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Abstract—We propose HYDRA-C, a design-time evaluation
framework for integrating monitoring mechanisms in multicore
real-time systems (RTS). Our goal is to ensure that security (or
other monitoring) mechanisms execute in a “continuous” manner
– i.e., as often as possible, across cores. This is to ensure that any
such mechanisms run with few interruptions, if any. HYDRA-C
is intended to allow designers of RTS to integrate monitoring
mechanisms without perturbing existing timing properties or
execution orders. We demonstrate the framework using a proof-
of-concept implementation with intrusion detection mechanisms
as security tasks. We develop and use both, (a) a custom
intrusion detection system (IDS) as well as (b) Tripwire –
an open source data integrity checking tool. We compare the
performance of HYDRA-C with a state-of-the-art multicore RT
security integration approach and find that our method does not
impact the schedulability and, on average, can detect intrusions
19.05% faster without impacting the performance of RT tasks.

I. INTRODUCTION

Multicore processors have found increased use in the de-
sign of modern real-time systems (RTS) [1]. However, the
use of such processors increases the security problems (e.g.,
due to parallel execution of critical tasks) [2]. Successful
attacks/intrusions into RTS are often aimed at impacting the
safety guarantees of such systems, as evidenced by recent in-
trusions (e.g., attacks on control systems [3], automobiles [4],
medical devices [5], etc. to name but a few). In this paper we
evaluate design alternatives to improve the security posture
of RTS through integration of ‘security tasks’ while ensuring
that the existing real-time (RT) tasks are not affected by such
integration. The security tasks could be carrying out any one of
protection, detection or response-based operations, depending
on the system requirements. In Table I we present some
examples of security tasks that can be integrated into RTS
(this is by no stretch meant to be an exhaustive list). Integrating
such tasks into multicore platforms is more challenging since
designers have multiple choices to retrofit security tasks. For
instance, is it better to statically partition cores for security
tasks or is it better to execute them continuously across any
available core (in conjunction with the RT tasks), and if so,
how to determine their periods?

Our main goal is to explore design mechanisms that can
raise the responsiveness of such monitoring tasks by increas-
ing their frequency of execution. For instance, consider an
intrusion detection system (IDS) e.g., that checks the integrity
of file systems. If such a system is interrupted (before it can

The material in this paper is based upon work supported in part by the
National Science Foundation (NSF) grant number SaTC 1718952 and by the
Natural Sciences and Engineering Research Council (NSERC).

TABLE I
EXAMPLE OF SECURITY TASKS*

Security Task Approach/Tools
File-system checking Tripwire [6], AIDE [7], etc.
Network packet monitoring Bro [8], Snort [9], etc.
Hardware event monitoring Statistical analysis based checks [10]

using performance monitors (e.g.,
perf [11], OProfile [12], etc.)

Application specific checking Behavior-based detection [13], [14]
*Note: We do not target our framework towards any specific security mechanism – our
focus is to integrate any designer-provided security technique into a multicore-based RTS.
We used Tripwire and our in-house custom-developed malicious kernel module checker
to demonstrate the feasibility of our approach (§IV) – the solutions proposed in this
paper is more broadly applicable to other security mechanisms.

complete entire checking), then an adversary could use that op-
portunity to intrude into the system and, perhaps, stay resident
in the part of the filesystem that has already been checked. If,
on the other hand, the IDS task is able to execute with as few
interruptions as possible (e.g., by moving immediately to an
empty core when it is interrupted), then there is much higher
chance of successful detection and correspondingly, a much
lower chance of successful adversarial action.

In this paper we present a design-time framework (named
HYDRA-C) for partitioned1 RTS that enables continuous exe-
cution of security tasks (i.e., execute as frequently as possible)
across cores, without impacting schedulability of existing RT
tasks. HYDRA-C extends our existing work [16] (that uses
a partitioned scheduling approach and does not allow runtime
migration) to ensure better security (e.g., faster detection time)
and schedulability. We also present an implementation on a
realistic ARM-based multicore rover platform (§IV-A) and
carry out a design space exploration to study the trade-offs
for schedulability and security (§IV-B). Our evaluation shows
that proposed approach can achieve better execution frequency
(consequently quicker intrusion detection) when compared
with both fully-partitioned and global scheduling approaches
while providing same or better schedulability.

