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ABSTRACT 

 

 A wide variety of distributed energy resources (DERs) such as pluggable electric vehicles 

(EVs), solar arrays, smart buildings, etc. are now being connected to the power grid. Malicious 

adversaries can use these as entry mechanisms to gain access to the grid with the intention of 

creating instability in the system. This work focuses on secure integration of DERs with the 

power grid. To this end, we propose techniques to detect malicious activity when either the 

DERs or the communication channels between the DERs and the smart grid components are 

compromised. We propose a cyber-physical anomaly detection engine to ensure that critical grid 

components remain secure, and hence, safe. Specifically, we have focused on the vehicle-to-grid 

(V2G) system. In this system, aggregators are the critical components through which DERs such 

as EVs are connected to the grid. We have developed a prototype anomaly detection engine for 

aggregators that manage/communicate with the EVs. Since the V2G system is time-sensitive, the 

anomaly detection engine also monitors the timing requirements of the system by checking the 

frequency constraints on messages at the aggregator apart from monitoring the cyber and 

physical data constraints to ensure safety of the aggregator. 
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Chapter 1: Introduction

The electric grid is one of the critical infrastructures of a nation and its correct and

continued operation is of national interest. It is a complex cyber-physical system (CPS)1, often with

safety-critical properties. Any problem that affects the power grid can result in damage to life,

property or the environment. With increased automation, technological and communication

advances, multiple new components and systems are interacting with the grid, often in real-time.

Some notable examples are the distributed energy resources (DERs) such as pluggable electric

vehicles (EVs), solar arrays, smart homes and industrial building automation systems. With this

increased connectivity and plethora of applications comes more opportunities for malicious entities

to gain access to critical systems and potentially wreak havoc with the essential components of the

grid. Attackers could use the communication channels between the DERs and the grid to actually

take control of or even shut down critical grid components [11].

There exist multiple challenges in securing power grid systems: (a) the grid has many

legacy systems that may not know how to interact, in a secure manner, with the newer applications

such as EVs; (b) attacks on edge devices (such as DERs) are difficult to detect at the grid level due

to the lack of visibility into their operational details; (c) new systems such as the V2G introduce

new components such as EVs, aggregators and electric vehicle supply equipments (EVSEs) to the

grid, each of which can have additional vulnerabilities; (d) these systems also introduce new

communication paths that raise new issues dealing with coordination among multiple stakeholders

and finally (e) new infrastructure must be set up for managing credentials for the new components

1Cyber-physical systems (CPS) are engineered systems that are built by integrating computation components with

physical components. [1].
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and their operators. In fact, it is well documented that the electric grid is vulnerable to a wide range

of attacks [21].

With the increasing number of EVs (e.g., Tesla), the communication complexities in the

vehicle-to-grid (V2G) system have increased. EVs not only participate in drawing current from the

grid to charge themselves but they also act as batteries that can discharge to the grid during periods

of high power demand [24]. Hence, EVs are fast becoming an important type of DER that closely

interact with the grid. If an attacker can take control of (a) either enough EVs in a local area or (b)

the entity that controls/manages a large number of them then these systems can be used to cause

problems to the grid. Hence, it is vital to ensure that EVs (and especially their communication

channels with the grid) are monitored and remain secure. In this work we focus on EVs and their

connection to the grid via intermediaries such as aggregators.

Figure 1.1 presents a high-level conceptual architecture of an electric grid with multiple

EVs connected to it. The ”aggregators” [15] in this figure refer to entities that act as mediators

between the end DER systems (the EVs in this case) and the power grid utility system. A single

aggregator can manage multiple DERs (usually in close geographic proximity). In the model

presented in Figure 1.1, the aggregator can be a prime target for attackers since (i) it manages

multiple DERs and (ii) is also directly connected to the utility system. A successful intrusion at the

aggregator level can have serious consequences for the end systems as well as the grid. Therefore,

ensuring the security of this critical component (viz.,aggregator) is essential to ensure secure

integration of DERs with the grid. To this end, we propose an Anomaly Detection Engine with

mechanisms to detect anomalous behavior in aggregators of the V2G system. For our anomaly

detection engine, we rely on both the cyber and physical properties of the system. On the cyber

side, we focus on the communication protocol in the V2G system to ensure correct operation of the
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controller, i.e., aggregator, while we validate its behavior using the physical side of the system in

the form of power measurements.

The main contributions of this work are:

1. An enumeration of the correct sequences of commands in the V2G communication protocol

to generate an aggregator state machine.

2. Development of an anomaly detection engine that can differentiate between correct/incorrect

communication and data exchange at the aggregator level. Since the V2G system is a

real-time system (i.e., a system with timing constraints), the anomaly detection engine also

makes use of timing constraints of the V2G system apart from data constraints in order to

differentiate between correct and incorrect behavior.

3. Implementation and evaluation of a prototype of the anomaly detection engine for

aggregator-V2G system.

Figure 1.1: Conceptual Architecture of a Vehicle-to-Grid (V2G) system. [22]
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Chapter 2: Vehicle-To-Grid System

Power grid systems such as Vehicle to Grid (V2G) system are time-sensitive. The correct

functioning of the system requires not only functional correctness but also timing correctness.

