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Preserving Physical Safety Under Cyber Attacks
Fardin Abdi , Chien-Ying Chen, Monowar Hasan, Songran Liu, Sibin Mohan, and Marco Caccamo

Abstract—Physical plants that form the core of the cyber-
physical systems (CPSs) often have stringent safety requirements
and, recent attacks have shown that cyber intrusions can cause
damage to these plant. In this paper, we demonstrate how to
ensure the safety of the physical plant even when the platform is
compromised. We leverage the fact that due to physical inertia,
an adversary cannot destabilize the plant (even with complete
control over the software) instantaneously. In fact, it often takes
finite (even considerable time). This paper provides the analytical
framework that utilizes this property to compute safe opera-
tional windows in run-time during which the safety of the plant
is guaranteed. To ensure the correctness of the computations
in runtime, we discuss two approaches to ensure the integrity of
these computations in an untrusted environment: 1) full platform-
wide restarts coupled with a root-of-trust timer and 2) utilizing
trusted execution environment features available in hardware.
We demonstrate our approach using two realistic systems—a 3
degree-of-freedom helicopter and a simulated warehouse tem-
perature management unit and show that our system is robust
against multiple emulated attacks—essentially the attackers are
not able to compromise the safety of the CPS.

Index Terms—Cyber-physical systems (CPSs), embedded
systems, real-time systems, safety-critical systems, security.

I. INTRODUCTION

SOME of the recent attacks on cyber-physical systems
(CPSs) are focused on causing physical damage to the

plants. Such intruders make their way into the system using
cyber exploits but then initiate actions that can destabilize
and even damage the underlying (physical) systems. Examples
of such attacks on medical pacemakers [22] or vehicular
controllers [25] exist in the literature. Any damage to such
physical systems can be catastrophic—to the systems, the
environment or even humans. The drive toward remote mon-
itoring/control (often via the Internet) only exacerbates the
safety-related security problems in such devices.

When it comes to security, many techniques focus on
preventing the software platform from being compromised or
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detecting the malicious behavior as soon as possible and taking
recovery actions. Unfortunately, there are always unforeseen
vulnerabilities that enable intruders to bypass the security
mechanisms and gain administrative access to the controllers.
Once an attacker gains such access, all bets are off with regards
to the safety of the physical subsystem. For instance, the con-
trol program can be prevented from running, either entirely
or even in a timely manner, sensor readings can be blocked
or tampered with, and false values forwarded to the control
program and similarly actuation commands going out to the
plants can be intercepted/tampered with, system state data can
be manipulated, etc. These actions, either individually or in
conjunction with each other, can result in significant damage
to the plant(s). At the very least, they will significantly ham-
per the operation of the system and prevent it from making
progress toward its intended task.

In this paper, we develop analytical methods that can for-
mally guarantee the baseline safety of the physical plant even
when the controller unit’s software has been entirely compro-
mised. The main idea of this paper is to carry out consecutive
evaluations of physical safety conditions, inside secure execu-
tion intervals (SEIs), separated in time such that an attacker
with full control will not have enough time to destabilize or
crash the physical plant in between two consecutive intervals.
We refer to these intervals by SEI. In this paper, the time
between consecutive SEIs is dynamically calculated in real
time, based on the mathematical model of the physical plant
and its current state. The key to providing such formal guar-
antees is to make sure that each SEI takes places before an
attacker can cause any physical damage.

To further clarify the approach, consider a simplified drone
example. The base-line safety for a drone is to not crash into
the ground. Using a mathematical model of the drone, we
demonstrate, in Section IV-B, how to calculate the shortest
time that an adversary with full control over all the actuators
would need to take the drone into zero altitudes (an unsafe
state) from its current state (i.e., current velocity and height).
The key is, once inside the SEI, to schedule the starting point
of the upcoming SEI before the shortest possible time to reach
the ground. During the SEI, depending on whether the drone
was compromised or not, it will be either stabilized and recov-
ered or, it will be allowed to resume its normal operation. With
this design in place, despite a potentially compromised control
software, the drone will remain above the ground (safe).

Providing formal safety guarantees, even for the simple
example above is nontrivial and challenging. As an example,
an approach is needed to compute the shortest time to reach
the ground in run-time. Each SEI must be scheduled to take
place at a state that not only is safe (before hitting the ground),
but also the controller can still stabilize the drone from that
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velocity and altitude, before it hits the ground, considering
the limits of drone motors. Mechanisms are needed to prevent
attackers from interfering with the SEIs in any way possible.
In this paper, we address all the challenges required to provide
safety.

One of the primary technical necessities for the proposed
design is a trusted execution environment (TEE) where the
integrity of the executed code can be trusted. In this paper, we
utilize two different approaches to achieve this goal: 1) restart-
based implementation which utilizes full system restarts and
software reloads and 2) TEE-based implementation which uti-
lizes TEE such as ARM TrustZone [43] or Intel’s Trusted
Execution Technology (TXT) [24] that are available in some
hardware platforms.

Under the restart-based implementation, control platform
is restarted in each cycle, and the uncompromised image of
the controller software is reloaded from read-only storage.
Restarting the platform enables us to: 1) eliminate all the
possible transformations carried out by the adversary during
previous execution cycle1 and 2) provides a window for trusted
computation in an untrusted environment which we use to
compute the next SEI triggering time (Section IV-A). This
design utilizes an external HW timer to trigger the restart at
the scheduled times. This simple design prevents the adversary
from interfering with the scheduled restarting event.

Another alternative approach that is introduced in this
paper to enable the SEIs is to the use TEE features that
are available in HW platforms. In particular, we use ARM
TrustZone [43] and LTZVisor [28] which is a hypervisor based
on TrustZone (Section V-A). The TEE-assisted implementa-
tion does not require the platform to be restarted in every SEI
cycle. Thus, there is no restarting overhead, and additionally,
the controller state is not lost in every SEI cycle. This design
can significantly improve the applicability of our method to
physical plants with faster dynamics. As we have shown in
the evaluation section, the maneuverability region of the 3DOF
plant is increased by 234% when the controller is implemented
by the TEE-based method.

For some CPS applications, one of the above implementa-
tion options might be a more suitable choice than the other
one. If the physical plant has high-speed dynamics—relative
to the restart time of the platform—or if the past state of
the controller is necessary to carry out the mission—e.g.,
authentication with ground control—the TEE-based option the
reasonable choice. On the other hand, restart-based imple-
mentation is feasible for low-cost micro-controllers whereas
platforms equipped with TEE are generally more expensive.
Furthermore, many of the CPS applications have physical
plants with slow physical dynamics—compared to the restart
time of their embedded platform—and the restart-based imple-
mentation will perform just as good as the TEE-based imple-
mentation (as we will show in Section VI-D). For such cases,

1It is possible that the adversary launches a new instance of the attack
after a restart. Yet, the plant is protected against each attack instance and
malicious states are not carried across restarts. As a result, the proposed
approach is able to prevent the attacker from damaging the system every time
and guarantees safety of the entire system.

restart-based implementation is a better choice, and TEE-
assisted implementation might only unnecessarily increase the
cost and complexity of the system.

In summary, the contributions of the work are as follows.
1) We introduce a design method for embedded control

platforms with formal guarantees on the base-line safety
of the physical subsystem when the software is under
attack.

2) We propose a restart-based design implementation that
enables trusted computation in an untrusted environ-
ment using platform restarts and common-off-the-shelf
(COTS) components, without requiring chip customiza-
tions or specific hardware features.

3) We propose an alternative design implementation using
TEE features that eliminates the restarting overhead and
enables the core safety-guarantees to be provided on
more challenging physical plants.

4) We have implemented and tested our approach against
attacks through a prototype implementation for a realis-
tic physical plant and a hardware-in-the-loop simulation.
We compare both design implementation options and
illustrate their use cases.

Significant parts of this paper have been published in an
earlier conference paper [3]. The critical improvement upon
earlier results here is the use of TrustZone to implement SEIs
that eliminates the overhead of system-reboots and improves
the maneuverable are of the 3DOF helicopter by 234%. We
have also performed all the experiments to evaluate the new
aspects of the approach.

II. APPLICATIONS, THREATS, AND ADVERSARIES

This paper focuses on end-point devices that control and
drive a safety-critical physical plant, i.e., the plant has safety
conditions that need to be respected at all times. Components
such as sensing nodes that do not directly control a physical
plant are not in the scope of this paper. Safety requirements
of the plant are defined as an admissible region in a connected
subset of the state space. If the physical plant reaches the states
outside of the admissible region, it could damage itself as well
as the surrounding environment. Thus, to preserve the physi-
cal safety, the plant must only operate within the admissible
region.

A. Adversary and Threat Model

Embedded controllers of CPS face threats in various forms
depending on the system and the goals of the attacker. The par-
ticular attacks that we aim to thwart in this paper are those that
target damaging the physical plant. In this paper, we assume
attackers require an external interface such as the network,
the serial port or the debugging interface to intrude into the
platform. We assume that the attackers do not have physi-
cal access to the platform. Once a system is breached, we
assume the attacker has full control (root access) over the
software (nonsecure world), actuators, and peripherals.

