.

To evaluate the scheduling overhead, I conduct experiments on the RPi4 platform running

RT Linux. I use the built-in SCHED DEADLINE scheduler as the Vanilla EDF scheduler and a

custom implementation of TaskShuffler EDF for comparison. The time cost of a function is

measured by using the trace-cmd command. For evaluating the power consumption, I use

a High Voltage (HV) Power Monitor manufactured by Monsoon9 to supply a 5.2V power to

the RPi4 board. The power consumption is then monitored in the power monitor’s software,

PowerTool version 5.0.0.25.

To demonstrate the usability of the proposed ε-Scheduler, I conduct experiments on a 1/18

8It is shown that the security tasks are typically assigned periods in the range [250ms, 500ms] [33]. In
the evaluation, I take 500ms (i.e., the worst protection) to estimate protection duration J .

9https://www.msoon.com/high-voltage-power-monitor
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scale rover running an open source autopilot application, RoverBot10, on the RPi4 platform.

RoverBot consists of 7 tasks (i.e., Actuator, RCInput, BatteryMonitor, AHRS, Localizer,

Navigator). Each task runs as a process in Linux and can be configured as a real-time or

non-real-time task. The system is equipped with an Intel RealSense T26511 tracking camera

that enables precise indoor localization as well as indoor navigation. Such features allow me

to study and measure the degree of the performance degradation caused by ε-Scheduler in a

real application. The experiment results are presented in Section 4.7.6.

4.7 EVALUATION RESULTS

4.7.1 DFT-Based Analysis

First I set off to understand the periodicity enclosed in the schedules produced by the

Vanilla EDF scheduler, the REORDER scheduler and ε-Scheduler (with ε = 103 and ε = 10).

I do this by analyzing the DFT of the schedules based on the task set introduced in Table 4.3

and the resulting frequency spectra are shown in Figure 4.5. As revealed by the peaks

displayed in Figure 4.5(a), the task periods are enclosed in the schedule generated by the

vanilla EDF scheduler because of its work-conserving nature. It’s worth pointing out that

the period 100ms (i.e., 10Hz) does not show up as a peak in the spectrum because the

corresponding task has a very small execution time (i.e., 0.002ms). Figure 4.5(b) shows

the spectrum of the same task set scheduled under the REORDER scheduler and the result

is similar to that under the vanilla EDF scheduler with more base noise. This is due to

the high task set utilization (i.e., 0.64 in this case) that gives a smaller chance of schedule

obfuscation. While the task set may not represent every case, it does demonstrate the

shortcoming of the TaskShuffler’s randomization protocol – it gets less effective when the

task set utilization is high. This shortcoming can also be seen in later experiments. On the

other hand, Figure 4.5(c) and (d) show the spectra when scheduled under ε-Scheduler with

ε = 103 and ε = 10, respectively. Both settings create huge noise across the entire frequency

domain. As a result, no peaks match the task frequencies significantly.

The green lines shown in Figure 4.5 are the moving peak threshold calculated by using

the Z-score based peak detection algorithm introduced in Section 4.6.1. From the figures

we can see that the threshold is useful for identifying the outstanding peaks while filtering

out the background noise. The outstanding peaks represent the true periodicity coming out

of the schedule and thus are particularly useful for attackers to reconstruct and leak the

10https://github.com/bo-rc/Rover
11https://www.intelrealsense.com/tracking-camera-t265
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(a) Vanilla EDF
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(b) REORDER
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(c) ε-Scheduler (ε = 103)
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(d) ε-Scheduler (ε = 10)