Specifically, the messages in the V2G system must meet certain timing requirements such as

frequency related constraints apart from data constraints (explained in detail in Chapter ).

Fig.1.1 shows the conceptual architecture of the V2G system. The main components in this

system include EVs, aggregators and the power grid. EVs not only act as loads but also participate

in various other grid operations. The EV to power grid operations include (a) charging where EV

draws power from the grid, (b) discharging where EV supplies power to the grid during times of

peak power demand and helps to reduce the load on the grid and (c) frequency regulation, an

operation that is used to stabilize the grid frequency by performing frequent charging and

discharging operations.

Aggregators are entities that act as mediators between end users (viz.,EVs) and the utility

operator. Aggregators are particularly useful in coordinating the discharging and frequency

regulation operations between the EVs and the power grid. This is because individual EVs have

very small power capacities in comparison with the scales of power generation and distribution at

the power grid. Therefore, for efficient discharging and frequency regulation operations, a large

number of EVs are required. An aggregator manages multiple EVs upto 400 in number [19] and

helps in efficiently managing these operations [24]. With aggregators acting as intermediaries

between the utility power grid operator and the EVs [15], all communication messages between the

EVs and the power grid pass through aggregators. This is the system model used in our work.

The requirements and specifications for communication between the EVs and the electric
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power grid are established by the SAE communication standards [9]. SAE J2847/1 standard

provides specifications for forward power flow viz.,charging operation between the EVs and the

power grid [17]. Whereas, SAE J2847/3 standard provides specifications for reverse power flow

viz.,discharging and frequency regulation operations between the EVs and the power grid [18].

Integration of distributed sources of energy such as EVs with the power grid comes with the

penalty of making the grid susceptible to a range of cyber-physical attacks. These include large

scale attacks if many of these edge devices viz.,EVs, are hacked.

The vulnerability of the V2G system to a wide range of attacks is mainly due to the

following factors:

• Utilities do not have direct control over EVs and hence are unable to enforce strict policies

for secure communication.

• Customer sites lack enough security. This leads to exposure of EVs to physical attacks such

as attacks on locks and other anti-theft mechanisms [4]. There is also an additional risk of

exposure to cyber attacks due to insufficient knowledge, for instance, in setting up passwords.

• Direct interaction of customers with EVs may be used to unethically manipulate energy

consumption data [3]. Compromised grid edge devices (EVs) may also be used to launch

attacks that cause grid instabilities and blackouts [11].

The growing number of sophisticated attacks (Chapter ), necessitates the need for the

development of an advanced cyber-physical attack detection and resiliency framework.
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Chapter 3: Threat Model

Integrating EVs (that act as variable loads) with the power grid entails many security

considerations. Tab. 3.1 shows the possible attacks on a V2G system [12, 25, 26]. The attacks can

be broadly classified into Network-based attacks and Component-based attacks.

Network-based attacks are the ones where the V2G communication network is

compromised. These include Man-in-the-middle attacks (MITM) that either passively intercept and

observe the communication by eavesdropping or actively modify communication by injection,

replay or repudiation of traffic. Denial of Service (DoS) attacks on the V2G network include

jamming of signals and dropping of packets. For instance, when EVs initially connect to the grid,

information such as customer details and location data are exchanged. Eavesdropping on such

information compromises customer privacy. As another example, transmitted control commands

and updating of firmware, software, drivers etc. also affect system stability, safety and reliability.

Active modification of such traffic has an impact on the functioning of the V2G components [10].

Component-based attacks are those attacks where one or more of the components in the

V2G system are compromised. These include violation of authentication and/or authorization at the

utility system (components of the power grid including aggregators), spoofing of utility system

components, compromise of end devices (Electric Vehicles) and Denial of Service (DoS) attacks on

utility system components by the exhaustion of resources at aggregator and/or Power Grid. These

threats make the V2G sub-system of the power grid highly susceptible to attacks. Hence V2G

system security is of paramount importance for the safe operation of the power grid.
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Table 3.1: Threats in the Vehicle-to-Grid System

Network-based Attacks Component-based Attacks

Passive Man-in-the-middle (MITM) attacks -

intercept communication and analyze traffic

(eavesdropping)

Violation of authorization and/or authentication

at the utility system (components of the power

grid including aggregators)

Active Man-in-the-middle (MITM) attacks -

modify, inject, replay, repudiate traffic

Utility system (components of the power grid

including aggregators) spoofing

Denial of Service (DoS) attacks - jamming of

signals, dropping of packets

Compromise and spoofing of end devices (Elec-

tric Vehicles)

Denial of Service (DoS) attacks on utility system

components - exhaustion of resources at aggre-

gator and/or Power Grid

Our goal is to securely integrate EVs with the power grid. To this end, we monitor and

secure the critical component i.e., aggregator, through which EVs are connected to the grid. We

focus on the following attacks [12, 25, 26] on the aggregator:

1. Aggregator Compromise (Component-based attack) – Aggregator vulnerabilities can be

used by attackers to invoke malicious behavior that result in violations of specifications.

2. Electric Vehicle Compromise (Component-based attack) – Multiple edge devices (in this

case EVs) can be compromised and used to send malicious data to the aggregator.

3. Network Compromise (Network-based attack) – The network links connecting the
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aggregator to the EVs can be compromised to intercept and / or modify traffic going to the

aggregator.

