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Abstract—This paper focuses on the secure integration of dis-
tributed energy resources (DERs), especially pluggable electric
vehicles (EVs), with the power grid. We consider the vehicle-to-grid
(V2G) system where EVs are connected to the power grid through
an ’aggregator’ In this paper, we propose a novel Cyber-Physical
Anomaly Detection Engine that monitors system behavior and
detects anomalies almost instantaneously (worst case inspection
time for a packet is 0.165 seconds'). This detection engine ensures
that the critical power grid component (viz.,aggregator) remains
secure by monitoring (a) cyber messages for various state changes
and data constraints along with (b) power data on the V2G
cyber network using power measurements from sensors on the
physical/power distribution network. Since the V2G system is time-
sensitive, the anomaly detection engine also monitors the timing
requirements of the protocol messages to enhance the safety of the
aggregator. To the best of our knowledge, this is the first piece
of work that combines (a) the EV charging/discharging protocols,
the (b) cyber network and (c¢) power measurements from physical
network to detect intrusions in the EV to power grid system.

Index Terms—Cyber-Physical, Security, Intrusion Detection,
Vehicle-to-Grid, Electric Vehicles, Anomaly Detection

I. INTRODUCTION

Fig.1 shows the conceptual architecture of the V2G system.
The main components in this system include EVs, aggregators
and the power grid. The EV to power grid operations considered
in this paper are (a) charging where EV acts as a load and
draws power from the grid, (b) discharging where EV acts as
a power generator and supplies power to the grid. Aggregators
are entities that act as mediators between end users (viz.,EVs)
and the utility operator [7]. Aggregators are particularly useful
in coordinating discharging operations between the EVs and
the power grid. This is because individual EVs have very
small power capacities in comparison with the scales of power
generation and distribution at the power grid. Therefore, for
efficient discharging operations, a large number of EVs are
required. With aggregators acting as intermediaries between the
utility power grid operator and the EVs [7], all communication
messages between the EVs and the power grid pass through
aggregators. In the model presented in Figure 1, the aggregator
can be a prime target for attackers since (i) it manages multiple
EVs and (ii) is also directly connected to the power grid
utility system. A successful intrusion at the aggregator level
can have serious consequences for the power grid. In fact, it is
well documented that the power grid is vulnerable to a wide

'Minimum latency on V2G network is 2 seconds
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Fig. 1: Conceptual Architecture of a Vehicle-to-Grid (V2G)
system. [15]

range of attacks [13]. Therefore, ensuring the security of this
critical component (viz.,aggregator) is essential to ensure secure
integration of DERs such as EVs with the power grid. To this
end, we propose a Cyber-Physical Anomaly Detection Engine
with mechanisms to detect anomalous behavior in aggregators
of the V2G system. For our anomaly detection engine, we rely
on both the cyber and physical properties of the system. On the
cyber side, we focus on the communication protocol in the V2G
system to ensure correct operation of the aggregator, while we
validate its behavior using the physical side of the system in the
form of power measurements.

The main contributions of this work are:

1) An enumeration of the correct sequences of commands
in the V2G communication protocol. This is used to
generate an aggregator state machine for our detection
engine (§IV-A)

2) Development of a Cyber-Physical Anomaly Detection En-
gine that can detect malicious activity at the aggregator
level as soon as they occur. The anomaly detection engine
monitors communication on the V2G cyber network using
power measurements from sensors on the physical/power
distribution network (§IV-D). It also makes use of tim-
ing constraints related to frequency of periodic messages
(§IV-B) and subscription period (§IV-C) to differentiate
between correct/incorrect system behavior.

3) Implementation and evaluation of a prototype of the Cyber-
Physical Anomaly Detection Engine (§V)

978-1-5386-8099-5/19/$31.00 ©2019 IEEE



2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)

While there are some intrusion detection systems designed for
components of the power grid system (as discussed in detail
in §VII), to the best of our knowledge there are none that
combine cyber and physical properties of the system along
with communication standards for EVs. Hence, there is no
direct comparison possible while evaluating our cyber-physical
anomaly detection engine. Our evaluation consists of measuring
the accuracy and performance of our anomaly detection engine
as described in §V. The simple model of our anomaly detection
engine enables it to detect anomalies accurately and almost
instantaneously.