II. MODEL AND ASSUMPTIONS

A. Real-time Tasks and Scheduling Model
Consider a set of NR RT tasks ΓR = {τ1, τ2, · · · , τNR},

scheduled on a multicore platform with M identical cores
M = {π1, π2, · · · , πM}. Each RT task τr is represented by
the tuple (Cr, Tr, Dr) where Cr is the worst-case execution
time (WCET), Tr is the minimum inter-arrival time (e.g.,
period) and Dr is the relative deadline. We assume constrained
deadlines for RT tasks (e.g., Dr ≤ Tr) and the task priorities

1Since this is the commonly used multicore scheduling approach for many
commercial and open-source OSs – mainly due to its simplicity and efficiency
[15], [16].



are assigned according to rate-monotonic (RM) [17] order.
All events in the system happen with the precision of integer
clock ticks. RT tasks are scheduled using partitioned fixed-
priority preemptive scheme [1], [15]. We further assume that
the RT tasks are schedulable, viz., the worst-case response time
(WCRT), denoted as Rr, is less than deadline.

B. Security Model
Our focus is on integrating security mechanisms (abstracted

as security tasks) into an existing (legacy) multicore RTS
without impacting its RT functionalities. While we use specific
mechanisms (e.g., Tripwire) to demonstrate our approach, it is
somewhat agnostic to the security mechanisms. The security
model used and the design of security tasks are orthogonal
problems. Since we aim to maximize the frequency of execu-
tion of such tasks, mechanisms whose performance improves
with the frequency of execution (e.g., intrusion monitoring and
detection tasks) benefit the most from our approach.

C. Security Task Integration
We propose to improve the security posture by integrating

additional NS periodic security tasks ΓS = {τ1, τ2, · · · , τNS}
(e.g., tasks that are specifically designed for monitoring pur-
poses) – a common approach for RT security integration
frameworks [16], [18], [19]. HYDRA-C also leverages op-
portunistic execution [16], [18], i.e., security tasks will only
execute during the slack time (e.g., when a core is idle) and the
timing requirements of existing RT tasks will not be perturbed.
However, in contrast to existing work (called HYDRA) [16]
where the security tasks are statically bound to their respective
cores, in this paper we allow security tasks to continuously
migrate at runtime whenever any core is available (e.g., when
other RT or higher-priority security tasks are not running). As
we shall see in §IV, allowing security tasks to execute on any
available core will give us the opportunity to execute them
more frequently and that leads to better responsiveness (faster
intrusion detection time).

We adopt the periodic security task model [18] and represent
each security task as (Cs, Ts, T

max
s ) where Ts is the unknown

period and Tmaxs is a designer provided upper bound of the
period – if the period of the security task is larger than Tmaxs

then the responsiveness is too low and security checking may
not be effective. We assume that the priorities of of the security
tasks are distinct and specified by the designers (e.g., derived
from specific security requirements). These tasks have implicit
deadlines, i.e., they need to finish execution before the next
invocation. We also assume that task migration and context
switch overhead is negligible compared to the WCETs.

III. PERIOD SELECTION

One fundamental question is to figure out how often to exe-
cute security tasks so that the system remains schedulable and
also can execute within a designer provided frequency bound
(so that the security checking remains effective).2 Mathemati-
cally period selection can be expressed as: minimize

Ts,∀τs∈ΓS

∑
τs∈ΓS

Ts,

2This is different when compared to scheduling traditional RT tasks since
the RT task parameters (e.g., periods) are often derived from physical system
properties and cannot be adjusted due to control/application requirements.

subject to Rs ≤ Ts ≤ Tmaxs ,∀τs ∈ ΓS . This is a non-trivial
optimization problem since the period of τs can be anything
in [Rs, Tmaxs ] and the response time Rs is a variable as it
depends on the period of other higher priority security tasks.
We first derive the WCRT of the security tasks (§III-A1) and
use it as a (lower) bound to find the periods (§III-B).

A. Response Time Analysis

In the following we determine the response time of a job τks
of security task τs using an iterative method and the response
time in each iteration is denoted by x.

1) Interference Caused by RT Tasks: The interference
Iτs←τi caused by a task τi on τks is the number of time units in
the busy period3 when τi executes while τks does not. We first
calculate the workload4 of the RT tasks using the following
lemma and use this to derive the interference.