According to our system model [Chapter ], the aggregator receives inputs from two sources,

the EVs and the power grid. Therefore, secure integration of EVs with the power grid requires

monitoring of communication between the aggregator and EVs such that compromise of either the

EVs or the network connecting them to the aggregator does not result in aggregator compromise. In

other words, our goal is to ensure that the aggregator is intrusion tolerant.

8



Chapter 4: Cyber-Physical Anomaly Detection Engine

Our focus is to secure the aggregator, one of the main components of the V2G system,

thereby increasing the reliability and the resiliency of such systems against both cyber and physical

attacks. Power grid systems are often time-sensitive. Therefore, our goal is to not only detect

anomalies accurately but also to do it in ”real-time” i.e., we detect an anomaly in a malicious

network packet instantaneously upon its arrival at the aggregator. The system model used in our

work is the model adopted from literature [15] where aggregators act as intermediaries between the

utility (power grid) operator and the EVs [Chapter ]. Hence all communication messages between

the EVs and the power grid pass through the aggregators. In order to ensure safe operation of the

aggregator, we monitor operations on both sides, i.e., the EV side as well as the power grid side, as

explained below.

We have designed an Anomaly Detection Engine for the aggregator that detects unexpected

packets during communication. This anomaly detection engine uses information from multiple

sources to monitor the system. The system architecture is as shown in Fig.4.1. Anomalous

incoming packets to the aggregator are dropped thereby ensuring intrusion tolerance at the

aggregator.

Figure 4.1: Secure Aggregator Architecture.
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The anomaly detection engine uses (a) two levels of deep packet inspection along with (b)

timing constraint validations and (c) power measurement validations to detect anomalies in system

behavior. An anomaly is detected whenever the system deviates from the expected system behavior.

Expected system behavior is defined based on the communication standards in the V2G system, as

discussed in detail below.

4.1 Deep Packet Inspection

In order to detect anomalies at the aggregator, data present in incoming packets from EVs as well as

timing constraints associated with them are monitored. Two levels of deep packet inspection are

used for this purpose as explained in detail below.

4.1.1 Deep Packet Inspection Level 1

At this level, the sequences of messages in incoming packets are validated. To do this, an

aggregator state machine is created with valid states and state transitions. This state machine is

based on valid message sequences established by communication standards between the aggregator

and the EVs as well as between the aggregator and the power grid. The requirements and

specifications for communication between EVs and the electric power grid are established by the

SAE J2847/1 standard for forward power flow that includes charging [9, 17] and SAE J2847/3

standard for reverse power flow that includes discharging and frequency regulation [9, 18]. A list of

valid messages or commands between the aggregator and the EVs as well as the aggregator and the

power grid is created. Then a list of valid command sequences formed by these messages is created

to verify if the packets coming into and going out of the aggregator follow these valid sequences.
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These valid messages and message sequences are in accordance with the SAE communication

standards

Since the SAE standards are proprietary, complete details are not provided. However,

sufficient details on the types and sequences of messages are provided below in Fig. 4.2 for a better

understanding of our work. Fig. 4.2 shows the various messages in each of the three EV-grid

operations, (a) charging, (b) discharging and (c) frequency regulation.

Table 4.1: SAE J2847/1 and SAE J2847/3 Message Types

Charging and Discharging Frequency Regulation

Flow Reservation, Power Status,

Flow Reservation List

DER Setup/Initialization, Power Sta-

tus, DER Status, DER Availability,

DER Control List

Fig. 4.2 shows the principal sub-states in the aggregator state machine that are generated

from the list of valid command sequences enumerated for the three EV-grid operations. The state

diagram captures the various states and state transitions when EVs are subscribed i.e., connected to

the power grid (denoted by ’S’) as well as when they are not subscribed to the grid (denoted by

’NS’). When subscribed, EVs can be involved in any one of the three aforementioned EV-grid

operations. Each state represents a sequence of messages. The state transitions in various cases are

as follows:

a) Subscribed and Charging / Discharging - Flow reservation is the process in which the EV is

assigned a subscription period (i.e., period when connected to the grid) for

charging/discharging. First, a flow reservation is established. This may be followed by one or
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more new flow reservations after cancellation of a previously established flow reservation.

Once the subscription period begins, the EV starts sending periodic power status updates (i.e.,

information related to the amount of power drawn) to the grid through the aggregator. In

parallel, it also periodically fetches the flow reservation list from the grid, through the

aggregator, to check for any updates in the subscription period.

b) Subscribed and Frequency Regulation - first the set up and initialization of the Distributed

Energy Resource (DER) is performed where the EV specific information (such as battery

capacity, etc. ) is sent and the process of frequency regulation is initiated. Once the

subscription period begins, the EV starts sending periodic updates including power status,

DER status and DER availability to the grid. In parallel, it also periodically fetches the

DERControl list from the grid to check for any updates in the subscription period. The

DERControl List is equivalent to the flow reservation list in case of charging/discharging

operations and contains subscription period related information.

c) Not subscribed - when the EV is not subscribed to the power grid (i.e., not engaged in any of

the three EV-grid operations), it periodically fetches updates on pricing and load control

related information from the grid to make a decision on when to charge / discharge.