The following assumptions are made about the platform and
the adversary’s capabilities.
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1) Integrity of Original Software Image: We assume that
the original images of the system software, i.e., real-
time operating system (RTOS), control applications, and
other components are not malicious. These components,
however, may contain security vulnerabilities that could
be exploited to initiate attacks.

2) Read-Only Storage for the Original Software Image: We
assume that the original trusted image of the system
software is stored on a read-only memory unit (e.g.,
E2PROM). This content is not modifiable at runtime
by anyone including adversary. Updating this image
requires physical access and is completed off-line when
the system is not operating.2

3) TEE: Hardware-assisted TEEs such as TrustZone parti-
tion the platform into a secure world and a nonsecure
world. Resources (i.e., code and data) in the secure
world are isolated from the nonsecure world and are only
accessible by the software running in the secure world.
A compromise in the nonsecure world may not affect the
execution and data in the secure world. In this paper, we
assume that the software in the secure world is trusted
from the beginning and may not be compromised (in
our design, the secure world only interacts with sensors
and actuators and does not have an exposed interface
that can be a point of exploitation).

4) Immediately after a reboot, as long as the external
interfaces of the device (i.e., network and debugging
interface) remain disabled,3 software running on the
platform is assumed to be uncorrupted.

5) Integrity of Root of Trust (RoT): RoT—which is
only necessary for the restart-based implementation—
is an isolated hardware timer responsible for issuing
the restart signal at designated times. As shown in
Section IV-A, it is designed to be programmable only
once in each execution cycle and only during an interval
that we call the SEI.

Additionally, we assume that the system is not susceptible to
external sensor spoofing or jamming attacks (e.g., broadcasting
incorrect GPS signals, electromagnetic interference on sensors,
etc.). An attacker may, however, spoof the sensor readings
within the OS or applications. Our approach does not protect
from data leak related attacks such as those which aim to
steal secrets, monitor the activities, or violate the privacy. Our
design does not protect from network attacks, such as man-in-
the-middle or denial-of-service attacks that restrict the network
access. An attacker may enter the system via any external
interface (e.g., a telemetry channel and a network interface)
and use known vulnerabilities such as buffer overflow or code
injection to manipulate the system. However, as we show, the
physical plant remains safe during such attacks.

2This is common for many safety-critical IoT systems such as medical
devices and some components in automotive systems—to prevent from run-
time malfunctioning due to unwanted firmware corruption at the time of
update and well as to prevent the adversary from tampering with the system’s
image remotely).

3This is achieved by not initiating a socket connection, not reading/writing
from/to any of the ports and not performing any of the hand shaking steps.

III. BACKGROUND

In this section, we provide a brief background on safety
controller (SC) and real-time reachability. We will utilize these
tools in the rest of this paper. Before going into their details,
we first present some useful definitions.

Definition 1 (Admissible and Inadmissible States): States
that do not violate any of the operational constraints of the
physical plant are referred to as admissible states and denoted
by S. Likewise, those states that do violate the constraints are
referred to as inadmissible states and denoted by S ′.

Definition 2: Recoverable states are defined with regards to
a given SC and denoted by R. R is a subset of S such that if
the given SC starts controlling the plant from the state x ∈ R,
all future states will remain admissible.

In other words, the physical plant is considered momentarily
safe when the state is in S. Moreover, SC can stabilize the
physical plant, if its state is in R. Operational limits and safety
constraints of the physical system dictate what S is and it is
outside of our control. However, R is determined by the design
of the SC. Ideally, we would want an SC that can stabilize the
system from all the admissible states S. However, it is not
usually possible.

In the following, one possible way to design an SC is
discussed. This method is based on solving linear matrix
inequalities and has been used in the design of systems as
complicated as automated landing maneuvers for an F-16 [33].

A. Safety Controller

According to this design approach [33], [34], SC is designed
by approximating the system with linear dynamics in the form
of ẋ = Ax + Bu, for state vector x and input vector u. In addi-
tion, the safety constraints of the physical system are expressed
as linear constraints in the form of H·x ≤ h where H and h are
constant matrix and vector. Consequently, the set of admissible
states are S = {x : H · x ≤ h}. The choice of linear constraints
to represent S is based on the Simplex Architecture and many
of the following works [6], [10], [11], [33]–[35].

In this approach, the operational safety constraints, as well
as actuator saturation limits, are expressed as linear constraints
in an LMI. These constraints, along with linear dynamics for
the system are input into a convex optimization problem that
produce both linear proportional controller gains K as well as
a positive-definite matrix P. The resulting linear-state feedback
controller, u = Kx, yields closed-loop dynamics in the form
of ẋ = (A + BK)x. Given a state x, when the input u = Kx
is used, the P matrix defines a Lyapunov potential function,
V = xTPx, such that: V > 0, V̇ < 0, and V = 0 if and
only if x = 0, thus guaranteeing stability of the linear system
using Lyapunov’s direct or indirect methods. Furthermore, the
matrix P is constructed by the method such that it defines an
ellipsoid in the state space where all the constraints are satis-
fied when xTPx < 1. Since the states where saturation occurs
were provided as input constraints to the method, this means
that states inside the ellipsoid result in control commands that
are not beyond the actuator limits (where saturation would
occur). States that are in S but not in xTPx < 1 ellipsoid,
may result in control commands that are beyond the actuator
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limits. It follows that the states which satisfy xTPx < 1 are
a subset of the safety region. Because the potential function
is strictly decreasing over time, any trajectory starting inside
the region xTPx < 1 will remain there for an infinite time
window. As a result, no inadmissible states will be reached.
Hence, the linear-state feedback controller u = Kx is the SC
and R = {x : xTPx < 1} is the recoverable region. Designing
SC in such a way ensures that the physical system would
always remain safe [35].

Note: SC is only capable of keeping plant safe and does not
push it toward its goal/mission. A meaningful system, there-
fore, cannot run under SC at all times and requires another
mission controller to make progress.

B. Real-Time Reachability

For runtime computation of reachable states of a plant
within a future time, we utilize a real-time reachability tool
that is introduced in [11]. This low-cost algorithm is specifi-
cally designed for embedded systems with real-time constraints
and low computation power.

Note that constructing an SC similar to that specified in
Section III-A (e.g., having a recoverable region where any
trajectory starting from that region will stay within that region)
is generally not possible for nonlinear systems. However, for
specific classes of nonlinear systems, our approach will be
applicable if: 1) an SC with the properties mentioned above
can be constructed and 2) we can define a function that returns
the minimum and maximum derivative in each dimension
given an arbitrary box in the state space. This technique can
also handle hybrid systems where the state invariants are dis-
joint and cover the continuous state R

n, there are no reset
maps in the transitions between discrete states and the state
invariants define the guards of incoming transitions. In these
piecewise systems, the state of the hybrid automaton can be
determined solely by the continuous state; although separate
differential equations can be used in various parts of the state
space. This algorithm requires that the derivatives are defined
in the entire state space and that they are bounded.

This technique uses the mathematical model of the dynam-
ics of the plant and a n-dimensional box to represent the
set of possible control inputs and the reachable states. A set
of neighborhoods, N[i] are constructed around each facei of
the tracked states with an initial width. Next, the maximum
derivative in the outward direction, dmax

i , inside each N[i] is
computed. Then, crossing time tcrossing

i = width(N[i])/dmax
i is

computed over all neighborhoods and the minimum of all the
tcrossing
i is chosen as time to advance, ta. Finally, every face is

advanced to facei + dmax
i × ta. For further details on inward

neighborhood versus outward neighborhoods, and the choos-
ing of neighborhood widths and time steps refer to [11]. In this
algorithm a parameter called reach-time-step is used to
control neighborhood widths. This parameter lets us tune the
total number of steps used in the method, and therefore alter
the total runtime to compute the reachable set. This allows us
to cap the total computation time of the reachable set—which
is essential in any real-time setting.

Moreover, authors have demonstrated that this algorithm is
capable of producing useful results within very short compu-
tation times, e.g., result achieved with computation times as
low as 5 ms using embedded platforms [11]. All these features
make this approach a suitable tool for our target platforms as
well.

IV. METHODOLOGY

To explain our approach, let us assume that it is possi-
ble to create SEIs during which we can trust that the system
is going to execute uncompromised software and adversary
cannot interfere with this execution in any way. Under such
assumption, we will show that it is possible to guarantee that a
physical plant will remain within its admissible states as long
as the following conditions remain true: 1) the timing between
these intervals are separated such that, due to the physical
inertia, the plant will not reach an inadmissible state until the
beginning of the consequent SEI and 2) the state of the plant
at the beginning of the following SEI will be such that the
SC can still stabilize the system. Under these conditions, the
plant will be safe in between two SEIs (due to condition 1).
If an adversary pushes the system close to the boundaries of
inadmissible states, during the following SEI, we can switch
to SC, and it can stabilize the plant (condition 2).

In the rest of this section, we present an analytical
framework that shows how appropriately timed separa-
tions between the consequent SEIs guarantee the physi-
cal safety. Additionally, we show how these time values
can be calculated in run-time. Finally, we discuss two dif-
ferent mechanisms—restart-based implementation and TEE-
assisted implementation—to enable a trusted computation
environment—SEI—during which the time intervals between
SEI will be computed, without any adversarial interference.