Figure 4.5: Results of the DFT-based analysis over the demonstrative task set given in
Table 4.3 scheduled by the Vanilla EDF, REORDER and ε-Scheduler schedulers. The blue
lines are the normalized amplitudes for the corresponding frequency bins and the green lines
are the Z-scored based moving peak threshold (introduced in Section 4.7.1) for detecting
outstanding peaks. The results suggest that ε-Scheduler creates a wide range of noise in
the frequency spectrum and is effective in obscuring the periodic elements enclosed in the
original schedule.
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Figure 4.6: Results of the detected outstanding peak count. The results are grouped by the
task set utilization (x-axis) and the y-axis is the outstanding peak count. Each point is the
result of a task set scheduled by the corresponding scheduler. It indicates that Vanilla EDF
yields a large number of peaks that are useful for adversaries to learn the schedule while
there are no significant amount of peaks detected with ε-Scheduler.

task set information. Intuitively, the more outstanding peaks the attackers collect, the more

precise information the attackers can evaluate and learn. Next I use the aforementioned

peak detection algorithm to count the number of outstanding peaks and test with extensive

synthetic task sets to get a broader understanding of the effectiveness of ε-Scheduler over

obscuring the task periodicity. The experiment results are plotted in Figure 4.6 where each

point represents the result of a task set for the corresponding scheduler. As expected, the

vanilla EDF scheduler yields schedules with stronger periodicity and more outstanding peaks.

On the other hand, the REORDER scheduler can effectively obscure the task periodicity for

most of the task sets except those with higher utilization. With ε-Scheduler, no significant

amount of outstanding peaks is detected due to larger overall noise in both ε = 103 and

ε = 10 settings. The result also indicates that the efficacy of ε-Scheduler, differing from

REORDER, is independent to the task utilization.

4.7.2 Average Slot Entropy

Next I analyze the schedules by measuring their average slot entropy introduced in Sec-

tion 4.6.1. The results are shown in Figure 4.7. Similar to Figure 4.6, a point represents

the average slot entropy of a task set scheduled under the corresponding scheduler. The

results indicate that ε-Scheduler yields higher entropy than the other two schedulers even

when the task set utilization is high in which REORDER fails to obfuscate the schedules. In

ε-Scheduler, ε = 10 generally performs better than ε = 103 w.r.t. the entropy as the former
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Figure 4.7: Results of the average slot entropy (y-axis) grouped by the task set utilization
(x-axis). Each point is the result of a task set scheduled by the corresponding scheduler.
It shows that ε-Scheduler generates diversified schedules with higher entropy (i.e., more
randomness).

has a wider variation range for the randomized inter-arrival times.

4.7.3 ScheduLeak Inference Precision and Inference Success Rate

To understand the effectiveness of the schedulers against the scheduler side-channel at-

tacks, I perform the ScheduLeak attacks over the generated synthetic task sets. In this

experiment, the observer task and the victim task in a task set are selected from the gener-

ated tasks based on their task periods. To illustrate, let us consider a task set consisting of N

tasks Γ = {τ1, τ2, ...τn} whose task IDs are ordered by their periods (i.e., T1 > T2 > ... > Tn).

The observer task is then selected as the (
⌊
n
3

⌋
+ 1)-th task and the victim task is selected

as the (n−
⌊
n
3

⌋
)-th task. This assignment ensures that there exist other tasks with diverse

periods (i.e., some with smaller periods and some with larger periods compared to To and

Tv.)

I first run experiments with configurations for achieving task indistinguishability. The

experiment results are shown in Figure 4.8(a) and (b). As indicated in Figure 4.8(a), while

ScheduLeak gains better inference precision and success rate as attack duration increases in

the case of vanilla EDF and REORDER, ε-Scheduler offers consistent protection throughout

the entire course of the attack. Figure 4.8(b) shows the breakdown of the inference results

grouped by the task set utilization at the attack duration 10 · LCM(To, Tv). It reveals that

the REORDER scheduler offers less effective protection when the task set utilization is high

due to limited randomization restricted by the strict real-time requirements. On the other

hand, ε-Scheduler yields consistent performance across the task utilization leading to an
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(b) Inference results grouped by the task set utilization

Figure 4.8: Results of the inference precision and success rate produced by the ScheduLeak
attack against various scheduler settings. The figure (a) shows the inference results for an
attack duration ranged from 1 · LCM(To, Tv) to 10 · LCM(To, Tv) and the figure (b) shows
the inference results of 10 · LCM(To, Tv) grouped by the task set utilization. The inference
success rate for each group is displayed at the top of the figures. The experiment suggests
that ε-Scheduler can offer effective protection against the ScheduLeak attack. Such an effect
is independent to the attack duration and the task set utilization.

average inference precision (0.498 and 0.501 for ε = 103 and ε = 10) that is close to the

outcome produced by a random guess.