Lemma 1. The maximum workload of RT tasks executed on
a given core πm (in any possible time interval of length x) is
obtained when all RT tasks are released synchronously at the
beginning of the interval.

Since RT tasks are statically partitioned to cores and they
have higher priority than any task that is allowed to migrate
between cores, their worst-case workload can be obtained
based on the critical instant [17] used for single-core fixed-
priority scheduling case (formal proof in Appendix).
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Fig. 1. Workload of the RT
tasks for a window of size x.
ai denotes the arrival time.

Let ΓπmR ⊆ ΓR denote the set
of RT tasks partitioned to core πm.
Based on Lemma 1, an upper bound
to the workload of RT tasks on πm
can be obtained by assuming that
each RT task τr is released at the
beginning of the interval and each

job of τr executes as early as possible after being released
(see Fig. 1). We thus obtain the workload for RT task τr:
WR
r (x) =

⌊
x
Tr

⌋
Cr + min(x mod Tr, Cr) and summing over

all RT tasks on πm yields a total workload
∑

τi∈ΓπmR

WR
i (x).

Note that by definition, the interference caused by a group of
tasks executing on the same core πm on τs cannot be greater
than x−Cs + 1. Therefore, the maximum interference caused
by RT tasks can be bounded as: Iτs←ΓπmR

(
x,
∑

τi∈ΓπmR

WR
i (x)

)
=

min
( ∑
τi∈ΓπmR

WR
i (x), x− Cs + 1

)
.

2) Interference Caused by Other Security Tasks: We next
consider the workload of security tasks with higher priority
than τs. The workload computation for this case depends on
the arrival time of the task relative to the beginning of the
busy period. Let us define a task τi as a carry-in task (CI)
if there exists one job of τi that has been released before the
beginning of a given time window of length x and executes
within the window. If no such job exists, τi is referred to as
a non-carry-in task (NC).

3This is the maximal continuous time interval [t1, t2) until τks finishes
where all the cores are executing either higher priority tasks or τks itself.

4The workload Wi(w) of a task τi in a window of length w represents
the accumulated execution time of τi within this time interval [20].
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Fig. 2. Busy period extension.

To calculate the number
of carry-in tasks, we extend
the busy period of τks from
its arrival time (denoted by
as) to an earlier time instance t0 (see Fig. 2) such that during
any time instance t ∈ [t0, as) all cores are busy executing tasks
with higher priority than τs [20]. Note that by definition, this
implies that there was at least one free core (i.e., not executing
higher priority tasks) at time t0 − 1.

Lemma 2. At most M − 1 higher priority tasks can have
carry-in at time t0.
Proof. The maximum number of higher priority tasks that can
have carry-in at t0 is M−1 since by definition there have to be
strictly less than M higher priority tasks active at time t0− 1
(otherwise they will occupy all the cores).
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Fig. 3. Illustration of carry-in
task for a window of size x.

Since Lemma 2 holds for all
tasks with higher priority than
τs, an immediate corollary is that
the number of security tasks with
carry-in at t0 also cannot be larger
than M − 1. If a security task τi does not have carry-in,
its workload is maximized when the task is released at the
beginning of the busy interval. Hence, we can calculate the
workload bound WSNC

i (x) for the interval x as follows:
WSNC
i (x) =

⌊
x
Ti

⌋
Ci + min(x mod Ti, Ci). Likewise, the

workload bound for a carry-in security task τi in an in-
terval of length x starting at t0 is given by (see Fig. 3):
WSCI
i (x) = WSNC

i (max(x− x̄i, 0))+min(x,Ci−1), where
x̄i = Ci − 1 + Ti − Ri. We can bound the workload of
the first carry-in job to Ci − 1 because the job must have
started executing at the latest at t0 − 1 (given that not all
cores are busy). Finally, using the same argument as in
§III-A1, the interference of τi can be bounded as follows:
Iτs←τi(x,Wi(x)) = min (Wi(x), x− Cs + 1) , where Wi(x)
is either WSNC

i (x) or WSCI
i (x). Notice that the WCRT and

periods of security task in the carry-in workload function
is actually an unknown parameter. However, we follow an
iterative scheme (§III-B) that allows us to calculate the period
and WCRT of all higher priority security tasks before we
calculate the interference for task τs.