A. Restart-Based Secure Execution Intervals

One essential element of the approach introduced in this
paper is the run-time computation of the time separation
between consecutive executions of the safety-critical tasks—
the tasks that evaluate the safety conditions (next section) and
stabilize the plant if necessary. The ultimate safety guarantees
of our approach depend on the integrity of these computa-
tions. To achieve safety, therefore, it is essential to have a
means to completely protect these tasks from any adversarial
interference—adversary should not be able to stop or delay
the execution or, corrupt the results of the computations. In
this paper, we use the term SEI to refer to execution intervals
during which the integrity of the code is preserved.

One way to create SEIs in an untrusted environment is to
rely on the full platform restarts and the software reloads.
The procedure is as follows. For each SEI, the platform needs
to restart entirely and then immediately load the clean soft-
ware image from the read-only storage. Additionally, after the
restart, all the external interfaces of the platform—those that
might be an exploitation point for external adversaries—will
remain disabled. As soon the platform boots, it can execute the
safety-related tasks trustworthily and produce correct results.
Once the execution of the critical tasks is finished, the time
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Fig. 1. Example sequence of events for the restart-based implementation of the SEI. White: mission controller is in charge and platform is not compromised.
Yellow: system is undergoing a restart. Green: SEI is active, SC and find_safety_window are running in parallel. Orange: adversary is in charge. Blue:
RoT accepts new restart time. Gray: RoT does not accept new restart time. Red arrow: RoT triggers a restart. Blue arrow: SEI ends, the next restart time is
scheduled in RoT, and the mission controller starts.

to trigger the following restart—the next SEI—is scheduled.
Finally, the SEI ends, the external interfaces are activated,
and the mission controller and other necessary components
are launched.

An additional mechanism is necessary to schedule a restart
and trigger it such that the adversary cannot prevent it. We
designate a separate HW module, called RoT to do this. RoT
is essentially an external timer that can send a restart signal
to the HW restart pin of the controller board at the scheduled
time. It has an interface that allows the main controller to set
the time of the next restart signal. We refer to this interface
by set_SEI_trigger_time. The only difference of RoT
with a regular timer is that it allows the processor to call the
set_SEI_trigger_time interface only once after each
restart and ignores any additional calls to this interface until
the timer expires. Once the RoT timer is configured, adver-
saries cannot disable it until it has expired and the platform
is restarted. Fig. 1 illustrates the sequence of events in the
system.

B. Finding the Safety Window in Run-Time

During the SEI, platform executes two tasks in parallel:
1) find_safety_window task which calculates the time
window in which the plant will remain safe due to its phys-
ical inertia and uses this result to set the triggering time of
the next SEI and 2) SC that keeps the plant stable while
find_safety_window is computing. Fig. 1 presents an
example sequence of the system events. If no malicious activ-
ity had taken place during the previous execution cycle (first
cycle of Fig. 1), the next SEI triggering time is computed
and scheduled quickly, and the mission controller resumes.
However, if an attacker had been able to compromise the plat-
form within the previous cycle and managed to push the plant
close to the inadmissible states (second cycle of Fig. 1), the
SC will need some time to stabilize the plant—push it further
into the recoverable region—and SEI will be longer.

The fundamental idea here is how should
find_safety_window calculate the triggering time
of the next SEI such that up to the beginning of the next
SEI, the physical plant would not be able to reach an unsafe
state and at the beginning of next SEI, the state would still
be recoverable by the SC. The rest of this section answers
this question.

Before we proceed, it is useful to define some notations.
We use the notation of Reach=T(x, C) to denote the set of

states that are reachable by the physical plant from an ini-
tial set of states x after exactly T units of time have elapsed
under the controller C. Reach≤T(x, C) can be defined as⋃T

t=0 Reach=t(x, C), i.e., union of all the states reachable
within all times t up to T time units. Also, we use SC to
refer to the safety controller and UC to refer to an untrusted
controller, i.e., one that might have been compromised by an
adversary. We use notation �(x1, x2) to represent the shortest
time required for the physical plant to reach state x2, starting
from x1.

Definition 3: True recoverable states are all the states
from which the given SC can eventually stabilize the
plant. Formally, T = {x|∃α > 0 : Reach≤α(x, SC) ⊆
S & Reach=α(x, SC) ⊆ R}. The set of true recoverable states
is represented with T .

Definition 4: Tα denotes the set of states from which
the given SC can stabilize the plant within at most α

time. Formally, we have Tα = {x|Reach≤α(x, SC) ⊆
S & Reach=α(x, SC) ⊆ R}. From definition it follows that
∀α : Tα ⊆ T .

Let us call Ts, the switching time, and use it for referring
to the time between the triggering time of the SEI until SEI
is active and ready to execute tasks. For the restart-based SEI
implementation, Ts is equal to the length of one restart cycle of
the embedded platform.4 Furthermore, let us use γ to represent
the shortest time that is possible to take a physical system from
its current state x(t) ∈ T to a state outside of T . We can write

γ (x) = min {�(x, x′)| for all x′ 	∈ T }. (1)

It follows that:

If x(t) ∈ T then x(t + τ) ∈ T where τ < γ (x(t)). (2)

From (2) we can conclude

Reach≤γ (x(t))−ε(x(t), UC) ⊆ S
Reach=γ (x(t))−ε(x(t), UC) ⊆ T , where ε → 0. (3)

Equation (3) indicates that if it was possible to calculate
γ (x(t)) in an SEI, we could have scheduled the consecutive
SEI to be triggered at time t +γ − Ts − ε. This process would
have ensured that by the time the following SEI had started,
the state of the plant was truly recoverable and admissible.

The value of γ (x) depends on the dynamics of the plant
and the limits of the actuators. Unfortunately, it is not usually

4Ts is the length of the interval from the triggering point of restart until
the reboot is completed, filters are initialized and control application is ready
to control the plant.
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Algorithm 1: Finding Physical Safety Window From State
x. Here, Teq-4 Refers to the Time Required to Evaluate
the Conditions If (4). We Can Compute the Exact Value
of Teq-4 Because the Reachability Computation Time Is
Capped (One of the Important Features of [11]) and, in
Total, There Are 4 Reach Operations to Be Performed
find_safety_window(x, λinit)

1: startTime := currentTime()
2: λcandidate := λinit
3: RangeStart := Ts; RangeEnd := λcandidate
4: while currentTime() - startTime <Tsearch − Teq-4 do
5: if conditions of Equation (4) are true for λcandidate then
6: λsafe := λcandidate
7: RangeStart := λsafe; RangeEnd := 2λsafe
8: else
9: RangeEnd := λcandidate

10: end if
11: λcandidate := (RangeStart+ RangeEnd)/2
12: end while

13: return -1

possible to compute a closed-form representation for γ (x).
Because computing a closed-form representation for the T
of the given SC is not a trivial problem. Actuator limits is
another factor that needs to be taken into account in the cal-
culation of T . Therefore, in many cases, finding γ would
require performing extensive simulations or solving numerical
or differential equations.

An alternative approach is to check the conditions of (3) for
a specific value of time, λ

Reach≤λ(x(t), UC) ⊆ S & Reach=λ(x(t), UC) ⊆ Tα. (4)

Fortunately, having a tool to compute the reachable set of
states in run-time allows us to evaluate all the components
of (4). Real-time reachability can compute the reachable set
of states up to the λ time with an untrusted controller UC to
check the first part of the (4). To evaluate the second part, we
use the calculated reachable set at time λ as the starting set of
states to perform another reachability computation for α time
under SC and check Reach≤α(Reach=λ(x(t), UC), SC) ⊆ S
and Reach=α(Reach=λ(x(t), UC), SC) ⊆ R. These two con-
ditions are equivalent to the second part of the equation
above.

The λ that is calculated for the state x(t) is a safety window
of the physical system in state x(t), that is the interval of
time, starting from time t, that the plant will remain safe and
recoverable, even if the adversary controls it. Hence, we can
conclude that the time t+λ−Ts, is a point where the platform
can be safely restarted—i.e., the next SEI can be triggered.
Algorithm 1, performs a binary search and tries to find the
largest safety window of the plant from a given x(t) within
a bounded computation time, Tsearch. Given a large Tsearch,
Algorithm 1 would calculate the maximum safety window of
the plant for that state. In run-time, however, Tsearch has to be
limited and therefore choosing the initial candidate λcandidate is
crucial. It is also possible to use an adaptive λinit by dividing
the state space into subregions and assigning a λinit to each
region. At runtime, choose the λinit associated with the state
and initialize Algorithm 1.