4.1.2 Deep Packet Inspection Level 2

At this level, command or message data in the packets coming into the aggregator are

validated. This next level of analysis of command data in packets is particularly useful for

monitoring the aggregator/EV side of communication that involves a highly vulnerable component

of the V2G system,viz.,the EV (edge device). Two important parameters in the EV to power grid
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communication that are most likely to be tampered by adversaries are:

a) the subscription period, that defines the duration of charging/discharging during the

charging/discharging/frequency regulation operations and

b) the state of charge (SOC), that defines the percentage of charge in the battery of the

connected EV.

Hence, we need to inspect packets to monitor these quantities. During charging and discharging

operations, the EV periodically fetches the flow reservation list from the grid while also

periodically updating its power status to the grid. Similarly, during frequency regulation operation,

the EV fetches the DERControl list from the grid. The flow reservation list and the DERControl list

contain the start and end of the subscription period. This data is used to verify that there are no

power status updates outside the specified time interval. Power status updates occur only during the

subscription period.

The power status update messages contain vehicle SOC related information in terms of

amount of power drawn. These power measurements are validated against physical power

measurements as discussed below.

4.2 Consistency of Cyber States with Physical States

We propose another level of security check by verifying the consistency of Cyber states

with the Physical states. Power measurements are obtained from the power grid network through

sensors [6] and compared with the power measurements reported in the cyber messages, i.e., the

power status update messages. In order to reduce the possibility of simultaneous tampering of both

the cyber messages and the power measurements, the sensors used for cross-validation are located
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geographically far away from the EVs.

Figure 4.2: Sub-states of the aggregator state machine.

4.3 Timing Requirements Validation

Power grid systems such as V2G system are real-time systems that must satisfy certain time

related constraints. Our anomaly detection engine monitors incoming packets to ensure that timing

constraints are enforced. Periodic messages have a predefined frequency. The frequency of such

periodic messages coming into the aggregator are monitored. At the aggregator, the frequency of a

given periodic message is monitored by checking the time elapsed between two occurrences of the

message. Therefore, it is not required that the clocks at the aggregator and the EVs be synchronized.

In all of the validation techniques above, consistency of data obtained from one source is
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verified against data obtained from a different source as explained next. This makes it more difficult

to tamper with the data so as to produce false consistencies. In case of Deep Packet Inspection

Level 1 and Timing Requirements Validation, packets are verified against information obtained

from the communication standards documentation. For Deep Packet Inspection Level 2, (a) SOC

related data is validated against physical power measurements, (b) subscription period related data

is validated using messages from the power grid side of communication that contain flow

reservation list/DERControl List and messages from the EV side of communication that contain

power status updates.
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Chapter 5: Implementation

To evaluate the anomaly detection engine, we implemented a prototype in Python2.7 on the

Intel i7 NUC platform [5]. Tab.5.1 summarizes the platform details.

Table 5.1: Implementation Platform Details

Platform Processor Memory Operating System

Intel i7 NUC Intel(R) Core(TM) i7-

7567U CPU @ 3.5 GHz,

4 cores

32 GB RAM, 128 GB

HDD

Ubuntu 16.04

The algorithm for anomaly detection is as shown in Algorithm 5.1. The engine inspects all

the received packets from EVs and filters out the malicious ones. To handle multiple EVs at an

aggregator, there are multiple instances of packet inspection that execute in parallel, each instance

monitoring a single EV. The maximum number of such parallel instances is same as the maximum

number of EVs that can be handled by a given aggregator. The source EV of each received packet is

first identified and the packet is then passed onto the corresponding instance of packet inspection.

Based on the output from the packet inspection module, the packet is either dropped or output. The

algorithm for packet identification is shown in Algorithm 5.2. The source and destination IP

addresses of a packet are used to determine the instance i to which the packet must be passed on. If

the packet is from a new EV, the packet is either assigned to a free instance (an instance i in idle

state) or dropped if all instances are busy (i.e.,-1 is returned). An instance moves to idle state if it

does not receive a packet from the EV for a specified time period (i.e., connection to the EV is
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dropped after a timeout).

Algorithm 5.1 Anomaly Detection Engine
Input: All packets from EVs

Output: Benign packets from EVs

Spawn ’n’ instances of Packet Inspection module

for packet in packets do

instance i := Packet Identification
(
packet

)
if instance i not equals -1 then

//Call ith instance of Packet Inspection

anomalous := Packet Inspection
(
packet

)
if anomalous then

drop packet

else

output packet

end if

else

drop packet

end if

end for

The algorithm for packet inspection is as shown in Algorithm 5.3. The python scapy

module [7] is used for packet parsing. Using the specifications provided by the SAE

communication standards for forward and reverse power flows [17, 18], a state machine of all

possible valid states and state transitions is created. The received packet is parsed and (a) two levels

of data validations, (b) timing constraint validation and (d) cyber-physical consistency validation

using power measurements from physical sensors embedded in the network are performed to detect

anomalous behavior (as discussed in detail under System Architecture). Based on the outcome of

this inspection, the state machine is advanced and anomaly notifications are returned accordingly.
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As previously mentioned, an instance of the packet inspection module moves to idle state if no

packet is received until timeout.