3) Response Time Calculation: Let hpS(τs) denote the set
of security tasks with a higher priority than τs. Note that we
do not know which (at most) M −1 security tasks in hpS(τs)
have carry-in. In order to derive the WCRT of τs, let us define
Zτs ⊂ Γ × Γ as the set of all partitions of hpS(τs) into two
subsets ΓNCs and ΓCIs (i.e., the non overlapping set of carry-
in and non-carry-in tasks) such that: ΓNCs ∩ ΓCIs = ∅,ΓNCs ∪
ΓCIs = hpS(τs), and |ΓCIs | ≤M − 1.

For a given carry-in and non-carry-in set
(i.e., ΓNCs and ΓCIs ), we can calculate the
total interference experienced by τs as follows:
Ωs(x,Γ

NC
s ,ΓCIs ) =

∑
πm∈M

Iτs←ΓπmR

(
x,

∑
τi∈ΓπmR

WR
i (x)

)
+∑

τi∈ΓNCs

Iτs←τi

(
x,WSNC

i (x)
)

+
∑

τi∈ΓCIs

Iτs←τi

(
x,WSCI

i (x)
)
.

The response time Rs|(ΓNCs ,ΓCIs ) then will be the

Algorithm 1 Period Selection
Input: Set of real-time and security tasks Γ = ΓR ∪ ΓS
Output: Periods of the security tasks, T (if the security tasks are schedulable);

Unschedulable otherwise

1: Set Ts := Tmaxs and calculate Rs for ∀τs ∈ ΓS
2: if ∃τs such that Rs > Tmaxs then
3: return Unschedulable
4: end if
5: for each security task τs ∈ ΓS (from higher to lower priority) do
6: /* Find period for which all lower priority tasks are schedulable */
7: Find minimum T∗s ∈ [Rs, Tmaxs ] using logarithmic search such that all low

priority task τj remains schedulable (i.e., Rj ≤ Tmaxj , ∀τj )
8: end for
9: return T := [T∗s ]∀τs∈ΓS /* return the periods */

minimal solution of the following iteration5 [20]:
x =

⌊
Ωs(x,Γ

NC
s ,ΓCIs )
M

⌋
+ Cs. We can solve this using

an iterative fixed-point search with the initial condition
x(0) = Cs. The search terminates if there exists a solution (i.e.,
x = x(l) = x(l−1) for some iteration l) or when x(l) > Tmaxs

for any iteration l since τs becomes trivially unschedulable
for WCRT greater than Tmaxs . Finally we can calculate the
WCRT of τs as follows: Rs = max

(ΓNCs ,ΓCIs )∈Zτs
Rs|(ΓNCs ,ΓCIs ).

B. Algorithm
The security task τs remains schedulable with any period

Ts ∈ [Rs, Tmaxs ]. However as mentioned earlier, the calcula-
tion of Rs requires us to know the period and response time of
other high priority tasks τh ∈ hpS(τs). Also if we arbitrarily
set Ts = Rs (since this allows us to execute security tasks
more frequently) it may negatively affect the schedulability of
other tasks that are at a lower priority than τs because of a
high degree of interference from τs. Hence, we developed an
iterative algorithm that trades-off between schedulability and
monitoring frequency.

Our proposed solution (Algorithm 1) works as follows. We
first fix the period of each security task Tmaxs and calculate the
response time Rs (Line 1). If there exists a task τj such that
Rj > Tmaxj we report the taskset as unschedulable (Line 3)
since it is not possible to find a period for the security tasks
within the designer provided bounds – this unschedulability
result will help the designer in modifying the requirements
(and perhaps RT tasks’ parameters, if possible) accordingly to
integrate monitoring tasks for the target system. If the taskset
is schedulable with Tmaxs , we then optimize the periods from
higher to lower priority order (Lines 5-8) and return the period
(Line 9). To be specific, for each task τs ∈ ΓS we perform a
logarithmic search and find the minimum period T ∗s within the
range [Rs, T

max
s ] such that all low priority tasks (denoted as

lp(τs)) remain schedulable, e.g., ∀τj ∈ lp(τs) : Rj ≤ Tmaxj

(Line 7) and repeat the search for next security task.

IV. EVALUATION

We evaluate HYDRA-C on two fronts6: (i) a proof-of-
concept implementation on an ARM-based rover platform with
security applications – to demonstrate the viability of our
scheme in a realistic setup (§IV-A); and (ii) with synthetically
generated workloads for broader design-space exploration
(§IV-B).