Algorithm 2: One Operation Cycle With Restart-Based
SEI

1: Start Safety Controller. /* SEI begins */
2: λsafe = λinit /*Initializing the safety window*/
3: repeat
4: start_time := systemTime()
5: x := obtain the most recent state of the system from Sensors
6: λsafe := find_safety_window(x, λsafe)
7: elapsed_time := systemTime() - start_time
8: until λsafe 	= −1 and λsafe > Ts + elapsed_time
9: Send λsafe − elapsed_time− Ts to RoT. /* Set the next restart

time. */
10: Activate external interfaces. /* SEI ends. */
11: Terminate SC and launch the mission controller.
12: When RoT sends the restart signal to hardware restart pin:
13: Restart the platform
14: Repeats the procedure from beginning (from Line 1)

Note that the real actions of the adversary are unknown
ahead of the time. As a result, in the conditions of (4), the
reachability of the plant under all possible control values need
to be calculated. Consequently, the computed reachable set
under UC (Reach(x, UC)) is the largest set of states that might
be reached from the given initial state, within the specified
time. The real-time reachability tool in [11] allows this sort of
computation due to the usage of a box representation for con-
trol inputs. Control inputs are set to the full range available to
the actuators. As a result, the computed set the states that might
be achieved under all of the actuator values. Notice that this
procedure does not impact the time required for reachability
computation.

When an intelligent adversary compromises the system, it
can quickly push the plant toward the inadmissible states and
very close to the boundary of the unsafe region. When operat-
ing close to the inadmissible states, there is a very narrow
margin for misbehavior. If the adversary takes over again,
they can violate the physical safety. Therefore, when SEI
starts and the plant is in states very close to the boundary
of the unsafe region, SC would need to execute for longer
than usual until the plant is sufficiently pushed into the safe
area. Deciding on how long the SC needs to run automatically
happens based on the result of find_safety_window as
presented in Algorithm 2. If the plant’s state is too close to
the boundary of the unrecoverable region, the safety window
of the plant will be very short, and find_safety_window
will most likely return −1. In Algorithm 2, this will force
the while loop and consequently the SC to continue running
for another cycle. This cycle will continue until SC has suf-
ficiently distanced the plant from the unsafe region. At this
point, find_safety_window will be able to compute a
safety window and the SEI will end.

It is worth noting that what real-time reachability yields is
a superset of the actual reachable set of states. Therefore, the
calculated λ ensures that the system always remains within
the safe region.

V. TEE-ASSISTED DESIGN IMPLEMENTATION

The restart-based approach to enable SEIs requires a restart
in each operation cycle and imposes two main types of
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overheads on the system: 1) restart-time and 2) memory era-
sure due to the restarts. Implementing this approach on some
CPSs can be challenging especially if the platform restart
time is not negligible compared to the speed of the dynamics
of the plant. Another issue with this design implementation
arises from the fact that the system restarts erase the platform
memory. For some applications, such frequent memory era-
sures can be problematic. For instance, to establish a remote
connection, the controller might need to perform handshaking
steps and store the state in the memory. If the system is fre-
quently restarted, the controller may not be able to establish
a reliable communication.

To mitigate some of these issues, we propose an alter-
native implementation where we use ARM TrustZone tech-
nology [43] and in particular LTZVisor [28]—which is a
lightweight TrustZone assisted hypervisor with real-time fea-
tures for embedded systems.5 Here, instead of relying on
the platform restarts to create SEIs, we exploit the isolated
execution environments that are attainable through TrustZone.

In the rest of this section, we present some background on
TrustZone and LTZVisor, and then we discuss the implemen-
tation of the approach.

A. Background on TrustZone and LTZVisor

TrustZone [43] hardware architecture can be seen as a
dual-virtual system, partitioning all systems physical resources
into two isolated execution environments. A new 33rd pro-
cessor bit, the nonsecure bit, indicates in which world the
processor is currently executing, and is propagated over the
memory and peripherals buses. An additional processor mode,
the monitor mode, is added to store the processor state dur-
ing the world switch. TrustZone security is extended to the
memory infrastructure through the TrustZone Address Space
Controller that can partition the DRAM into different memory
regions. Secure world applications can access nonsecure world
memory, but the reverse is not possible. Additional enhance-
ments in TrustZone provide the same level of isolation in cache
and system devices.

LTZVisor [28] is a lightweight hypervisor that allows the
consolidation of two virtual machines (VMs), running each
of them in an independent virtual world (secure and nonse-
cure). It exploits TrustZone features in the platforms to provide
memory segmentation, cache-level isolation, and device par-
titioning between the two VMs. LTZVisor dedicates timers
to each VM that enables each one to have a distinctive
notion of system time. Additionally, it provides an API for
communication between the two VMs.

LTZVisor manages the secure and nonsecure world inter-
rupts in a way that meets the requirements of the hard real-time
systems. All the implemented interrupts can be individually
defined as secure and nonsecure. If the secure VM is exe-
cuting, all the secure interrupts are redirected to it without
hypervisor interference. If a nonsecure interrupt arises dur-
ing secure VM execution, it will be queued and processed as
soon as nonsecure side becomes active. On the other hand, if

5In this paper, we have used TrustZone and LTZVisor. Nevertheless, other
available TEE technologies such as Intel’s TXT [24] can be employed to
achieve the same goal.

the nonsecure VM is executing and a secure interrupt arises,
it will be immediately handled in the secure world. This
design prevents a denial-of-service attack on the secure-side
applications.

LTZVisor implements a scheduling policy that guarantees
that the nonsecure guest OS is only scheduled during the
idle periods of the secure guest OS, and the secure guest
OS can preempt the execution of the nonsecure one. This
scheduling policy resolves one of the well-known real-time
scheduling problems in virtual environments known as hierar-
chical scheduling and makes LTZVisor an excellent choice
to meet real-time requirements of the tasks in the secure
VM. Besides, creators of LTZVisor show that the overhead of
switching from secure VM to nonsecure VM and vice versa
is small and deterministic [28]. Thus, secure VM is ideal for
running an RTOS whereas, nonsecure VM can run general
purpose operating systems like Linux.

B. TEE-Enabled SEIs

In this design, to protect the SC and
find_safety_window tasks, they execute in the secure
VM, and everything else runs in the nonsecure VM. The
SC and find_safety_window are executed, and before
they finish, they schedule their next execution time, i.e., the
next SEI. Mission controller and any other component start
running as soon as all the tasks in the secure VM have
yielded. LTZVisor guarantees that the nonsecure VM cannot
interfere with the execution of the tasks in the secure VM.

Each task inside the secure VM, once executed, can choose
to yield and set the future time when its status will change to
ready again. In LTZVisor, the secure VM has a higher prior-
ity than the nonsecure VM. Consequently, the nonsecure VM
tasks will execute only when there are no secure tasks that
are ready to execute. Similarly, as soon as one of the secure
VM tasks becomes ready, LTZVisor pauses the nonsecure VM,
stores the necessary registers and executes the secure task. The
scheduling policy in each VM determines the priorities and
execution details for the tasks of that VM.

The operation cycle of the system during the SEI is very
much the same as described in Algorithm 2 except instead of
setting the RoT and the restarting step, secure tasks schedule
their next wake up time using the secure platform timer or the
OS of the secure VM. SC and find_safety_window tasks
execute in parallel. As soon as find_safety_window
finds a valid safety window, both tasks set their next wake up
time and yield the execution. At this point, LTZVisor resumes
the execution of the nonsecure VM until it is time for the SC
and find_safety_window to wake up.

Note that, due to the isolation provided by TrustZone, non-
secure VM cannot interfere with the execution of secure tasks
when they are ready to execute. This protection eliminates the
need for the RoT timer which was a necessary component to
implement the restart-based SEI.

C. Optional Recovery Restart

The safety guarantees that the TEE-based implementation
provides are precisely the same guarantees as restart-based SEI
implementation. Nevertheless, there is a significant difference.
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Algorithm 3: Steps to Perform a Recovery Restart
1: SC starts and is periodically invoked in parallel to the next steps.
2: λRecovery = Trestart + Teq-4 + ε

3: repeat
4: x := obtain the most recent state of the system from Sensors
5: until conditions of Equation (4) are true for λRecovery
6: (optional) Store sensor reading in the non-volatile storage
7: Restart the system
8: /*Following steps are executed after the restart*/

9: (optional) Load the pre-restart sensor data from storage into the

memory

When the system is being restarted in every cycle, if it gets
compromised, the malicious components will only last until
the following restart, and then the software will be restored.
When using TrustZone, if the nonsecure world gets compro-
mised, it will remain compromised. Although the adversary
cannot violate the safety of the plant, it can seriously prevent
the system from making any progress.

There are two possible mechanisms to mitigate this problem.
One arrangement is to introduce rare, randomized restarts
into the system.6 Another mitigation is to monitor the plat-
form, during the SEI, for potential intrusions and malicious
activities and restart the platform after the malicious behav-
ior is detected.7 Note that with the optional recovery restarts
described in this section, a well-behaving system that is not
under attack will rarely restart. The platform will be restarted
only after it is deemed malicious or when the random function
requires it to do so. Whereas, with the restart-based implemen-
tation of SEIs, the platform has to be restarted before every
SEI.

Deciding whether the platform needs to restart or not takes
place at the beginning of the SEI—either based on a random-
ized policy or a detection mechanism. If it is decided to restart,
the steps to perform the recovery are presented in Algorithm 3.
One crucial point in restarting the system is the fact that the
platform restart must take place only when the plant is in a
state where it will sustain the safety throughout the restart and
will end up in a recoverable state—according to Definition 2—
after the restart has completed. This requirement is satisfied if
the conditions of (4) are met.