Algorithm 5.2 Packet Identification
Input: Packet

Output: Instance of Packet Inspection module

//Determine to which instance of Packet Inspection module does packet belong

for i in instances do

//Checking src and dst IP addresses

if packet IP equals IP monitored by i then

return i

else

if i is free then

set monitoring IP of i to packet src IP and return i

else

return -1

end if

end if

end for
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Algorithm 5.3 Packet Inspection
Input: Packet

Output: Packet is anomalous or not

if no packet received until timeout then
transition to idle state

else
//Deep Packet Inspection 1

if packet.payload matches expected packet.payload in current state then
//Deep Packet Inspection 2

if current time in subscription period and packet.payload contains power status update then
pass

else
raise anomaly - invalid subscription

end if
//Cyber and Physical States Consistency Validation

if (packet.SOC - packet.lastSOC) matches power measurements from sensors in the elapsed

time interval then
update packet.lastSOC

else
raise anomaly - inconsistent power

end if
//Timing Constraints Validation

if (packet.arrivalTime - packet.lastArrivalTime) satisfies frequency constraints then
update packet.lastArrivalTime

else
raise anomaly - inconsistent frequency

end if
transition to next state

else
raise anomaly - unexpected packet

end if
end if
if anomaly raised then

return anomalous

else
return not anomalous

end if
19



Chapter 6: Evaluation

The anomaly detection engine is placed close to the aggregator in the communication path

between the aggregator and the EVs as shown in Fig. 4.1. This makes it important to ensure that it

does not introduce significant delay to the packet transfer rate at the aggregator. We therefore

evaluate the prototype of our anomaly detection engine in terms of both accuracy and performance.

1. Accuracy is measured in terms of false positives and false negatives.

2. Performance is measured by comparing the average time taken by the anomaly detection

engine to inspect a packet with the minimum packet inter-arrival time on network.

6.1 Test Cases to measure Accuracy

Currently, there are no EVs/EVSEs that support the SAE J2847/1 and SAE J2847/3 standards since

these communication standards are still in the process of development.

Therefore, to test our anomaly detection engine, we developed a python script to generate

packets with custom HTTP payloads according to specifications provided by currently available

SAE communication standards [17, 18]. Details are explained below.

6.1.1 Deep Packet Inspection Level 1

To test Level 1 packet inspection that monitors the sequence formed by incoming and

outgoing packets against the list of all possible valid sequences, the following tests were performed:

• Test for false positives using valid test cases - We generated packets that form all known

valid sequences from the SAE standards [17, 18] for testing. These valid sequences consist of

parallel as well as repeating sequences with repeating subsequences [Tab. 6.1]. This
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complexity gives rise to the possibility of a lot of valid variations. Hence the large number of

possible test cases. This is explained with an example below.

Tab.6.1 gives the number and type of valid sequences for the three EV-grid operations. For

instance, consider the charging operation. As shown in Fig. 4.2, first a flow reservation with

or without cancellation is performed (note the existence of two possibilities already). Then

the EV starts sending periodic power updates to the grid during its subscription period for

charging. In parallel, the EV also periodically fetches the flow reservation list from the grid.

Periodic messages give rise to repeating sequences and increase the number of possible valid

variations. Similarly, parallel sequences of messages (power updates and fetching of flow

reservation list in this case) also increase the number of possible valid variations. This is

because one or more messages from a parallel sequence (say, power updates in this case) can

arrive anywhere between messages in a related parallel sequence (fetching of flow reservation

list in this case). The sequence to which the message belongs is identified using the message

data.

We tested all known valid sequences as shown in Tab. 6.1 including variations due to parallel

and repeating sequences. Our prototype did not signal an anomaly in any of the valid cases.

In other words, no false positives or false alarms, i.e., signaling anomaly in case of valid

sequences, were encountered.

• Test for false negatives using invalid test cases - We generated various types of invalid test

cases including well crafted and random test cases. These test cases consisted of invalid

packets being randomly placed among packets forming valid sequences (python’s random

module was used to randomly choose the location). In the well crafted test case, the payload
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of an invalid packet followed the communication standard specifications, i.e., the payload

contained one of the valid messages but was placed so as to form an invalid sequence. The

only difference in the random test case was that the payload of an invalid packet did not

follow the communication standard specifications. The number of possible test cases here is

much larger than in case of known valid sequences due to the fact that a large number of

random variations to the given set of valid sequences is possible. It was therefore important

to generate a large set of invalid test cases to verify that the state machine implemented in the

prototype did not have any invalid transitions. Our prototype detected anomalies in each of

these test cases, i.e., no false negatives were encountered. These results are summarized in

Tab. 6.2.

Table 6.1: Valid Command Sequences

Grid Operation Number of Parallel Se-
quences

Number of Repeating
Sequences and Subse-
quences

Total number of Valid
Sequences(including
parallel, repeating
and non-repeating
sequences)

Charging 2 6 150

Discharging 2 3 48

Frequency Regulation 2 2 28

6.1.2 Deep Packet Inspection Level 2

To test Level 2 packet inspection (that monitors the SOC and subscription period), the

following tests were performed:

• Test for false positives using valid test cases - We generated packets with consistent SOC
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and subscription period related data for testing. Again, our prototype did not detect

anomalies in any of the valid cases, i.e., no false positives were encountered.