5Note that the worst-case is when the job arrives at t0 (i.e., as = t0).
6Our implementation is available in a public, open-sourced repository [21].



TABLE II
SUMMARY OF THE EVALUATION PLATFORM

Artifact Configuration/Tools
Platform 1.2 GHz 64-bit Broadcom BCM2837 (Raspberry Pi 3)
CPU ARM Cortex-A53
Memory 1 Gigabyte
Operating System Debian Linux (Raspbian Stretch Lite)
Kernel version Linux Kernel 4.9
Real-time patch PREEMPT RT 4.9.80-rt62-v7+
Kernel flags CONFIG PREEMPT RT FULL enabled
Boot parameters maxcpus=2, force turbo=1, arm freq=700,

arm freq min=700
WCET measurement ARM cycle counter registers
Task partition Linux taskset

A. Experiment with an Embedded Platform

We implemented our ideas on a rover platform (Fig. 4).
The rover peripherals (e.g., wheel, motor, servo, sensor)
are controlled by a Raspberry Pi [22] single board com-
puter. We used Linux kernel 4.9 and enabled RT capa-
bilities by applying the PREEMPT RT patch [23] (ver-
sion 4.9.80-rt62-v7+). Our experiments were performed on
a dual-core setup – this was done by setting the flag
maxcpus=2 in the boot command file /boot/cmdline.txt.

Fig. 4. Rover used in
our experiments.

In our experiments the rover moved
around autonomously and periodically
captured and stored images. We as-
sumed implicit deadlines for RT tasks
and considered two RT tasks: (a) a
navigation task – that avoids obstacles
using an infrared sensor and navigates
(e.g., both driving and path-planning)
the rover and (b) a camera task that cap-
tures and stores still images. Parameters
for the navigation and camera tasks were
(Cr, Tr): (240, 500) ms and (1120, 5000) ms, respectively
(i.e., total RT task utilization was 0.7040).

We introduced two security tasks: (a) an open-source se-
curity application, Tripwire [6], that checks intrusions in the
image data-store and (b) our custom security task that checks
current kernel modules (for detecting rootkits) and compares
with an expected profile of modules. We modified Tripwire
configurations (/etc/tripwire/twpol.txt) and retrofitted it
into periodic execution model. The WCET of the security tasks
were 5342 ms and 223 ms, respectively and the maximum
periods7 of security tasks were assumed to be 10000 ms (e.g.,
total system utilization is at least 0.7040 + 0.5565 = 1.2605).
The system configurations and tools used in our experiments
are summarized in Table II.

We compared the performance of HYDRA-C with our prior
work (HYDRA) [16] where we proposed to statically partition
the security tasks among the multiple cores – to the best of
our knowledge that paper is the state-of-the-art mechanism for
integrating security in legacy multicore-based RT platforms.
The key idea in our prior work was to allocate security tasks
using a greedy best-fit strategy: for each task, allocate it to a
core that gives shorter period without violating schedulability
constraints of already allocated tasks.

7We picked this maximum period value by trial and error so that the taskset
became schedulable for demonstration purposes.
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Fig. 5. Experiments with rover platform: (a) time (cycle counts) to detect
intrusions; (b) average number of context switches. On average our scheme
can detect the intrusions faster without impacting the performance of RT tasks.

Experience and Evaluation: We observed the performance
of HYDRA-C by analyzing how quickly an intrusion can be
detected. We considered the following two realistic attacks8:
(i) an ARM shellcode [24] that allows the attacker to modify
the contents of the image data-store – this attack can be
detected by Tripwire; (ii) a rootkit [25] that intercepts all the
read() system calls – our custom security task can detect the
presence of the malicious kernel module. In Fig. 5a we show
the average time to detect both the intrusions (in terms of cycle
counts, collected from 35 trials) for HYDRA-C and HYDRA
schemes. From our experiments we found that, on average, our
scheme can detect intrusions 19.05% faster compared to the
HYDRA approach (Fig. 5a). Since our scheme allows security
tasks to migrate across cores, it has shorter periods and that
leads to faster detection times.