Under these steps, SC continues to push the plant
toward the center of the safe region. In parallel, the
find_safety_window function is executed in a loop and
checks if the plant at its current state meets the conditions of
safe restarting in (4) for the length of platform restart time.
Once the find_safety_window confirms the safety condi-
tions for the current plant state, the recovery restart is initiated.
In other words, the system is restarted when the plant has
enough distance from the boundaries of the recoverable states
and unrecoverable states.

6The rationale behind randomized system restarts—also known in the
literature as software rejuvenation—is that there are no perfect intrusion detec-
tion mechanisms. Also, there will always exist malicious activities that will
remain undetected. In our previous work [4], we have analyzed the impact of
restart-based recovery on the availability of a system under attack.

7In this paper, we do not propose any particular intrusion detection algo-
rithm. There is a variety of such techniques that the system architects can
choose from.

D. Carrying Sensor State Between Restarts

Some control applications might need the prior-to-restart
sensor readings for improved performance or higher qual-
ity output. For instance, low-pass filters use the past sensor
readings to remove noise from the sensors. TEE-assisted
implementation can accommodate this requirement. In this
design, restarts are always initiated within the secure VM
and, the secure VM is always the first to execute after the
restart. Immediately prior to the restart, the secure VM can
store any data on the nonvolatile storage, and load it back into
the memory after the restart. Note that the nonsecure VM is
not able to interfere with this process at all.

It is worth mentioning that the above procedure can be
used to carry any values, including the variables or states in
the nonsecure VM, and make them available after the restart.
However, we strongly advise avoiding a design where the CPS
relies on the prior-to-restart state of the nonsecure VM to
carry out its essential mission mainly because the platform
is restarted only when the nonsecure VM is deemed compro-
mised. At this point, all the states in the nonsecure VM must be
assumed corrupted. Passing the corrupted values across restarts
can propagate the adversarial effect across the restarts and
defeat the purpose of recovery restarts.

VI. EVALUATION AND FEASIBILITY STUDY

In this section, we evaluate the protections provided by
our approach and measure the feasibility of implementing it
on real-world CPSs. We choose two physical plants for this
paper: 1) a 3-degree of freedom helicopter [29] and 2) a ware-
house temperature management system [39]. For both plants,
the controller is implemented using both restart-based and
TEE-assisted approaches on a ZedBoard [8] embedded system.

A. Test-Bed Description

1) Warehouse Temperature Management System: This
system consists of a warehouse room with a direct condi-
tioner (heater and cooler) to the room and another conditioner
in the floor [39]. The safety goal for this plant is to keep the
room temperature, TR, within the range of [20 ◦C and 30 ◦C].
Following equations describe the heat transfer between the
heater and the floor, the floor and the room, and the room and
outside space. The model assumes constant mass and volume
of air and heat transfer only through conduction

ṪF = −UF/RAF/R

mFCpF
(TF − TR) + uH/F

mFCpF

ṪR = −UR/OAR/O

mRCpR
(TR − TO) + UF/RAF/R

mRCpR
(TF − TR)

+ uH/R

mRCpR
.

Here, TF , TR, and TO are the temperature of the floor, room,
and outside. mF and mR are the mass of floor and the air in the
room. uH/F is the heat transferred from the floor heater to the
floor and uH/R is the heat transferred from the room heater to
the room both of which are controlled by the controller. CpF

and CpR are the specific heat capacity of floor (in this case
concrete) and air. UF/R and UR/O represent the overall heat
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Fig. 2. 3DOF helicopter and the ZedBoard controller.

transfer coefficient between the floor and room, and room and
outside.

For this experiment, the walls are assumed to consist of
three layers; the inner and outer walls are made of oak and
isolated with rock wool in the middle. The floor is assumed
to be quadratic and consists of wood and concrete. The
parameters used are as following8: UR/O = 539.61 J/hm2K,
UF/R = 49 920 J/hm2K, mR = 69.96 kg, mF = 6000 kg, floor
area AF/R = 25 m2, wall and ceiling area AR/O = 48 m2,
thickness of rock wool, oak and concrete in the wall and floor,
respectively, 0.25, 0.15, and 0.1 m. Maximum heat generation
capacity of the room and floor conditioner is respectively, 800
and 115 J/s. And, the maximum cooling capacity of the room
and the floor cooler is −800 and −115 J/s.

2) 3-Degree of Freedom Helicopter: 3DOF helicopter (dis-
played in Fig. 2) is a simplified helicopter model, ideally suited
to test intermediate to advanced control concepts and theo-
ries relevant to real-world applications of flight dynamics and
control in tandem rotor helicopters, or any device with similar
dynamics [29]. It is equipped with two motors that can gener-
ate force in the upward and downward direction, according to
the given actuation voltage. It also has three sensors to mea-
sure elevation, pitch, and travel angle as shown in Fig. 2. We
use the linear model of this system obtained from the manu-
facturer manual [29] for constructing the SC and calculating
the reachable set in run-time. Due to the lack of space, the
details of the model are included in our technical report [2].

For the 3DOF helicopter, the safety region is defined in such
a way that the helicopter fans do not hit the surface underneath,
as shown in Fig. 2. The linear inequalities describing the safety
region are −ε + |ρ|/3 ≤ 0.3, ε ≤ 0.4, and |ρ| ≤ π/4. Here,
variables ε, ρ, and λ are the elevation, pitch, and travel angles
of the helicopter. Limitations on the motor voltages of the
helicopter are |vl| ≤ 4 V and |vr| ≤ 4 V where vl and vr are
the voltage for controlling left and right motors.

B. Restart-Based Implementation of SEI

In this section, we discuss the implementation of
the controllers of the 3DOF platform and the temper-
ature management system using the restart-based SEI
approach (Section IV). In our technical report [2], more details
are provided about the hardware and software implementation
of the controller. Due to the limited access to a real warehouse,

8For the details of calculation of UF/R and UR/O and the values of the
parameters refer to [39, Chs. 2 and 3].

the controller interacts with a simulated model of the physical
plant running on a PC (hardware-in-the-loop simulation).

RoT Module: The RoT module is implemented using a low-
cost MSP430G2452 micro-controller on an MSP-EXP430G2
LaunchPad board [38]. To enable restarting, pin P2.0 of the
micro-controller is connected to the restart input of the main
controller. Internal Timer A of the micro-controller is used for
implementing the restart timer. It is a 16-bit timer configured to
run at a clock rate of 1 MHz (i.e., 1 μs per timer count) using
the internal, digitally controlled, oscillator. A counter inside
the interrupt handler of Timer A is used to extend the timer
with an adjustment factor, in order to enable the restart timer
to count up to the required range based on the application’s
needs.

The I2C interface is adopted for the main controller to set
the restart time on the RoT module. After each restart, during
the SEI, the RoT acts as an I2C slave waiting for the value
of the restart time. As soon as the main controller sends the
restart time, RoT disables the I2C interface and activates the
internal timer. Upon expiration of the timer, an active signal
is set on the restart pin to trigger the restart event and the I2C
interface is activated again for accepting the next restart time.

Main Controller: The controller is implemented on a
ZedBoard [8] which is a development board for Xilinx’s Zynq-
7000 series all programmable SoC. It contains an XC7Z020
SoC, 512 MB DDR3 memory, and an onboard 256 MB QSPI
Flash. The XC7Z020 SoC consists of a processing system (PS)
with dual ARM Cortex-A9 cores and 7-series programmable
logic (PL). The PS runs at 667 MHz. In our experiments,
only one of the ARM cores is used, and the idle cores are
not activated. The I2C and UART interfaces are used for con-
necting to the RoT module and the actuators of the plant.
Specifically, two multiplexed I/Os, MIO14 and MIO15, are
configured as SCL and SDA for I2C, respectively. We use
UART1 (MIO48 and MIO49 for UART TX and RX) as the
main UART interface.

The reset pin of ZedBoard is connected to RoT module’s
reset output pin via a BSS138 chip, an N-channel voltage
shifter. It is because the output pin on RoT module operates
at 3.3 V while the reset pin on ZedBoard accepts 1.8 V. The
entire system (both PS and PL) on ZedBoard is restarted when
the reset pin is pulled to the low state. The boot process starts
when the reset pin is released (returning to the high state). A
boot-loader is first loaded from the onboard QSPI Flash. The
image for PL is then loaded by the boot-loader to program the
PL which is necessary for PS to operate correctly. Once PL
is ready, the image for PS is loaded, and the operating system
will take over the control of the system.

The platform runs FreeRTOS [1], a preemptive RTOS.
Immediately after the reboot, safety_controller and
find_safety_window tasks are created and executed.
safety_controller is a periodic task with the period
of 20 ms (50 Hz) and the execution time of 100 μs and
has the highest priority in the system. SC itself is designed
using the method described in Section III-A. Each invoca-
tion of this tasks obtains the values of sensors and sends the
control commands to the actuators. find_safety_window
executes a loop and only breaks out when a valid safety
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window is calculated. It executes at all times except
when it is preempted by safety_controller. When
find_safety_window computes a valid safety window,
it sends the value minus the elapsed time (Algorithm 2) to
the RoT module via the I2C interface, sets a global vari-
able in the system, and terminates. Based on this global
variable, safety_controller task terminates, and the
mission controller task is launched. find_safety_window
is implemented based on the Pseudo-code described in
Algorithm 1. Execution time of each cycle of the loop in
this function is capped at 50 ms (i.e., Tsearch := 50 ms).
In find_safety_window, to calculate the reachability of
the plant from a given state, we used the implementation
of our real-time reachability tool [11]. All the code for the
implementation can be found in the GitHub repository [2].