91



Next, I test if configuring only the victim task to achieve its job indistinguishability is

sufficient to protect it against the ScheduLeak attack. In this experiment, all tasks have

consistent inter-arrival times scheduled based on their periods (i.e., εi = ∞) except the

victim task. The results are presented as the 5th (ε-Sched(103)∗) and 6th (ε-Sched(10)∗)

bars in each group shown in Figure 4.8(a) and (b). As shown, the victim task is protected

with the job indistinguishability. The ScheduLeak attack fails to take advantage of the

scheduler side-channels and yields the inference precision at a level similar to a random

guess. The inference success rate results displayed at the top of the figures reveal the same

trend, showing that the attacks have either zero or a very small chance to succeed (i.e.,

compute a correct inference) when the ε-Scheduler is adopted.

4.7.4 QoS-Based Analysis

While the above results show that the proposed ε-Scheduler is effective in creating noise in

the schedule, I’m interested in learning the impact on the QoS of the tasks. I first examine the

case of deadline misses in the experiments. As expected, both Vanilla EDF and REORDER

obey strict real-time constraints and thus do not yield any deadline misses. In ε-Scheduler,

no deadline miss has been observed when ε = 103. However, in the case of ε = 10, I observe

intermittent deadline misses in some of the task sets with high utilization. The number of

task sets that have encountered deadline misses in such a setting is plotted in the top section

of Figure 4.9. As the result shows, only 1.37% of the tested task sets have deadline misses.

Among these cases, no consecutive deadline miss has been observed.

I next examine how close to the tasks performing to the desired execution frequencies.

In this experiment, a task’s frequency error is calculated by the difference between the

task’s mean and desired frequencies. The mean of the frequency errors grouped by task

set utilization is shown in the bar chart in Figure 4.9. The result indicates that the task

sets scheduled by ε-Scheduler with ε = 10 has frequency error significantly larger than

that with ε = 103. It is expected as ε = 10 yields wider inter-arrival time range. It is

also worth pointing out that the frequency error is due to the bounding in generating the

randomized inter-arrival times which can lead to a asymmetric distribution (as an example,

see the distribution for µ = 33.3ms in Figure 4.2). Similar result can also be observed in

the measurement for the under-performance ratio. In this experiment, I first obtain the

worst under-performance ratio for each task set (by measuring the under-performance ratio

of each task and take the worst in the task set) and then calculate the mean of the worst

under-performance ratio. This allows us to understand the worst under-performance ratio

a system may observe from its tasks. As shown in Figure 4.10, the under-performance ratio
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Figure 4.9: Results of the measurement for the mean frequency error ratio (x-axis) grouped
by the task set utilization (y-axis). It shows that a large ε value can lead to greater mean
frequency error and also cause some tasks to miss deadlines when the task set utilization is
high, as displayed by the plot at the top section that shows the number of task sets that
have experienced deadline misses in each utilization group with ε = 10.
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Figure 4.10: Results of the mean of the worst under-performance ratio (y-axis) grouped by
the task set utilization (x-axis). The experiment gives us an insight into the degradation a
system may observe from its tasks. It suggests that a task’s under-performance ratio can be
biased towards 0.5 and above. The bias is noticeable when ε is large. This often happens on
the task that has a small period leading to a asymmetric distribution that tends to generate
larger inter-arrival times.

can be biased towards 0.5 and above, leading to a degradation in the execution frequency.