We next measured the overhead of our security integration
approach in terms of number of context switches (CS). For
each of the trials we observed the schedule for 45 seconds and
counted the number of CS using the Linux perf tool [11]. In
Fig. 5b we show the number of CS (y-axis) for HYDRA-C
and HYDRA schemes (for 35 trials). As shown in the figure,
our approach increases the number of CS (since we permit
migration across cores) From our experiments we found that,
on average, our scheme increases CS by 1.75 times. However,
this increased CS overhead does not impact the deadlines
of RT tasks (since the security tasks always execute with a
priority lower than the RT tasks) and thus may be acceptable
for many RT applications.

B. Experiment with Synthetic Tasksets

We also conducted experiments with randomly generated
workloads for broader design-space exploration. We consid-
ered M ∈ {2, 4} cores and each taskset instance contained
[3 × M, 10 × M ] RT and [2 × M, 5 × M ] security tasks.
We only considered schedulable RT tasksets. Each RT task
had periods between [10, 1000] ms and the maximum periods
for security tasks were selected from [1500, 3000] ms. We
assumed that RT tasks were partitioned using a best-fit [15]
strategy. The utilization of individual tasks were generated
using Randfixedsum algorithm [26] and total utilization of the
security tasks was at least 30% of the system utilization.

8Note: our focus here is on the integration of any given security mechanisms
rather the detection of any particular class of intrusions. Hence we assumed
that there were no zero-day attacks and the security tasks were able the detect
the corresponding attacks correctly.
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Fig. 6. Impact on schedulability and security. (a) The acceptance ratio vs taskset utilizations for 2 and 4 core platforms: our scheme outperforms HYDRA and
GLOBAL-TMax approaches for higher utilizations. (b) Difference in period vectors for our approach and reference schemes (e.g., HYDRA, GLOBAL-TMax,
HYDRA-TMax): the non-negative distance (y-axis in the figure) implies that HYDRA-C finds shorter periods than other schemes.

Impact on Schedulability and Security Trade-off: While in
this work we consider a legacy system (where RT tasks are
partitioned to cores), for comparison purposes we considered
the following two schemes (in addition to HYDRA) that do
not consider any period adaptation for security tasks.
• GLOBAL-TMax: In this scheme all the RT and security

tasks are scheduled using a global fixed-priority multicore
scheduling scheme9 [1]. Since our focus here is on schedu-
lability we set Ts = Tmaxs , ∀τs ∈ ΓS . This scheme allows
us to observe the performance impacts of binding RT tasks to
the cores (due to legacy compatibility).
• HYDRA-TMax: This is similar to the HYDRA approach

introduced in §IV-A but instead of minimizing periods here
we set Ts = Tmaxs ,∀τs. This allows us to observe the trade-
offs between schedulability and security in a fully-partitioned
system.

In Fig. 6a we compare the performance of HYDRA-C with
the HYDRA, GLOBAL-TMax and HYDRA-TMax strategies
in terms of acceptance ratio (y-axis) defined as the number of
schedulable tasksets over the generated ones. As we can see
from the figure, HYDRA-C outperforms HYDRA when the
normalized utilization

∑
Ci/Ti
M (x-axis) increases. Our scheme

allows security tasks to execute in parallel across cores and
also allocate periods considering the schedulability constrains
of all low priority tasks – this results in a smaller response
times and can find more tasksets that satisfy the designer
specified bound. In contrast, HYDRA uses a greedy approach
that minimizes the periods of higher priority tasks first without
considering the global state. Also HYDRA statically binds the
security task to the core and hence suffers interference from
the higher priority tasks assigned to that core – this leads
to lower acceptance ratios. For higher utilizations HYDRA-C
can find schedulable tasksets that can not be easily partitioned
by using the HYDRA-TMax scheme. The acceptance ratio of
our method and the HYDRA-TMax scheme is equal when
utilization less than 0.7 since some lower priority security
tasks experience less interference due to longer periods and

9We note that there exists recent work [27] that aims to reduce pessimism
of multicore schedulability analysis by dividing task WCET into two virtual
partitions and then calculating response times by enumerating all possible
partitions. Given the workload of RT and security tasks, our interference cal-
culations (§III-A) can be adopted to such a two-partitions method. However,
from our experiments we found that this extra complexity (e.g., enumerating
all WCET partitions) does not improve the schedulability any further.

specific core assignment. While we bind the RT tasks to
cores (due to legacy compatibility), it does not affect the
schedulability since RT tasks are already schedulable when
partitioned and our analysis reduces the interference that RT
tasks have on security ones. We also highlight that while our
approach results in better schedulability, HYDRA-C/HYDRA-
TMax and GLOBAL-TMax schemes are incomparable in
general (e.g., there exists tasksets that may be schedulable by
task partitioning but not in global scheme and vice-versa) – we
allow security tasks to migrate due to security requirements
(e.g., to achieve faster intrusion detection – as we explain in
the next experiments, see Fig. 6b).