3DOF Helicopter Controller: ZedBoard platform interfaces
with the 3DOF helicopter through a PCIe-based Q8 data acqui-
sition unit [30] and an intermediate Linux-based machine.
The PC communicates with the ZedBoard through the UART
interface. Mission controller is a PID controller whose goal
is to navigate the 3DOF to follow a sequence of set points.
Control task has a period of 20 ms (50 Hz), and at every
control cycle, the control task receives the sensor readings (ele-
vation, pitch, and travel angles) from PC and sends the next
set of voltage control commands for the motors. The PC uses
a custom Linux driver to communicate with the 3DOF sen-
sors and motors. In our implementation, the restart time of the
ZedBoard with FreeRTOS is upper-bounded at 390 ms.

Warehouse Temperature Controller: Due to the lack of
access to the real warehouse, we used a hardware-in-the-loop
approach to perform the experiments related to this plant.
Here, the PC simulates the temperature based on the heat trans-
fer model described in Section (VI-A1). The mission controller
is a PID that adjusts the environment temperature according
to the time of the day. The controller is implemented on the
ZedBoard with the same components and configurations as the
3DOF controller—RoT, serial port connection, I2C interface,
50 Hz frequency, and the same restart time. Control commands
are sent to the PC, applied to the simulated plant model and
the state is reported back to the platform.

C. TrustZone-Assisted SEI Implementation

Our prototype implementation uses LTZVisor on the
ZedBoard which provides two isolated execution environ-
ments, secure VM and nonsecure VM. LTZVisor can only
use one of the ZedBoard cores, and the other cores are not
activated. Similar to the previous section, ZedBoard is con-
nected to the physical plant sensors and actuators through
UART interface. The configuration of the UART pins and PL
are the same as the previous section.
Safety_controller and find_safety_window

are compiled as one bare metal application and executed in the
secure VM.9 The functionality of these components is identical

9LTZVisor also provides support for FreeRTOS on the secure VM and
Linux on the nonsecure VM. However, at the time of this writing, the
code enabling these features is not publicly released yet. That is, why these
components are implemented as bare-metal applications.

to what was described in the previous section. Using the
platform timer, we ensure that the safety_controller
function is called and executed every 20 ms while,
find_safety_window is being executed for the rest of
the time. Once the state of the plant reaches a state where a
safety window is available, find_safety_window returns
the results, the application yields the processor and sets the
next invocation point to the current time plus computed safety
window minus the computation time—Section V-B. At this
point, LTZVisor restores the execution of the mission con-
troller application in the nonsecure VM until the secure VM
application is invoked again. We use the YIELD function, pro-
vided by the LTZVisor on the secure VM, which suspends the
execution of the application and invokes it after the specified
interval of time.

In our prototype, recovery restarts are initiated based on a
randomized scheme. We use a pseudo-random number genera-
tor function that returns a value between 0 and 1. if the values
are less than 1/1000, we restart the platform—the probabil-
ity of 0.1%. Otherwise, the execution proceeds to the normal
SEI. The mechanism to trigger the restarts is through system-
level watchdog timer. This is an internal 24-bit counter that
on timeout outputs a system reset to the PS (all the cores and
system registers) and program logic (the FPGA fabric in the
ZedBoard). To trigger a restart, the timer is enabled and set
to expire on the shortest time allowed by the resolution. The
timer expires immediately and restarts the platform.

D. Safety Window of the Physical Plants

At the end of each SEI, the triggering point of the next
SEI needs to be computed and scheduled. Two main factors
determine the distance between consecutive SEIs: 1) how sta-
ble the dynamics of the plant is and 2) the proximity of the
current state of the plant to the boundaries of the inadmis-
sible states. In Figs. 3 and 4, the absolute maximum safety
window of the physical plant is plotted from various states
for the plants under consideration. These values are computed
using Algorithm 1 except for clarification, the lower end of the
search in this algorithm, RangeStart, is set to 0. In these
plots, the red region represents the inadmissible states, and the
plant must never reach those states. If the plant is in a state
that is marked green, it is still undamaged. However, at some
future time, it will reach an inadmissible state, and the SC
may not be able to prevent it from coming to harm. The rea-
son is that actuators have a limited physical range. In the green
states, even actuators operating with the maximum capacity,
may not be able to cancel the momentum and prevent the plant
from reaching unsafe states. The gray and yellow highlighted
regions are the operational region of the plant—states where
the safety window of the plant is larger than zero and mission
controller can execute. In the gray area, the darkness of the
color is the indicator of the length of the safety window in
that state. Darker points indicate a larger value for the safety
window.

Fig. 3(a) and (b), plot the calculated safety windows for the
warehouse temperature management system. For this system,
when the outside temperature is too high or too low, the
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(a) (b)

Fig. 3. Safety window values for the warehouse temperature. Largest value
of the safety window—the darkest region—is 6235 s. (a) Projection into
TF = 25◦C. (b) Projection into TF = 29◦C.

(a) (b)

Fig. 4. Safety window values for the 3DOF helicopter. Largest value of the
safety window—the darkest point—is 1.23 s. (a) Projection of the state space
into the plane ε̇ = 0, ρ̇ = 0, λ = 0, and λ̇ = 0.3 Radian/s. (b) Projection
of the state space into the plane ε̇ = −0.3 Radian/s, ρ̇ = 0, λ = 0, and
λ̇ = 0.3 Radian/s.

attacker requires less time to take the temperature beyond or
below the safety range. Note that if an adversary take over
the platform at TF = 25 ◦C, TR = 40 ◦C, and TO = 26 ◦C—
top part of Fig. 3(a)—and runs the heaters at their maximum
capacity, plant will remain safe for 6235 s. Intuitively, due
to high conductivity between the floor and the room as well
the high heat capacity of the floor, the rate of heat transfer
from room to the floor is larger than the transfer rate from the
heater to the room. Due to the same reason, when the floor
temperature is TF = 29 ◦C, the safety window of the plant is
almost zero near the boundary of the TR = 40 ◦C—top part
of Fig. 3(a).

In Fig. 4, the safety window for the 3DOF helicopter are
plotted—projection into the 2-D plane. The darkest point, have
the largest safety window which is 1.23 s. As seen in this
figure, safety window is largest in the center where it is farthest
away from the boundaries of the unsafe states. In Fig. 4(b),
the angular velocity of 3DOF elevation is ε̇ = −0.3 rad/s
which means that the helicopter is heading toward the bottom
surface at a rate of 0.3 rad/s. As seen in the figure, with this
downward velocity, the plant cannot be stabilized from the
lower elevation levels (i.e., the green region). It can also be
seen that in the states with elevation less than 0.1 rad, the

safety window is shorter in Fig. 4(b) compared to Fig. 4(a).
Intuitively, for the adversary, crashing the 3DOF helicopter is
easier when the plant is already heading downward.

As we mentioned earlier, the temperature management
system has higher inertia and slower dynamics than the 3DOF
helicopter. The above figures reflect this effect, very clearly. As
the computed safety windows for the former plant are orders of
magnitudes larger than the latter—6235 s is the largest safety
window for warehouse temperature versus 1.23 s for the 3DOF
helicopter. In this system, the rate of the change of the tem-
perature even when the heater/coolers run at their maximum
capacity is slow, and adversary needs more time to force the
state into unsafe states.

Now, we will discuss the difference between the gray and
yellow regions. The mission controller can operate in the yel-
low states only with the TEE-assisted implementation of the
SEIs and not with the restart-based implementation of the
SEIs. This is due to the following reason. In run-time, com-
puted safety windows are used to set the triggering point of
the next platform SEI. However, the next SEI can be sched-
uled only if the safety window is larger than the switching
time of the platform, Ts, as presented in Algorithm 2. With
the restart-based implementation of the SEIs, the switching
time is equal to the restart time of the platform (390 ms
for RTOS on the ZedBoard) whereas, with the TEE-assisted
implementation, switching time is the timing overhead of the
context switching from secure VM to nonsecure VMs and vice
versa (less than 12 μs for ZedBoard at 667 MHz as presented
in [28]). States marked with the yellow color are those that the
computed safety window is shorter than the platform restart
time. At these states, with the restart-based SEI, the mission
controller cannot be activated.

As a result of using TrustZone-assisted implementation, we
measured a 234% increase in the size of the operational region
of the 3DOF plant—the yellow versus the gray area—across
the 6-D state space. However, note that this measurement
is very specific to this particular platform and this specific
plant. The expected improvement highly depends on the plat-
form restart time and the speed of the plant dynamics. Not
every CPS can be expected to gain significant benefits from
adopting TrustZone for implementing the SEIs. For instance,
if the restart time of the platform were shorter, the size of
the gray area in Fig. 4 would have been larger, and the over-
all improvement of the operable states—as a result of using
TrustZone—would have been smaller. Comparison between
the size of the yellow region for the 3DOF versus the temper-
ature management system is another clear implication of this
point. The platform restart time compared to the length of the
safety windows of the warehouse plant is almost negligible.
That is why implementing the SEIs using TrustZone does not
yield any noticeable improvements and the yellow region in
Fig. 3 is nonvisible.