II. SYSTEM MODEL

Fig.2 highlights the system under consideration along with
the various components and relevant connections in the cyber
and physical networks. Multiple buildings (e.g., households) are
connected to the aggregator with multiple EVs connected to
each building. The Cyber-Physical Anomaly Detection Engine
residing at the aggregator receives inputs from both the cyber
as well as physical networks. We assume a second cyber
network connecting the sensors in the physical network / power
distribution network to the Cyber-Physical Anomaly Detection
Engine in order to receive power measurements. For the purpose
of evaluating the performance of our system, we assume that
this second cyber network has similar properties (in terms of
bandwidth etc) as the cyber network in the V2G system.

TABLE I: Threat Model

l— Cyber Network l ‘— Physical (power distribution) Network ‘
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Fig. 2: System Model: EVs intermittently charging at homes

As part of the cyber network, the EVs are the only type of
load being considered, i.e, only the packets exchanged between
the EVs and aggregator are taken as input for anomaly detection.
As part of the physical network, the aggregated profile of all
household loads at the entry point is taken as input for anomaly
detection. Individual household loads such as air conditioning,
appliances, electrical outlets, heating and lighting loads etc.
make up the majority of the non-EV loads in the aggregated
profile. In this model, we assume that the physical network
and cyber network are not compromised simultaneously, i.e.,
we assume that the inputs obtained from atleast one of these
networks are genuine.

III. THREAT MODEL

V2G system is susceptible to a wide range of attacks includ-
ing compromise of the individual components as well as the
communication channel interconnecting them.

Tab. I shows the attacks that our Cyber-Physical Anomaly
Detection engine focuses on. There have been instances of

No.| Attack Effect

1 Compromise of EVs, the cyber net- | DOS attack at the ag-
work or the power distribution net- | gregator preventing more
work to report more power than | EVs from connecting to
actually consumed. aggregator and causing

unexpected variations in
power frequency at the ag-
gregator.

2 Compromise of EVs, the cyber net- | Could cause transformer
work or the power distribution net- | overheating due to more
work to report less power than ac- | EVs connecting to aggre-
tually consumed. gator and also cause unex-

pected variations in power
frequency at the aggrega-
tor.

3 Compromise of EVs or the cyber | Prevents EVs from com-
network causing packets to be gen- | pleting their charging/dis-
erated out of expected sequence. | charging operations and
E.g., Man-in-the-middle attack on | causes unexpected varia-
the cyber network where fake pack- | tions in power frequency
ets are sent from EV to aggregator | at the aggregator.
requesting for operation cancella-
tion partway through the operation.

4 Compromise of EVs or the cyber | Aggregator instability due
network causing EVs to charge/dis- | to excess power demand.
charge beyond their subscription
periods. E.g., Man-in-the-middle
attack on the cyber network where
a packet from aggregator to EV
containing the approved subscrip-
tion period is modified. In re-
sponse, EV starts charging when it
is not supposed to.

.., nputs to Anomaly 5 Compromise of EVs or the cy- | Inaccurate estimation of
Detection Engine ber network causing periodic mes- | power profile at the aggre-
sage packets to be generated more | gator.
Individual or less frequently than expected.
Building/Load n E.g., EV sends very few power sta-
Air Conditioning tus update packets (less frequently
than expected).

attacks involving modification of current to cause a fire [19].
Multiple studies [9], [10] have shown that EVs can offer signif-
icant services to improve grid stability. It therefore follows that
compromising a large number of EVs and in turn a large number
of aggregators using the above attacks (Tab. I) could cause
grid instabilities. With reference to the power grid, security
issues manifest as safety/reliability concerns where attackers try
to bring down system reliability. Hence ensuring the reliable
functioning of the component that connects EVs to the power
grid viz.,aggregator is of paramount importance for the safe
operation of the power grid.