In the final set of experiments (Fig. 6b) we compare the
achievable periods (in terms of Euclidean distance) for our
approach and the other schemes. The x-axis in the Fig. 6b
shows the normalized utilizations and the y-axis represents
the average difference between the following period vectors
T∗ = [T ∗s ]∀τs∈ΓS : (a) HYDRA-C and HYDRA (dashed
line); (b) HYDRA-C and other strategies (e.g., GLOBAL-
TMax and HYDRA-TMax) that do not consider period min-
imization (dotted marker). Higher distance values imply that
the periods calculated by HYDRA-C are smaller (i.e., leads
to faster detection time) and our approach outperforms the
other scheme. For low to medium utilizations HYDRA-C
performs better when compared to HYDRA. In situations
with higher utilizations, the lesser availability of slack time
results in HYDRA-C and HYDRA performing in a similar
manner. Our experiments show that HYDRA-C achieves better
continuous monitoring when compared with both a fully-
partitioned approach (HYDRA, HYDRA-TMax) and a global
scheduling approach (GLOBAL-TMax) while providing the
same or better schedulability.

V. RELATED WORK

The closest line of research is HYDRA [16] where we
proposed to statically partition security tasks to the cores.
As we observed (see §IV), our prior work results in a poor
acceptance ratio for larger utilizations and suffers interference
from other high priority tasks leading to slower detection of
intrusions (i.e., less effective). While it was not done in the
context of RT security, the scheduling approach presented
in this paper can be considered as a special case of prior
work [28] where each task can bind to any arbitrary number of



available cores. For a given period, that approach is pessimistic
for our model in the sense that it over-approximates carry-
in interference from the RT tasks and hence results in lower
schedulability (i.e., identical to the GLOBAL-TMax scheme in
Fig. 6a). Researchers also studied schedulability for dynamic
priority and FIFO systems [29] while our focus here is on
fixed-priory RTS. There exists other work [30], [31] that
considers the problem of period selection, however, they are
designed for single core systems only.

Researchers proposed various mechanisms to provide secu-
rity guarantees into RTS in several directions, viz., integration
of security mechanisms [18], [19], authenticating/encrypting
communication channels [32], [33], side-channel defence tech-
niques [34], [35] and hardware/software-based frameworks
[14], [36]. Majority of those solutions are designed for single
core platforms and often require system-level modifications
and thus are not suitable for legacy systems. To our knowl-
edge this is the first work that aims to achieve continuous
monitoring for multicore-based legacy RT platforms.

VI. CONCLUSION

Threats to safety-critical RTS are growing and there is a
need for developing layered defense mechanisms to secure
such critical systems. In this paper we study mechanisms to
integrate security monitoring for legacy multicore-based RTS.
By using our framework, systems engineers can improve the
security posture of RTS. This additional security guarantee
also enhances safety – which is the main goal for such
systems.
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APPENDIX

Proof of Lemma 1: Since RT tasks are partitioned and they
have higher priorities than security tasks, the schedule of RT
tasks executed on πm does not depend on any other task in
the system. Now consider any interval [t, t + x) of length x.
We show that we can obtain an interval [t′, t′ + x) where all
tasks are released at t′, such that the workload of RT tasks on
πm is higher in [t′, t′ + x) compared to [t, t+ x).

First step: let t′ be the earliest time such that πm continu-
ously executes RT tasks in [t′, t); if such time does not exist,
then let t′ = t. By definition, πm does not execute RT tasks at
time t′−1. Also since RT tasks continuously execute in [t′, t),
the workload of RT tasks in [t′, t′+x) cannot be smaller than
the workload in [t, t+ x).

Second step: since πm is idle at t′ − 1, no job of RT tasks
on πm released before t′ can contribute to the workload in
[t′, t). Hence, the workload can be maximized by anticipating
the release of each RT task τr so that it corresponds with t′.
This concludes the proof.