This usually happens on the task that has a small target period and hence a asymmetric

distribution that tends to generate larger inter-arrival times (again, see Figure 4.2 for an

93



Table 4.4: Summary of Scheduling Overhead Measurement

Vanilla EDF REORDER ε = 103 ε = 10

Mean Context Switch Count Ratio 1 2.525 0.914 0.696
Mean pick next dl entity() Cost 1.25us 4.3us 1.44us 1.39us
Mean get next inter arrival time() Cost - - 5.79us 5.41us
Average Power Consumption (performance) 2371.78mW 2389.1mW 2377.12mW 2360.2mW
Average Power Consumption (ondemand) 2198.04mW 2303.77mW 2075.8mW 2045.3mW

example). It hints that one should expect a degradation in the service (with respect to the

task frequency) when using ε-Scheduler, particularly with a small ε value (i.e., larger noise

and variation in the schedule).

4.7.5 Scheduling Overhead

I next evaluate the scheduling overhead of the proposed ε-Scheduler, together with the

Vanilla EDF and REORDER schedulers as a comparison. The measurement results are

summarized in Table 4.4.

First, I take Vanilla EDF as the base and calculate the context switch count ratio com-

pared to REORDER and ε-Scheduler in simulation. The result suggests that REORDER

generates a twofold increase in the number of context switches. This matches the design of

the TaskShuffler’s randomization protocol that aims to obfuscate the schedule by introduc-

ing more scheduling points (i.e., more context switches). On the other hand, ε-Scheduler

produces fewer context switches as the generated inter-arrival times can be greater (i.e.,

task executing less frequently). This measurement generally matches the result shown in

Figure 4.10.

Next, I run a synthetic task set with task parameters given in Table 4.3 in RT Linux on

the RPi4 platform to measure the mean cost of the scheduling. I first measure the time

cost of the main scheduling function pick next dl entity() in which next task is being

picked at a scheduling point. The result shows that REORDER has larger overhead as

it invokes get random bytes() which takes an average 2.23us to generate a 64-bit random

number to shuffle the task selection. On the other hand, ε-Scheduler has overhead similar to

Vanilla EDF as the scheduling mechanism is identical in pick next dl entity(). To evaluate

true overhead of ε-Scheduler, I measure the function get next inter arrival time() where

randomized inter-arrival times are generated in my ε-Scheduler implementation. As shown

in the table, the time cost is around 5.79us and is independent to the ε setting. This cost is

mainly due to the invocation of the random number generation function get random bytes().

Note that this overhead is incurred in the scheduler when a job arrives, which is not equivalent
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Figure 4.11: The trajectory of the rover system steering through predefined way points (the
black cross markers) with RoverBot running under Vanilla EDF and ε-Scheduler. The result
indicates that larger diversification and higher protection under ε-Scheduler with ε = 10 can
result in larger offsets in trajectory. The worst observed deviations are 0.029m and 0.041m
in the cases of ε = 103 and ε = 10 respectively, compared to the trajectory of Vanilla EDF.
These deviations are reasonably small and the autopilot performance is deemed acceptable.

to the context switch overhead as an arrival of a job in EDF (and ε-Scheduler) does not

necessarily lead to a re-scheduling (i.e., a pick next dl entity() call).

I then measure the power consumption of the platform running the task set with each of the

schedulers. When the scaling governor is configured as scaling governor = performance

(which is a typical setting for RTS to maintain a predictable execution time and behavior),

the power consumption consistent for all schedulers. It is expected as CPU runs at the

top frequency at all times under the performance setting. As a comparison, I measure the

power consumption with scaling governor = ondemand which lowers the CPU frequency

(i.e., less power consumption) when idling for a significant amount of time. The resulting

power consumption matches what we have learned from the above experiments (e.g., lower

context switch ratio in ε-Scheduler) and suggest that ε-Scheduler does not result in higher

power consumption.