• Test for false negatives using invalid test cases - We generated various types of invalid test

cases. These test cases consisted of packets with inconsistencies. With respect to the

subscription period, the arrival time of packets containing power status updates were

modified so as to be inconsistent with the time intervals specified in packets containing the

flow reservation list. With respect to SOC, the power information in packets containing

power status updates were modified so as to be inconsistent with physical power

measurements. Our prototype successfully detected anomalies in all of the above cases, i.e.,

no false negatives were encountered. These results are summarized in Tab. 6.2.

Currently, the physical power measurements are read from a file filled with crafted power

measurements. The crafted power measurements consist of values that are consistent with the

values reported in cyber messages as well as values that are different from those reported in cyber

messages. The above crafted power measurements file can easily be replaced by a CSV spreadsheet

file containing the actual physical power measurements, for instance, that generated by the PQube3

sensors [8] and will not impact the accuracy evaluation of the anomaly detection engine.

6.1.3 Timing Requirements Validation

To test the timing based validation that monitors the frequency of periodic messages, the

following tests were performed:

• Test for false positives using valid test cases - We generated packets with valid

periodicities as specified in the SAE standards [17, 18] for testing. As one of the examples,
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power status updates occur every 5 minutes during discharging and frequency regulation.

Once again, our prototype did not signal anomalies in any of the valid cases, i.e., no false

positives were encountered.

• Test for false negatives using invalid test cases - We generated various types of invalid test

cases. These test cases consisted of packets containing messages with periodicities different

(i.e., periodicities lower and higher than expected values) from expected values as specified in

the SAE standards [17, 18]. Our prototype successfully detected anomalies in all of the above

cases, i.e., no false negatives were encountered. These results are summarized in Tab. 6.2.

6.2 Performance measurement

We compare the average time taken by the anomaly detection engine to inspect a packet

with the minimum inter-arrival time between two packets on the network to determine whether or

not the anomaly detection engine introduces significant delay.

In this evaluation, the total number of EVs handled by the aggregator were varied up to a

maximum of 400 based on literature [19]. The average time taken by the anomaly detection engine

to inspect a packet is approximately 0.0082 seconds as shown in Fig. 6.1. According to the smart

grid communication requirements specified by the Department of Energy, the range of network

bandwidth in case of Electric Transportation applications is 9.6 to 56 kbps [2]. The average packet

size in this application is 0.5 KB, average being computed over the set of messages defined in SAE

standards. Thus, the network bandwidth in terms of number of packets is approximately 2 to 14

packets per second and the inter-arrival time between packets on the network is 0.07 to 0.5 seconds.

Tab. 6.3 summarizes these results.
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Table 6.2: Accuracy of Anomaly Detection Engine

Component of
Anomaly De-
tection Engine
Tested

Test Description Test Criterion Test Outcome

Deep Packet In-

spection Level 1

Tested against set of all known valid se-

quences including variations due to paral-

lel and repeating sequences [Tab.6.1]

Test for False Pos-

itives

No false positives

encountered

Deep Packet In-

spection Level 1

Tested against set of partially valid se-

quences including variations due to par-

allel and repeating sequences [Tab.6.1]

Test for False

Negatives

No false negatives

encountered

Deep Packet In-

spection Level 1

Tested against set of invalid sequences in-

cluding variations due to parallel and re-

peating sequences [Tab.6.1]

Test for False

Negatives

No false negatives

encountered

Deep Packet In-

spection Level 2

Tested against consistent SOC related data

- during charging, discharging and fre-

quency regulation operations

Test for False Pos-

itives

No false positives

encountered

Deep Packet In-

spection Level 2

Tested against consistent subscription pe-

riod related data - during charging, dis-

charging and frequency regulation opera-

tions

Test for False Pos-

itives

No false positives

encountered

Deep Packet In-

spection Level 2

Tested against inconsistent SOC related

data - during charging, discharging and

frequency regulation operations

Test for False

Negatives

No false negatives

encountered

Deep Packet In-

spection Level 2

Tested against inconsistent subscription

period related data - for each of the 3 EV-

grid operations, only the start time, only

the end time and both start, end times were

made inconsistent and tested

Test for False

Negatives

No false negatives

encountered

Timing Require-

ments Validation

Tested against packets with valid periodic-

ities

Test for False Pos-

itives

No false positives

encountered

Timing Require-

ments Validation

Tested against packets with invalid period-

icities, periodicities lower and higher than

expected values were tested

Test for False

Negatives

No false negatives

encountered
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Figure 6.1: Performance of the Anomaly Detection Engine

Table 6.3: Performance of Anomaly Detection Engine

Average packet size Network Bandwidth Inter-arrival time of
packets

Average time taken
by Anomaly Detection
Engine to inspect a
packet

0.5 KB 9.6 to 56 kbps OR 2 to

14 packets per second

0.07 to 0.5 seconds 0.0082 seconds

6.3 Discussion

We have tested for false positives and false negatives to validate the accuracy of our

prototype. The lack of false positives and false negatives show that the state machine is correctly

implemented. It is important to note that this evaluation is carried out based on the previously stated

assumption that the physical state of the system is not compromised, i.e, power measurements from

sensors are genuine. If this is not true, then an attacker can tamper with the cyber and physical states

of the system so as to obtain consistency and conceal attack from the anomaly detection engine. We

intend to address the possibility of compromised physical state of the system in our future work.
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The performance of our prototype has been evaluated by comparing the time taken for

packet inspection with inter-arrival time of packets on network. As seen from the results, the

average time for packet inspection by the anomaly detection engine : 0.0082 seconds, is lower than

the minimum inter-arrival time of packets: 0.07 seconds. Therefore, our anomaly detection engine

does not introduce significant delay into the system.