E. Impact on Controller Availability

Every CPS has a mission that is the primary goal of the
system to accomplish. The main component that drives the
system toward this goal is the mission controller. Therefore,
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every process that interrupts the execution of the mission con-
troller results in the slow progress of the CPS mission. Thus,
one of the consequences of our design is that the SEIs and
the platform restarts stop the execution of the mission con-
troller and reduce its availability. In this section, we measure
the impact of each one of the two implementations of our
design, on the average availability of the mission controller.

The exact “availability” of the mission controller is the ratio
of time that the mission controller is executing (all the times
that the system is not in the SEI and is not going through
a restart) to the total time of the operation. In every restart
cycle, availability is defined as δmc/(δmc + TSEI + Ts). Here,
δmc is the duration of mission controller execution, TSEI is the
length of SEI, and Ts is the switching time. With the restart-
based implementation of the SEIs, Ts is equal to the restart
time of the platform, whereas, for the TrustZone-assisted SEI
implementation, Ts is the upper bound of the time required for
switching from nonsecure VM to secure VM and vice versa.
The exact availability of the mission controller is specific to
the particular trajectory that the plant takes. To get a better
sense of this metric, for each implementation, we compute
the average availability of the mission controller across all the
states where the safety window is longer than the switching
time, Ts, which is 390 ms for restart-based SEI and 12 μs for
the TrustZone-assisted SEI implementation.

For the 3DOF system, with the restart-based implementa-
tion, the calculated average availability of the mission con-
troller is 51.2%. As seen in Fig. 4, safety windows of the
3DOF plant are in the range of 0 to 1.23 s. The platform has
a restart time of 390 ms which is significant relative to the val-
ues of safety windows and it notably reduces the availability of
the mission controller. On the other hand, with the TrustZone-
assisted SEIs, the average availability of the mission controller
is 85.1%. When TrustZone is utilized, Ts is negligible—12 μs
which explains the 35% improvement in the availability. It
can be seen that despite the negligible switching overhead,
the mission controller does not reach 100% availability. This
is because of the time required to evaluate the safety condi-
tions and execute find_safety_window in the loop inside
Algorithm 2. In the states near the unsafe/safe state boundary,
the platform might need to execute the loop cycle more than
once—longer SEI allows the SC to create enough distance
from the unrecoverable states.

For the temperature management system, the average
availability of the mission controller is 99.9% with both
restart-based and TrustZone-assisted implementations of the
SEIs. Due to the slow dynamics of this plant, safety win-
dows are much longer than the Ts and TSEI under both
implementations—as illustrated in Fig. 3. Hence, the mission
controller is almost always available. Due to the same reason,
reduced switching time that is achieved when the controller
is implemented using TrustZone instead of the restarts does
not notably improve the average availability of the mission
controller.

The above results show that the impact of our approach
on the temperature management system is negligible under
both implementation schemes. In fact, the restart-based imple-
mentation is the most suitable choice for this plant and many

other high-inertia plants. On the other hand, integrating our
design into the controller of the 3DOF helicopter comes with
a considerable impact on the availability of the helicopter con-
troller. Even though the TrustZone considerably reduces the
overhead and improves the availability, but still the control
performance will noticeably suffer. Note that, the helicopter
system is among the most unstable systems and therefore, one
of the most challenging ones to provide guaranteed protection.
As a result, the calculated results for the helicopter system can
be considered as an approximate upper bound on the impact of
our approach on the controller availability. In the next section,
we demonstrate that, despite the reduced availability, the heli-
copter and warehouse temperature remain safe and the plants
make progress. Reduced availability of the controller is the
cost to pay to achieve guaranteed safety and can be measured
ahead of time by designers to evaluate the tradeoffs.

F. Attacks on the Embedded System

To evaluate the effectiveness of our proposed design, we
perform three attacks on the controllers of the 3DOF heli-
copter (with the actual plant) and one attack on the hardware-
in-the-loop implementation of the temperature management
system. All the attacks are performed on both versions of
the controller implementation. In these experiments, our focus
is on the actions of the attacker after the breach into the
system has taken place. Hence, the breaching mechanism and
exploitation of the vulnerabilities are not a concern of these
experiments. An attacker may use any number of exploits to
get into the controller device.

In the first experiment, the mission controller of the tem-
perature management system was attacked in the following
way. The outside temperature was set to 45 ◦C, and ini-
tial room temperature was set to 25 ◦C. Immediately after
the SEI was finished, the malicious controller forced both of
heaters to increase the temperature with their maximum capac-
ity. Under the restart-based SEI, we observed that the platform
was restarted before the temperature reached 30 ◦C and after
the restart, SC was able to lower the temperature. Similar
behavior was observed with the TrustZone-assisted implemen-
tation. A switch to the secure VM was triggered before the
temperature reached an unrecoverable value, the SC was able
to lower the temperature.

Second attack experiment was performed on the 3DOF heli-
copter. Here, the attacker, once activated, killed/disabled the
mission controller. Under the restart-based SEIs, in every oper-
ation cycle, the restart action reloads the software and revives
the mission controller. Therefore, the attack was activated at a
random time after the end of the SEI in each cycle. Under the
TrustZone-assisted SEI implementation, once the mission con-
troller is killed, it will only be recovered when a randomized
recovery restart is performed.10 We used a random value to
activate the attack at a random operation cycle—with a proba-
bility of 1%. After the recovery restart, mission controller was

10Note that in our prototype implementation, we did not implement a detec-
tion mechanism. However, one could deploy the logic to monitor the mission
controller and restart the platform as soon as the controller is disabled.
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Fig. 5. 3DOF helicopter trace under restart-based implementation during two
cycles when the system is under worst-case attack (where attacker is active
immediately after the SEI). Green: SEI. Red: mission controller (in this case
attacker). White: system reboot.

revived and controlled the plant until the next attack was trig-
gered. During these experiments, we observed that the 3DOF
helicopter did not hit the surface, i.e., it always remained
within the admissible set of states.

In the third experiment, the attacker corrupts the sensor
readings and feeds the corrupted values in the mission con-
troller logic. To evaluate the safety under an extreme case, the
attack is activated immediately after the end of SEI. In both
implementations of the controller, the attack is active during
all the non-SEI and nonrestart times of the system. Similar
to the first attack experiment, it was observed that the 3DOF
helicopter remained safe throughout the attack.

In the last attack experiment, we investigate the effec-
tiveness of our design against an attacker that is active
immediately after the SEI, replaces the original controller with
a malicious process that turns off the motors/fans of the heli-
copter, and forces the plant to hit the surface. During the
operation of the malicious controller, the elevation of the heli-
copter was reduced. However, in every cycle, before a crash,
the SC will take over, push the helicopter and increase the ele-
vation. Throughout this experiment, we observed that the plant
tolerated the adversarial behavior and did not hit the surface.

A trace of the states of 3DOF helicopter during two con-
sequent restart cycles, with the restart-based implementation
of SEIs, is plotted in Fig. 5. This trace is recorded from the

sensor readings of the real physical plant when the plant is
under the last attack experiment. The figure depicts elevation,
pitch, actuator control inputs (voltages of the motor), and the
safety factor. The safety factor is obtained from the safety con-
ditions for the 3DOF as described in Section VI-A. From the
figure, it can be seen the controller spends most of the time
in SEI (green region) and reboot (white region) state. This is
because this extreme-case attack is activated immediately after
each SEI and destabilizes the helicopter. By the time that the
reboot completes (end of the white region), the system is close
to unsafe states. Hence, SEI becomes longer so that the SC can
stabilize the helicopter. Under this very extreme attack model,
the system did not make any progress toward its designated
path, yet it remained safe which is the primary goal in this
situation.

VII. RELATED WORK

There is a considerable number of techniques in the area of
fault-tolerant CPS design that focuses on protecting the phys-
ical components in the presence of faults.11 Although similar,
there are fundamental differences between protecting against
faults versus protecting against an intelligent adversary. In
what follows we review some of the papers and elaborate the
differences and similarities.

The Simplex architecture [35] is a well known fault-
tolerant design for CPS. It deploys two controllers: 1) a
high-performance (yet unverifiable) controller and 2) a high-
assurance, formally verified, SC. A decision module (formally
verifiable) is used to take over the control in the case
that the high-performance controller is pushing the physical
system beyond a precomputed safety envelope. A few vari-
ants of Simplex design exist. Some use a varying switching
logic [11], [12] while others utilize a different SC [6], [45].
Nevertheless, all these designs assume that only a subset of the
software misbehaves (for instance, they assume that switching
unit cannot misbehave), which is invalid when the systems
are under attack, and no other mechanism—such as restarts
or TEE features are employed. In contrast, this paper assumes
that the adversary can corrupt “all” layers of the software.