IV. CYBER-PHYSICAL ANOMALY DETECTION ENGINE

The anomaly detection engine includes (a) message sequence
validation (b) message frequency validation (c¢) subscription
period validation and (d) power measurement validation to
detect anomalies in system behavior as shown in Fig.3. An
anomaly is detected whenever the system deviates from the
expected system behavior. Expected system behavior is defined
based on the communication standards in the V2G system, as
discussed in detail below.
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Fig. 3: Components of Cyber-Physical Anomaly Detection En-
gine

A. Message Sequence Validation

The sequences of messages in incoming packets are validated.
To do this, an aggregator state machine is created with valid
states and state transitions. This state machine is based on valid
message sequences established by communication standards
between the aggregator and the EVs. The requirements and
specifications for communication between EVs and the electric
power grid are established by the SAE J2847/1 standard for
forward power flow that includes charging [8] and SAE J2847/3
standard for reverse power flow that includes discharging [8].

Since the SAE standards are proprietary, complete details are
not provided in this paper. However, sufficient details on the
types and sequences of messages are provided in Fig. 4 for a
better understanding of our work.
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Fig. 4: Sub-states of the aggregator state machine.

S - subscribed

NS - not subscribed
C - charging

D - discharging

Fig. 4 shows the various messages in each of the two EV-
grid operations, charging and discharging. It also shows the
principal sub-states in the aggregator state machine that are
generated from the list of valid command sequences enumerated
for the EV-grid operations. Each state represents a sequence of
messages. The state diagram captures the following states and
state transitions. (a) EVs are subscribed i.e., connected to the
power grid and drawing or supplying power (denoted by ’S’).
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Flow reservation is the process in which the EV is assigned
a subscription period (i.e., period when connected to the grid)
for charging/discharging. First, a flow reservation is established.
This may be followed by one or more new flow reservations
after cancellation of a previously established flow reservation.
Once the subscription period begins, the EV starts sending
periodic power status updates (i.e., information related to the
amount of power drawn) to the grid through the aggregator. In
parallel, it also periodically fetches the flow reservation list from
the grid, through the aggregator, to check for any updates in the
subscription period. (b) EVs are not subscribed i.e., connected to
the power grid but not drawing or supplying power (denoted by
’NS’). During this phase, EVs only periodically fetch updates
on pricing and load control related information from the grid to
make a decision on when to charge / discharge. This component
of the anomaly detection engine handles attack 3 in Tab. L.

B. Message Frequency Validation

Power grid systems such as V2G system must satisfy certain
time related constraints. Our anomaly detection engine monitors
incoming packets to ensure that timing constraints are enforced.
Periodic messages have a predefined frequency. The frequency
of such periodic messages coming into the aggregator are
monitored. At the aggregator, the frequency of a given periodic
message is monitored by checking the time elapsed between
two occurrences of the message. Therefore, it is not required
that the clocks at the aggregator and the EVs be synchronized.
This component of the anomaly detection engine handles attack
5 in Tab. L.

C. Subscription Period Validation

Message data in the packets coming into the aggregator are
validated. Analysis of message data in packets is particularly
useful for monitoring the aggregator/EV communication that
involves a highly vulnerable edge device viz.,the EV. Two
important parameters in the EV to power grid communication
that are most likely to be tampered by adversaries are:

a) Subscription Period, that defines the duration of charg-

ing/discharging during the respective operations and

b) State of Charge (SOC), that defines the percentage of

charge in the battery of the connected EV.

Hence, we need to inspect packets to monitor these quantities.
During charging and discharging operations, the EV periodically
fetches the flow reservation list from the grid while also period-
ically updating its power status to the grid. The flow reservation
list contains the start and end of the subscription period. This
data is used to verify that there are no power status updates
outside the specified time interval. Power status updates occur
only during the subscription period. This component of the
anomaly detection engine handles attack 4 in Tab. I. The power
status update messages contain vehicle SOC related information
in terms of amount of power drawn. These power measurements
are validated against physical power measurements as discussed
next.