4.7.6 Evaluation on a Real Application

This part of the evaluation studies the impact of ε-Scheduler on real applications by

running the RoverBot autopilot software on the RPi4 platform with ε-Scheduler enabled on a

1/18 scale rover system. To better analyze the performance variation, I focus on diversifying

a single task, the Actuator task that receives control commands and sends PWM updates
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for driving steering and throttle at 100Hz, while keeping other tasks as non-real-time tasks.

I let the rover steer through a series of predefined way points (in this case, a wavy route)

and record the resulting trajectory under Vanilla EDF and ε-Scheduler with ε = 10 and

ε = 103. The experiment results are shown in Figure 4.11 in which the predefined way

points are displayed as black cross markers starting at the coordinate (0, 0). As the results

suggest, ε = 10 demonstrated a larger deviation in the trajectory compared to ε = 103. The

mean task frequency becomes 65.06Hz with ε = 103 and 10.22Hz with ε = 10. Taking the

trajectory of Vanilla EDF as the ground truth, the largest recorded deviations are 0.029m

and 0.041m for ε = 103 and ε = 10 respectively. This result has the same implication as what

we have learned from the previous experiments in simulation – larger task diversification (and

hence higher protection) results in increased performance degradation. On the other hand,

the trajectories show that the rover is able to reach the target way points in both ε = 103

and ε = 10 cases. In particular, the trajectory of ε = 103 matches that of Vanilla EDF

with small deviations. This shows that ε-Scheduler can be applied to real applications and

also meet users needs (e.g., better protection or better performance) using the adjustable ε

parameter.

4.8 DISCUSSION

From the presented evaluation, both ε = 103 and ε = 10 settings in ε-Scheduler produce

promising results for obscuring the periodicity and diversifying the schedule. However, as

shown by the QoS measurement, the ε = 103 setting yields a more reasonable variation in

the task frequency range. As a result, there is a trade-off between the degree of protection

and the determinism in RTS when using ε-Scheduler. While ε-Scheduler offers less analytical

protection with ε = 103 value, it may not be unusual to choose such a large ε value in most

RTS due to the limitations in the tolerable frequency changes. A possible improvement is

to dynamically adjust the ε value based on the QoS and protection demand at run-time. In

such a case, the ε value is particularly useful as a security parameter to be integrated with

a feedback control real-time scheduling algorithm (e.g., [76]).

Another issue resides in the interpretation of the chosen indistinguishability parameter

ε value. While the evaluation shows that the proposed ε-Scheduler can satisfy the user’s

needs by adjusting the indistinguishability parameter ε, it is in fact unrealistic to derive a

meaningful guarantee for an absolute ε value as the same assignment may yield very differ-

ent protections on different systems. Similar to differential privacy, it is more meaningful to

compare the relative performance between two values for a given system like what I demon-

strated in the evaluation. As my experiment results have shown, there exist many metrics
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that offer more insights into the performance degradation as well as the degree of protection

against certain attacks. Therefore, it is more reasonable to directly examine the measure-

ment from the metrics for the properties and protection guarantees that users care about

while determining a proper ε value.

With the presented evaluation results for ε-Scheduler, I believe that the schedule indistin-

guishability concept can be extended to other system properties (e.g., memory, code, data)

as well to further diversify the system behavior from many more aspects. The outcome is

the possibilities to improve the security of a broader class of systems, e.g., distributed IoT

and general-purpose operating systems.

4.9 CONCLUSION

Malicious attacks on systems with safety-critical real-time requirements could be catas-

trophic since the attackers can destabilize the system by inferring the critical task execution

patterns. In this work I explore a scheduling mechanism for obscuring the embedded period-

icity and diversifying the task schedule. With using proposed scheduler, the system designer

now has the ability to protect the system with analytical guarantee. As a result, this val-

idates my hypothesis and answers the second key research question I raised in Section 1.1

with respect to the defense techniques – diversifying the real-time schedule is effective in

defending against the scheduler side-channels in preemptive RTS.
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CHAPTER 5: ANALYTIC AND EVALUATION FRAMEWORK