Another variant of the Simplex architecture is System-
Level Simplex [10] where the SC and the decision module
run on dedicated hardware to isolate them from any fault
or malicious activities on the complex controller (i.e., the
high-performance controller). Techniques based on this archi-
tecture [4], [5], [10], [46] guarantee the safety of the physical
plant even when the complex controller is under attack.
However, implementing the System-Level Simplex design on
most COTS platforms is challenging since most commercial
multicore platforms are not designed to support strong inter-
core isolation (due to the high degree of hardware resource
sharing). For instance, an adversary residing in the high-
privileged core may compromise power and clock configu-
rations of the entire system. Hence, full isolation can only be

11Where the safety invariants of the physical plant must be preserved
despite the possible implementation and logical errors in the software.
Here, “faults” refer to bugs in the software implementations. Another
definition for faults exists that includes physical problems (e.g., broken
sensors/actuators/etc.)—we do not consider them in this paper.
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achieved by utilizing two separate boards. On the other hand,
our design provides formal safety guarantees using only one
computing unit.

Trusted hardware features are commonly employed in the
literature to achieve security goals. Some works have deployed
the trusted platform module to build trusted computing envi-
ronments on servers and hypervisors [27], [31], [32]. ARM
TrustZone has been utilized in [20], [43], and [44] to imple-
ment security monitors in the secure world. Azab et al. [9],
leverage TrustZone and propose TZ-RKP to protect the
integrity of the operating system kernel running in the nor-
mal, nonsecure world. The use of trusted hardware features
to create TEEs is somewhat equivalent to the SEI concept as
presented in this paper. The analytical framework proposed in
this paper could be combined into these techniques to develop
a diverse set of CPS platforms that can provide physical safety
guarantees.

Restart-based recovery is previously explored in some of
the aforementioned Simplex-based works [4], [5]. Specifically,
these works restart the isolated, dedicated complex controller
unit—equivalent to the mission controller. Restarting the com-
plex controller while an SC running on separate hardware
maintains the safety during the restart is more straightforward
than restarting the entire platform. Another Simplex-based
work in which Abdi et al. [6] used a single hardware
unit implements full-system restarts. Nevertheless, this paper
assumes that the SC and the decision module may not be com-
promised and are always correct. Again, this assumption is
invalid in the security context, and the physical safety cannot
be guaranteed when the system is under attack.

A recent work studies frequent restarts and diversifica-
tion for embedded controllers to increase the difficulty of
attacks [7]. In spite of the conceptual similarity, our works
mainly differ in the calculation of restart times. By dynami-
cally calculating the next restart time using real-time reach-
ability in each cycle, we can guarantee the system safety.
Whereas, Arroyo et al. [7] empirically choose the restart times
without any formal analysis.

The idea of restarting (either the entire system or a part
of the components) at run-time is not novel and has been
studied in earlier research to handle the problem of software
aging in two forms: 1) revival (i.e., reactively restarting a
failed component) and 2) rejuvenation (i.e., proactively restart-
ing functioning components). Some research [19], [23], [40]
have tried to model failures and faults for client-server appli-
cations and tried to find an optimal rejuvenation strategy with
the aim to reduce the system downtime. Some have intro-
duced recursively restartable systems for fault-recovery and
increased availability for Internet services [13]. The concept
of microreboot (i.e., systems consist of fine-grain rebootable
components) is explored in [14]–[16]. In spite of entirely
different purposes, these works assert the effectiveness of
restarting as a recovery technique. In this context, some reju-
venation schemes [21] tackle software aging problems related
to arithmetic issues such as the accumulation of numerical
errors in controllers of safety-critical plants. Nevertheless, the
rejuvenation techniques for safety-critical systems are very
limited. A survey displays that, in this research area, only

6% of the published papers have considered safety-critical
applications [18].

The philosophy of this paper is similar to that of the works
in a trend in systems dependability that applies the concepts
and mechanisms of fault tolerance in the security domain,
intrusion tolerance (or Byzantine fault tolerance) [17], [42].
These works advocate for designing intrusion-tolerant systems
rather than implementing prevention against intrusion. Many
works in intrusion-tolerant systems have targeted distributed
services in which replication and redundancy are feasible.
Their goals are mainly to ensure the availability of the system
service even if some of its nodes are compromised. Another
work proposes to proactively restore the system code from a
secure source to eliminate any potential transformations car-
ried out by an attacker [17]. With proactive recovery, the
system can tolerate up to f faults/intrusions, as long as no more
than f faults occur in between rejuvenations. Veríssimo [41]
proposed a general hybrid model for distributed asynchronous
systems with partially synchronous components, named worm-
holes. Sousa et al. [37] take wormholes as a trusted secure
component (similar to our RoT timer) which proactively recov-
ers the primary function of the system. The authors suggest
that such a component can be implemented as a separate,
tamper-proof hardware module in which the separation is
physical; or it can be implemented on the same hardware
with virtual separation and shielding enforced by software.
A proactive-reactive recovery approach is introduced in [36]
(built on top of [37]) that allows correct replicas to force the
recovery of a faulty replica. While these techniques are useful
for some safety-critical applications such as supervisory con-
trol and data acquisition, they may not be directly applicable
to safety-critical CPS. Potentially, a modified version of these
solutions might be utilized to design a cluster of replicated
embedded controllers in charge of a physical plant.

VIII. DISCUSSION

Some limitations need to be considered before deploying
this design to a physical plant or platform. The restart-based
implementation is most suitable for CPSs where the plat-
form restart time is much smaller than the speed of the plant
dynamics. Many embedded systems have reboot times that
range from tens of milliseconds [26] to tens of seconds which
are considered nonsignificant for many applications such as
temperature/humidity management in storage/transportation
industries, process control in chemical plants, pressure control
in water distribution systems, and oxygen level management
in patient bodies. The main advantage of the restart-based
implementation of SEIs is that it can be deployed on the cheap-
est, off-the-shelf micro-controllers that are still widely used in
many industrial applications. Also, the deployed application
must be designed to operate within the system’s safety bound-
ary. Otherwise operation of the system is trivially unsafe and
the SC is unusable.

On the other hand, using the restart-based design on the
physical plants with high-speed dynamics will require very
frequent restarts and will significantly reduce the control
performance and the progress of the system. Frequent reboots
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may also pose implementation challenges. For instance, the
control device may need time to re-establish a connection
over the Internet or to authenticate with the ground control.
Such actions might not be possible if the device has to restart
frequently. These types of applications will significantly bene-
fit from the TrustZone-assisted implementation that eliminates
the overhead associated with restarting. As a future direction,
we are exploring a multicore implementation of TrustZone-
assisted design where the SEI runs in parallel to the mission
controller and has minimal impact on the mission controller’s
performance.

While a restart clears an instance of an attack it does not
mean that the adversary is eliminated. It is possible that the
adversary attempts to compromise and damage the system
after each restart. However, even attack states cannot be car-
ried across multiple attack instances due to the restarts. Each
attack instance is contained by the proposed approach since
the system restarts before it reaches the unsafe region. As a
result, safety of the entire system is guaranteed.

One question that may arise is why not implement all
the controllers using TrustZone? Platforms equipped with
TrustZone or other TEEs are more expensive. Many control
applications are deployed on very low-cost micro-controllers
where only restart-based approach is feasible. Furthermore,
many high-inertia physical plants will not gain any notable
benefit if they are implemented via TrustZone—as shown
for temperature management system in the evaluation sec-
tion. In those cases, the TrustZone-based implementation only
unnecessarily complicates the design and implementation of
the CPS.

It should be noted that restart-based SEI is only suitable
for stateless controllers (e.g., mission controller) where the
control command is generated based on the current state of
the plant and environment. Such a design is useful for some
applications but cannot be utilized with stateful controllers.
In fact, for the very same reason, we introduce the TEE-
based SEI in this paper. One question that comes into mind
is about the compatibility of a stateful controller with TEE-
based SEI implementation and recovery restarts? Note that
with TEE-based SEI approach, the system is restarted only
when it is detected to be compromised. Under the assump-
tions of our threat model, an adversary can maliciously modify
all the state on the memory and disk (except read-only stor-
age). In other words, even before the restart, the actual state
of the system is already lost, and the stateful mission con-
troller cannot continue to operate. Restarting the system at
this point only loses the untrustworthy and hence unusable
state.

Another important point to mention is that, under both
restart-based and TEE-based implementations of SEI, the SC
has to be a stateless controller so that it can safely stabilize the
plant without the knowledge of its past states. This is the main
reason that even with the TEE-based SEI design approach,
only mission-controller, which is not critical for the safety,
can be stateful. In this case, due to the loss of states after
the compromise, system will inevitably suffer a performance
loss, but the safety will not be violated. This can be another
limiting factor on the type of systems or the kind of safety

constraints imposed on it that needs to be considered when
using our approach.

IX. CONCLUSION

In this paper, we present an attack-tolerant design for
embedded control devices that protects the safety of physi-
cal plants in the presence of adversaries. Due to the physical
inertia, pushing a physical plant from a given (potentially
safe) state to an unsafe state—even with complete adversarial
control—is not instantaneous and often takes finite (even con-
siderable) time. We leverage this property to calculate a safe
operational window and combine it with the effectiveness of
system-wide restarts or TEEs such as TrustZone to protect the
safety of the physical system. We evaluate our approach on
realistic systems and demonstrate its feasibility.
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