D. Consistency of Cyber and Physical States

We develop additional security checks to verify the consis-
tency of cyber states with the physical states. Power measure-
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ments related to the EV charging load can be obtained from
the sensors installed on the power distribution grid. Potential
sources for the actual power data include the connected EV
charging equipment, smart meters and distribution line measur-
ing devices. These sensors are assumed to be able to report the
instantaneous active power or even complex power readings that
are time-stamped for validating the cyber states of EV activities.

To this end, let P(t) denote the active power measurement for
time period ¢, with the time resolution of At. We plot a sample
daily profile of P(t) for an actual residential home in Fig. 5,
both with and without the EV charging load. The residential
home power demand and the EV charging data are obtained
from the Pecan Street database at a minute-level sampling rate
[1]. As observed from the data, the EV charging load exhibits
unique pattern that is different from other residential appliances
and devices. First, the EV power demand is at least 3kW and
also higher than that of other typical household loads [5]. Based
on the observed power profiles from the Pecan Street dataset,
only the air-conditioning load has a comparable level of power
demand. Second, the EV charging typically lasts for hours at
the constant rated power demand level, which is different from
the periodic pattern of air-conditioning load. Therefore, for the
EV load, there is a noticeable change only at the start and end
time points of charging.

To better demonstrate this feature of EV load, we process
the power data using a simple high pass filter to determine the
rate of change between two consecutive data points, namely
AP(t) = P(t) — P(t — At). To capture the fast change due
to EV charging, the sampling rate of the power data needs to
be sufficiently high to show that the EV can reach its rated
power within two minutes while all other residential loads stay
relatively unchanged. If the sampling rate increases, one may
need to perform more sophisticated filtering process to recover
the EV charging states. The filtered output for the residential
home load with EV charging in Fig. 5 from approximately 3:35
— 6:00 AM is illustrated in Fig. 6. Note that the negative power
in the aggregated load in Fig. 5 is due to PV generation. The
first spike in the plot represents the time instant when the EV
charging started, reaching its rated power of around 3kW within
two minutes. Note that when the charging ended for this 3kW
rated EV, its power consumption slowly drops from the rated
power and is therefore not noticeable from the filtered output.
However, for EVs rated around 6kW or higher from the Pecan
Street dataset, the end charging time is more noticeable from the
filtered output. Specifically, the ’end charging’ characteristics
are very similar to the ’start charging’ ones as the EV’s power
consumption drops from its rated power to zero within two
minutes. This will result in a negative spike in the filtered output
with a magnitude close to its rated power.

The power data spike due to start/end of EV charging is
used to verify the physical state when a packet with power
measurement message is detected on the cyber network. Note
that if the load profile is at sufficiently high sampling rate, it
is unlikely that there is other major load change activity at the
start/end time of EV charging. Therefore, the turn-on/-off events
of air-conditioning loads will not confuse the engine with a
potential EV activity. If the sampling rate gets slower, it will be

necessary to smooth out the non-EV loads in order to determine
the power spike from EV charging. Note that this may reduce the
confidence in physical state verification part due to the existence
of other heavy loading appliances with periodic patterns (i.e.,
air-conditioning load). This component of the anomaly detection
engine handles attacks 1,2 in Tab. L.

We have performed a design space exploration for many
combinations of EV and household numbers for the SAE
protocol family. For instance, (i) it can handle multiple EVs at a
single household even if they start charging at the same instance
of time. In which case, the total power consumed by these EVs
is used to validate consistency on cyber and physical sides (ii)
it can can detect even if an EV stops charging partway before
reaching 100%. Due to space constraints, we do not present all
the details here but in the online tech report [14].
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Fig. 5: Load profile of a residential home with and without the
EV charging load.
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Fig. 6: Filtered output of the total EV included load in Fig. 5
during the EV charging period.