The network we have considered so far in the evaluation is the network connecting EVs and

the aggregator. We now discuss the impact of the other network i.e., the network connecting the

anomaly detection engine and the power sensors. This network is used to obtain power

measurements to validate consistency between the cyber and physical states of the system and

constitutes the ’Physical’ side of our Cyber-Physical anomaly detection engine. This network does

not impact the currently reported performance of the anomaly detection engine when it has high

bandwidth in gbps (as compared to the bandwidth of the EV network in kbps).

Currently, the prototype of the anomaly detection engine does not handle encryption of

packets. In future work, we intend to handle encrypted packets by using mechanisms to share

decryption keys between the aggregator and the anomaly detection engine.
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Chapter 7: Related Work

There has been a wide range of attacks on the power grid that has triggered research

towards securing its various components such as the advanced metering infrastructure (AMI) and

smart inverters. Examples of intrusion detection systems for cyber-physical systems include the

work on securing the advanced metering system by using specification based intrusion

detection [12]. This IDS monitors the cyber state of the system by observing traffic among access

points and meters at various layers to ensure expected behavior. We use similar techniques to

monitor the cyber state of a V2G aggregator. In addition, we also check for consistency of cyber

and physical states of the system.

Apart from the various components of the power grid, the distribution networks have also

received attention. The paper by Liao et al [20] focuses on enhancing power grid security by using

micro-synchrophasors as a tool to monitor and manage distribution networks. The high fidelity,

time-synchronized phase angle and voltage magnitude data obtained from micro-synchrophasors

helps track events originating at local distribution. This work is similar to our work in that it uses

data from sensors for monitoring. In other words, the physical component of the cyber-physical

system is being monitored.

With increase in number of DERs being integrated with the power grid, there has been

effort in the direction of securing these DERs [23]. The paper discusses the architecture of

cyber-physical power system with penetration of DERs, analyzes related cyber security challenges,

summarizes important attack scenarios and proposes a DER resilience analysis methodology to

prevent, detect and respond to attacks. The paper provides a generalized analysis for DERs.

However, specific DERs have their own challenges. Our work focuses on a specific DER, i.e., EVs.
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With respect to the V2G system, implementation and optimization have so far received a lot

of focus. The paper by Guille et al [16] discusses a framework to integrate EVs with the power grid.

The paper by Mal et al [14] focuses on optimizing the charging operation in the V2G system and

thereby efficiently balancing the load on power grid. However, attention has recently shifted

towards the security of EVs in the power grid. Chen et al [13] propose an efficient and secure

authentication scheme for V2G networks that preserves privacy. The authentication scheme

provides anonymity, dynamic management and aggregation in the of V2G network. The paper

focuses on securing the communication of EVs in the V2G system of power grid. On the other

hand, our work focuses on securing the aggregator, an important component of the V2G system, by

increasing its resiliency to attacks.
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Chapter 8: Conclusion

In this work, we have presented the architecture of an Anomaly Detection Engine for the

aggregator. It is an important component of the Vehicle-to-Grid System that integrates Electric

Vehicles with the Power Grid. The Anomaly Detection Engine uses (a) two levels of deep packet

inspection along with (b) timing constraint validations and (c) power measurement validations to

detect unexpected system behavior. In all the validation techniques used for anomaly detection,

consistency of data obtained from one source is verified against data obtained from a different

source such as in Deep Packet Inspection level 2, SOC related data in cyber messages is validated

against physical power measurements. This makes it difficult for adversaries to tamper with these

data so as to produce false consistencies.

30



References

[1] Cyber-physical systems. URL:

https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503286.

[2] Doe smart grid communication requirements. URL:

https://energy.gov/sites/prod/files/gcprod/documents/Smart_Grid_

Communications_Requirements_Report_10-05-2010.pdf.

[3] Ev cyber attacks. URL: https://csrc.nist.gov/CSRC/media/Presentations/.

[4] Ev physical attacks. URL: http://www.theiet.org/sectors/transport/.

[5] Intel i7 nuc. URL: https://www.intel.com/content/www/us/en/products/

boards-kits/nuc/kits/nuc7i7bnh.html.

[6] Pqube3. URL: http://www.powersensorsltd.com/PQube3.php.

[7] Python scapy. URL: https://scapy.readthedocs.io/en/latest/.

[8] Recording pqube 3 readings. URL:

https://www.powerstandards.com/product/pqube-3/sample-output/.

[9] Sae v2g standards. URL: http://www.sae.org/standardsdev/.

[10] Security Considerations for the EV Charging Infrastructure. URL:

https://www.iaria.org/conferences2012/filesSECURWARE12/Electric_

Vehicle_Charging_Infrastructure_KeynoteRainerFalk.pdf.