As the scheduler side-channels exist in any RTS with deterministic behaviors, the impact

can be broad. Therefore, a comprehensive measurement and checking mechanism to analyze

the risks of the scheduler side-channels for a given system is in demand. In this chapter, I

introduce an analytic and evaluation framework that others can follow systematically. To

this end, I propose a 3-dimensional metric system to evaluate a given system. The three

dimensions are: (i) degree of indistinguishability, (ii) degree of protection against attacks

and (iii) quality-of-service (QoS). I elaborate the definition and examples for each dimension

next. Figure 5.1 visualizes this 3-dimensional metric system and some exemplified scenarios

are illustrated in Section 5.4.

Qu
alit
y-o
f-S
erv
ice

Pr
ot
ec
tio
n

Indistinguishability

Figure 5.1: A 3-dimensional metric system for evaluating the degree of indistinguishability,
the degree of protection and quality-of-service of the given system. The white, grey and black
points exemplify three of the many possible results that represent the best, an undesired and
a typical scenarios respectively.

5.1 DEGREE OF INDISTINGUISHABILITY

The first dimension aims to evaluate the indistinguishability offered by the system under

a certain setting. While the desired indistinguishability is achieved by designing the system

to follow the strict theoretical bound and distribution model, a checking mechanism that

measures such indistinguishability guarantee from outside of the system core is needed to

learn the true effect of the protection.

As the indistinguishability guarantee comes from the carefully designed noise distribution,

we may reconstruct the noise distribution to verify the correctness of the system behavior

with respect to the indistinguishability. As shown in Figure 4.4 demonstrated by the mea-

surement on ε-Scheduler running in RT Linux, the distribution of the generated noise can

be reconstructed to examine if the design is correct and the system is behaving as expected.
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Another way to evaluate the indistinguishability, in the case of schedule indistinguisha-

bility, is by conducting Discrete Fourier Transform-based analysis [48]. As introduced in

Section 4.6.1, the task schedule can be transformed into a sequence of 1.0 and −1.0 samples

and analyzed by using DFT analysis. The resulting frequency spectrum is a good visualiza-

tion of what is actually happening in the task schedule. Then, additional computation such

as the Z-score based peak detection algorithm [82, 83] that counts the number of outstanding

peaks in the spectrum can be adopted to extract useful information for further analysis of

the risks.

5.2 DEGREE OF PROTECTION AGAINST ATTACKS

In the second dimension, the framework measures the degree of protection against existing

attacks. It gives the system designer an insight into how vulnerable the system is under the

current setting. As an example, the inference precision, denoted by Iov, introduced in the

ScheduLeak work in Section 3.6.1 is useful to estimate the attacker’s ability to leak critical

information of a target task τv from the scheduler side-channels. It represents the precision

of the inferred phase φ̃v compared to the true phase of a target task φv. A larger Iov indicates

that the inference φ̃v is more precise in inferring φv. To measure the degree of protection

based on the inference precision, we can take its complement 1 − Iov which gives a positive

correlation with the protection.

5.3 QUALITY-OF-SERVICE (QOS)

Besides the security dimensions, QoS is a dimension that focuses on the evaluating the

performance degradation that’s incurred by any defense technique. The metrics for QoS may

vary system to system depending on the system dynamics and applications. Section 4.6.1

introduces some timing metrics (e.g., deadline miss ratio, consecutive deadline misses, mean

task frequency, under-performance ratio) that are essential to most RTS.

5.4 USAGE OF THE FRAMEWORK

The 3-dimensional metric system is useful to help system designers understand how a

given system is performing with respect to the indistinguishability, protection and quality-

of-service. Three scenarios are illustrated by the grey, white and black points shown in

Figure 5.1. The grey point represents a case that a typical RTS, without any protection
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mechanisms, may perform. In such a case, QoS is guaranteed by following the strict timing

requirements. The level of indistinguishability and protection is low as no additional effort

is made to harden the system. On the other hand, the black point demonstrates a case

where the system designer focuses solely on achieving the indistinguishability. While a good

protection against attacks may be gained, it gives a bad QoS which can result in unexpected

system behaviors and lead to severe consequences. The white point shows the best case

where all three dimensions reach good levels. It means that the system, while offering good

QoS, is mostly indistinguishable for the components under examination and is well protected.