V. EVALUATION

To evaluate the anomaly detection engine, we implemented
a prototype in Python2.7 on the Intel i7 NUC platform with
specifications as follows:

« Platform - Intel i7 NUC

o Processor - Intel(R) Core(TM) 17-7567U CPU @ 3.5 GHz,

4 cores
e Memory - 32 GB RAM, 128 GB HDD
¢ Operating System - Ubuntu 16.04
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Our goal is to not only detect anomalies accurately but to
also do so as soon as a malicious network packet arrives at
the aggregator. The anomaly detection engine is placed at the
aggregator in the V2G system as shown in Fig. 2. This makes
it important to ensure that it does not introduce significant
delay to the packet transfer rate at the aggregator. We therefore
evaluate the prototype of our anomaly detection engine in
terms of (i) Accuracy is measured in terms of false positives
and false negatives. (ii) Performance is measured in terms of
average and worst case time taken by the anomaly detection
engine to inspect one packet and compared with minimum
network latency. Note that as mentioned previously, since there
are no existing anomaly detection engines to the best of our
knowledge that combine cyber and physical properties along
with communication standards for this type of system (§VII),
direct comparisons are not possible.

Power Data for EV Charging - Packets on the cyber network
are generated based on EV power profile data for charging ob-
tained from the Pecan Street database at a minute-level sampling
rate [1]. This data consists of timestamps and corresponding
power measurements with respect to each EV, from which all
required information (such as subscription period) for packet
generation can be extracted.

Power Data for EV Discharging - Using the above EV
charging data, we formulated the data for EV discharging based
on efficiency formulas [6]. From [ [6], eq. (12)], the magnitude
of EV charging/discharging power from/to the power grid is
described as follows

Evrated _ |P |

|Pg'r'id‘ = m (1)
EVI'(LtEd * Mo = |Pd|

EV,qtea 1s the rated EV power, 7; is charging efficiency, 72 is
discharging efficiency, |P,| is the magnitude of EV charging
power and |Py| is the magnitude of EV discharging power.
Using algebraic manipulation and substituting EV,qteqd, We
obtain the magnitude of EV discharging power as a function
of EV charging power. From the reference paper [6], we obtain
the charging and discharging efficiencies in Table II as 0.92
and 0.92 respectively. Plugging these values into the previous
equation, we get the magnitude of the EV discharging power is
approximately 85% of the EV charging power.

|Pg| = |Py| % my %y = |Py| %0.92%0.92 = |P.| % 0.846 (2)

Currently, there are no EVS/EVSEs that support the SAE
J2847/1 and SAE J2847/3 standards since these communication
standards are still in the process of development. There has been
significant effort towards making the real world implementation
of SAE standards feasible [16], [17]. Once these standards
are implemented, our anomaly detection engine can be easily
integrated with them. Therefore, to test our anomaly detec-
tion engine, we generate packets with custom HTTP payloads
according to specifications provided by SAE communication
standards [8]. Further details on how the packets are generated
are provided below.

A. Accuracy

Testcases to test for false positives are generated based on
certain ground truth and testcases to test for false negatives are
obtained by modifying the former testcases to introduce various
kinds of anomalies.

Message Sequence Validation - The ground truth for testcase
generation here is the SAE standards [8]. (a) Testcases for
false positives include all possible valid sequences consisting of
parallel as well as repeating sequences. Due to the possibility
of a lot of valid variations, there is a large number of these test
cases. For instance, consider the charging operation. As shown
in Fig. 4, first a flow reservation with or without cancellation
is performed (note the existence of two possibilities already).
Then the EV starts sending periodic power updates to the
grid during its subscription period for charging. In parallel,
the EV also periodically fetches the flow reservation list from
the grid. Periodic messages give rise to repeating sequences
and increase the number of possible valid variations. Similarly,
parallel sequences of messages (power updates and fetching of
flow reservation list in this case) also increase the number of
possible valid variations. This is because one or more messages
from a parallel sequence (say, power updates in this case) can
arrive anywhere between messages in a related parallel sequence
(fetching of flow reservation list in this case). The sequence to
which the message belongs is identified using the message data.
(b) Testcases for false negatives were generated by randomly
placing invalid packets amidst valid sequences.

Message Frequency Validation - The ground truth for
testcase generation here is again the SAE standards [8]. (a)
Testcases for false positives consisted of packets with expected
message periodicities. (b) Testcases for false negatives consisted
of packets containing messages with periodicities different (i.e.,
periodicities lower and higher than expected values) from ex-
pected values as specified in the SAE standards [8].