31

https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503286
https://energy.gov/sites/prod/files/gcprod/documents/Smart_Grid_Communications_Requirements_Report_10-05-2010.pdf
https://energy.gov/sites/prod/files/gcprod/documents/Smart_Grid_Communications_Requirements_Report_10-05-2010.pdf
https://csrc.nist.gov/CSRC/media/Presentations/
http://www.theiet.org/sectors/transport/
https://www.intel.com/content/www/us/en/products/boards-kits/nuc/kits/nuc7i7bnh.html
https://www.intel.com/content/www/us/en/products/boards-kits/nuc/kits/nuc7i7bnh.html
http://www.powersensorsltd.com/PQube3.php
https://scapy.readthedocs.io/en/latest/
https://www.powerstandards.com/product/pqube-3/sample-output/
http://www.sae.org/standardsdev/
https://www.iaria.org/conferences2012/filesSECURWARE12/Electric_Vehicle_Charging_Infrastructure_Keynote RainerFalk.pdf
https://www.iaria.org/conferences2012/filesSECURWARE12/Electric_Vehicle_Charging_Infrastructure_Keynote RainerFalk.pdf


[11] Ukraine power grid attack. URL:

https://www.technologyreview.com/s/603262/ukraines-power-grid-gets-\

hacked-again-a-worrying-sign-for-infrastructure-attacks/.

[12] R. Berthier, W. H. Sanders, and H. Khurana. Specification-based intrusion detection for

advanced metering infrastructures. In 2011 IEEE 17th Pacific Rim International Symposium

on Dependable Computing (PRDC), 2011.

[13] J. Chen, Y. Zhang, and W. Su. An anonymous authentication scheme for plug-in electric

vehicles joining to charging/discharging station in vehicle-to-grid (v2g) networks. China

Communications, 2015.

[14] S. Mal et al. Electric vehicle smart charging and vehicle-to-grid operation. International

Journal of Parallel Emergent and Distributed Systems, 2012.

[15] L. Gkatzikis, I. Koutsopoulos, and T. Salonidis. The role of aggregators in smart grid demand.

IEEE Journal on Selected Areas in Communications, 31:1247–1257, 2013.

[16] C. Guille and G. Gross. A conceptual framework for the vehicle-to-grid (v2g) implementation.

Energy Policy, 2009.

[17] Sae International. Sae j2847-1 communication for smart charging of plug-in electric vehicles

using smart energy profile 2.0. 2013.

[18] Sae International. Sae j2847-3 communication for plug-in vehicles as a distributed energy

resource. 2013.

32

https://www.technologyreview.com/s/603262/ukraines-power-grid-gets-\ hacked-again-a-worrying-sign-for- infrastructure-attacks/
https://www.technologyreview.com/s/603262/ukraines-power-grid-gets-\ hacked-again-a-worrying-sign-for- infrastructure-attacks/


[19] A. Y.S. Lam, K.C Leung, and V. O.K. Li. Capacity estimation for vehicle-to-grid frequency

regulation services with smart charging mechanism. arXiv:1410.1282v4 [cs.SY], 2015.

[20] A. L. Liao, E. M. Stewart, and E. C. Kara. Micro-synchrophasor data for diagnosis of

transmission and distribution level events. in Transmission and Distribution Conference and

Exposition (T and D), IEEE/PES, 2016.

[21] Nescor. ” Electric sector failure scenarios and impact analyses version 3.0”. 2015.

[22] C. Niddodi, S. Mohan, and T. Yardley. Securing electric vehicles in the power grid. In

Proceedings of 29th Euromicro Conference on Real-Time Systems (ECRTS17)

Work-in-Progress Session, 2017.

[23] J. Qi, A. Hahn, X. Lu, J. Wang, and C.C Liu. Cybersecurity for distributed energy resources

and smart inverters. in IET Cyber-Physical Systems: Theory and Applications, pp, pages

28–39, 2016.

[24] M. A. Rahman, F. Mohsen, and E. Al-Shaer. A formal model for sustainable vehicle-to-grid

management. SEGS ’13 Proceedings of the first ACM workshop on Smart energy grid

security, pages 81–92, 2013.

[25] N. Saxena, S. Grijalva, V. Chukwuka, and A. V. Vasilakos. Network security and privacy

challenges in smart vehicle-to-grid. IEEE Wireless Communications, pp, pages 2–12, 2016.

[26] Y. Zhang, S. Gjessing, H. Liu, H. Ning, L. T. Yang, and M. Guizani. Securing vehicle-to-grid

communications in the smart grid. IEEE Wireless Communications, pp, pages 66–73, 2013.

33


	Chapter 1: Introduction
	Chapter 2: Vehicle-To-Grid System
	Chapter 3: Threat Model
	Chapter 4: Cyber-Physical Anomaly Detection Engine
	Deep Packet Inspection
	Deep Packet Inspection Level 1
	Deep Packet Inspection Level 2

	Consistency of Cyber States with Physical States
	Timing Requirements Validation

	Chapter 5: Implementation
	Chapter 6: Evaluation
	Test Cases to measure Accuracy
	Deep Packet Inspection Level 1
	Deep Packet Inspection Level 2
	Timing Requirements Validation

	Performance measurement
	Discussion

	Chapter 7: Related Work
	Chapter 8: Conclusion