Taking the experiment results presented in Section 4.6.2 for REORDER and ε-Scheduler

as an example, the shortcomings for each of the scheduler settings are becoming clear. To

REORDER, while it performs very well in the dimension of QoS (as it obeys the real-time

constraints by design), it has limited performance in the protection and indistinguishability

dimensions. To ε-Scheduler, both ε = 10 and ε = 103 settings perform exceptionally in

the protection and indistinguishability dimensions. Yet, ε = 10 results in a wider range

of task frequency variation (due to its larger noise range being added into the task’s inter-

arrival times) that reduces the system’s stability and hence has a bad QoS performance. On

the other hand, while degradation can be observed in ε = 103, its scale is arguably more

acceptable.

The above 3-dimensional metrics resolve the third key research question raised in Sec-

tion 1.1 with respect to the evaluation for the risk posed by scheduler side-channels and the

efficacy of defense schemes. With such a framework, a system designer can better determine

which design or configurations can meet desired performance and protection goals. In the

above cases, a designer who wants to have a better QoS and mild protection against the

scheduler side-channels can choose to adopt the REORDER scheme, while one that needs

exceptional protection can employ ε-Scheduler and adjust the ε value accordingly.
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CHAPTER 6: CONCLUSION

In this thesis, I investigate the problem of scheduler side-channels in preemptive RTS. To

comprehensively understand the risks and countermeasures, I raised three key research ques-

tions (Section 1.1) and conducted research from both attacker’s and defender’s perspectives.

Setting off as an adversary, I demonstrated the existence of scheduler side-channels in

both fixed-priority and dynamic-priority RTS in Chapter 3. In Section 3.3, I proposed

the ScheduLeak attack algorithms that leak critical timing information of a high-priority

real-time task by using a low-priority, unprivileged user-space task in fixed-priority RTS. In

Section 3.4, I extended ScheduLeak and introduced the DyPS attack algorithms that target

dynamic-priority RTS. The evaluation presented in Section 3.7 showed that the proposed

scheduler side-channel attacks can infer the timing information (i.e., the victim task’s phase)

with a high precision and the inference is particularly useful for helping later attacks achieve

their attack goals better. This part of the work answers the first key research question

regarding the presence of the scheduler side-channels in preemptive RTS.

Moving to the defender’s side, I introduced two scheduler-based defense schemes in Chap-

ter 4. In Section 4.3, I studied the schedule randomization technique by introducing the

REORDER scheduler in dynamic-priority RTS. Limitations of such a technique caused by

the strict real-time constraints are identified. In Section 4.4 I defined the notion of sched-

ule indistinguishability and introduce ε-Scheduler that relaxes the real-time constraints to

offer guaranteed protection against the scheduler side-channels by achieving task/job indis-

tinguishability. The evaluation presented in Section 4.6.2 showed a promising result and

resolves the second key research question with respect to diversifying the schedule and de-

fending against the scheduler side-channel attacks (i.e., DyPS).

Based on the outcomes from Chapter 3 and 4, I proposed a analytic and evaluation

framework that’s dedicated to assessing the risks of a given system with respect to the

scheduler side-channels in Chapter 5. With such a framework, a system designer now has a

systematic way to assess how the system performs against the scheduler side-channels and

how the system should be adjusted to meet the desired protection and performance goal –

this resolves the third key research question.

Finally, with the research and experiment results presented in this dissertation, the hy-

pothesis – there exist scheduler side-channels in preemptive RTS that can be defended against

by diversifying the real-time schedules, can be validated.
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