Subscription Period Validation - The ground truth here
is based on the data obtained from the Pecan Street database
[1]. (a) Testcases for false positives consisted of packets with
subscription periods consistent with the aforementioned data.
(b) Testcases for false negatives consisted of packets with in-
consistencies where the actual subscription period was different
from previously agreed upon subscription period, i.e, the arrival
time of packets containing power status updates were modified
so as to be different from the time intervals specified in packets
containing the flow reservation list.

Consistency of Cyber and Physical States - We have a high
certainty on detecting the stop charging time for EVs with higher
rated power versus EVs with lower rated power for two reasons.
The first is that the stop charging characteristic for higher rated
EVs is very similar to the start charging characteristics of EVs
except that it will drop from its rated power to zero within two
minutes. The lower rated EVs take longer than two minutes to
stop charging so there will not be a noticeable negative spike
in the filtered load sequence. The second reason is that the
higher rated EVs are less sensitive to non-EV loads changes.
For instance, if an 1.5kW AC unit starts/stops around an EV
start/stop event, it will effect the total AP of two consecutive
time stamps. In the worst case scenario, the AC will reach
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its rated power within one minute. The AC rated power is 50
percent of an EV rated at 3kW which will force AP out of the
acceptable range of start/stop charging values. The AC rated
power is only 25 percent of an EV rated at 6kW, however,
AP will usually be barely within range of acceptable start/stop
charging values making higher rated EVs less sensitive to non-
EV load changes. The ground truth here is again based on the
power data obtained from the Pecan Street database [1]. (a)
Testcases for false positives consisted of packets with power
measurements consistent with this data. During steady state
charging, the EV power should not vary beyond +/- 0.5kW in the
worst case scenario. Any power measurement beyond this range
is considered anomalous. (b) Testcases for false negatives makes
use of this fact, i.e., it consists of packets with inconsistencies
with respect to power measurements, i.e, power measurements
were varied to be above and below this permissible range of +/-
0.5kW.

B. Performance

Minimum network latency - According to the smart grid
communication requirements specified by the Department of
Energy, the minimum network latency with reference to Electric
Transportation is 2 seconds [4]

Worst case time taken - We compare the worst case time
taken by the anomaly detection engine to inspect a packet with
the minimum network latency to determine whether or not the
anomaly detection engine introduces significant delay. The worst
case time taken to inspect a packet is when it goes through the
longest datapath in the anomaly detection engine. The 99.9th
percentile worst case time is 0.165 seconds.

Average time taken - In this evaluation, the total number
of EVs that are simultaneously handled by the aggregator has
been varied (up to a maximum of 400) based on literature [11].
As shown in Fig. 2, there are multiple households connected
to a single aggregator with (possibly) multiple EVs connected
to each household. The power measurements originally obtained
from the Pecan Street database [1] contains individual EV loads
as well as the corresponding aggregated loads at households
where one household has just one EV associated with it. We
have modified this power data as follows: (i) In order to simulate
multiple EVs connected to each household, we first assign
charging/discharging start times to include situations where
multiple EVs at one household start to charge/discharge either at
the same instance of time or at different instances of time. Then,
we compute the operation end times while keeping the duration
of operation unchanged. Note that we are only modifying the
charging/discharging start times for EVs i.e., we are just sliding
the EV charging/discharging duration windows. Algorithm 7 on
data generation can be found in the online tech report [14].
(ii) To simulate multiple such households being simultaneously
connected to the aggregator, we replicated the power data per
household. The average time taken by the anomaly detection
engine to inspect a packet is approximately 0.014 seconds as
shown in Fig. 7. Tab. II summarizes these results. As stated
previously (§II), we assume that the cyber network connecting
physical network sensors to the anomaly detection engine has
similar properties (in terms of bandwidth etc) as the cyber

TABLE II: Performance of Anomaly Detection Engine

Minimum Net-
work Latency
2 seconds

Average per packet in-
spection time
0.014 seconds

Worst case per packet
inspection time
0.165 seconds

Avg time (sec)
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Fig. 7: Performance of the Anomaly Detection Engine

network in the V2G system. Therefore, the individual EV power
measurements on the V2G cyber network and the corresponding
aggregated power measurements on the sensor cyber network
are received by the anomaly detection engine simultaneously
(i.e., without any delay).

VI. DISCUSSION

As seen from the results in Tab. II, the worst case time to
inspect a packet i.e., 0.165 seconds is lesser than the minimum
network latency, i.e., 2 seconds. Therefore, our anomaly detec-
tion engine detects malicious packets almost instantly without
introducing significant delay at the aggregator.

In all of our validation techniques, the consistency of data
obtained from one source is verified against data obtained from a
different source as explained next. This makes it more difficult to
tamper with the data so as to produce false consistencies. In case
of Message Sequence Validation and Message Frequency Val-
idation, packets are verified against information obtained from
the communication standards documentation. For validating
consistency of Cyber and Physical States, power data reported
in cyber messages is validated against physical power measure-
ments. In case of Subscription Period Validation, subscription
period related data is validated using messages from the power
grid side of communication that contain flow reservation list
and messages from the EV side of communication that contain
power status updates.

Packet loss can result in certain packets either arriving (at
the aggregator) out of sequence or at unexpected times. This
might result in false positives being signalled by the anomaly
detection engine. However, rate of packet loss is very low
given the 99-99.99% network reliability requirement for Electric
Transportation in the Smart Grid [4]. Network delays/jitters
could also lead to false positives due to packets arriving at an
unexpected time. This can be handled by setting an appropriate
tolerance level with respect to time constraints. Our anomaly
detection engine has a complete list of all possible valid states
and state transitions. This eliminates the likelihood of false
negatives. Our evaluation is carried out based on the previously
stated assumption that the inputs obtained from atleast one of
the cyber or physical networks are genuine. If this is not true,
then an attacker could tamper with the cyber and physical states
of the system to obtain consistency and conceal the attack from
our anomaly detection engine.
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VII. RELATED WORK

Securing the advanced metering system by using specification
based intrusion detection [2] monitors just the cyber state of
the system by observing traffic among access points and meters
at various layers to ensure expected behavior. We use similar
techniques to monitor the cyber state of a V2G aggregator. In
addition, we also check for consistency of cyber and physical
states of the system. The paper by Liao et al [12] focuses on
enhancing power grid security by using micro-synchrophasors
as a tool to monitor and manage distribution networks. This
work is similar to our work in that it uses data from sensors
for monitoring. However, in addition to using sensor readings,
our anomaly detection engine also monitors other data con-
straints related to the communication protocol specifications
along with timing constraints related to message frequencies
and subscription periods. Chen et al [3] propose an efficient and
secure authentication scheme for V2G networks that preserves
privacy. The paper focuses on securing the communication of
EVs in the V2G system of power grid. On the other hand,
our work focuses on securing the aggregator, an important
component of the V2G system, by increasing its resiliency to
attacks. There is some related work on identifying EV charging
profiles for improving power distribution system operations.
The statistical characteristics of EV’s state-of-charge or the
duration of charging period have been studied in [18], [20] by
analyzing a fleet of EV charging profiles. More recently, a deep
learning approach has been proposed in [21] to extract the EV
charging profile from the aggregated household demand as a
load disaggregation problem. However, we use a similar filtering
mechanism but for a different purpose, i.e., anomaly detection
to ensure security. We have developed a simple approach for
estimating EV charging status that is very suitable for real-
time implementation needs of the proposed anomaly detection
engine.

VIII. CONCLUSION

In this work, we have presented a novel architecture of a
Cyber-Physical Anomaly Detection Engine that captures the cy-
ber and physical properties of the system along with the related
communication standards to define correct system behavior. The
simple model of our anomaly detection engine demonstrates
that accurate and almost instantaneous detection of anomalies
is feasible. Although our prototype Cyber-Physical Anomaly
Detection Engine is based on SAE standards of communication
for V2G system, this architecture can be extended to other
communication standards for other DERs as well.
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