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Abstract 

Cyber-physical systems have increasingly taken advantage of packet-switching networks 

for control and data acquisition. A major example is the realization of the smart grid. On the 

networking side, software-defined networking (SDN) has been trending for the past decade. With 

the help of SDN, we are moving towards power grids that have both intelligence and security. In 

this thesis, we focus on providing a versatile SDN infrastructure for power-system applications in 

the environment of microgrids. We conduct simulations and collect statistics to demonstrate that 

the SDN approach facilitates communications and enhances security for certain microgrid 

applications.  
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Chapter 1  

Introduction 

In the electric power industry, the trend is toward smartness for better control and smallness 

for better efficiency and resiliency. This trend has led to the concept of microgrid [1]. A microgrid 

is a localized group of electricity sources and loads within clearly defined electrical boundaries. A 

microgrid as an entity can be connected to a main grid and other microgrids in grid-connected 

mode, trading energy deficit or surplus and balancing the load on a larger scale. Or it can be 

isolated from others and operate entirely on its own energy resources, thus preventing the spread 

of grid failure due to natural disasters or human attacks [2]. The communication side largely 

follows the topology of a microgrid design, i.e., intra- and inter-microgrid communications.  

A very simple microgrid may consist of a microgrid controller, a human-machine interface, 

a battery system and some protective relays. SCADA (supervisory control and data acquisition) 

protocols have evolved in the past four decades from serial protocols such as Modbus [3] to modern 

standards that use switched networks, including Ethernet and TCP or UDP over IP. Examples of 

these include IEC 61850 [4] and DNP3 [5]. SCADA operation consists of a master that polls 

devices for measurements, performs calculations and possibly issues commands to devices capable 

of undertaking control actions. The actions, for example, can be tripping a relay to isolate a fault, 

dispatching distributed energy resources (DER) to balance the load with the main grid and other 

microgrids or changing DER power input settings in response to conditions. 

As the electric power sector increasingly adopts smart-grid technology, network-enabled 

devices (for measurements) and control have become widespread. Reliance on common lower-

layer standards such as Ethernet and IP enables greater versatility in configuration, topology and 

coordination for devices. However, it also poses challenges in connectivity and security as newer 

communication protocols emerge (such as OpenFMB [6]) and the attack surface increases as 

evidenced in the recent cyberattack on Ukraine’s power grid [7]. Such trends in power systems 

prompt this research to leverage a new networking paradigm, software-defined networking (SDN) 

[8], to better serve the infrastructural need of power system networks.  

Conventional networks work in a distributed fashion where routers use well-defined 

protocols to exchange messages with peers to converge to a steady state so that packets are 
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correctly forwarded. SDN eliminates this process by having a central authority that controls routers 

directly. This paradigm allows the central entity to have a global view of the networks. Therefore, 

it can swiftly respond to any change of state and enforce new policies. We find this approach 

distinctly suitable for managing the networking infrastructure of power systems containing 

microgrids. With SDN, we can achieve faster routing, traffic prioritization and device or microgrid 

isolation. These qualities are well suited for microgrid designs because they are real-time systems 

where the speed of communication needs to match up to that of the change of electrical 

characteristics.  

The typical networking setup of power systems retains conventional techniques, including 

the use of point-to-point VPNs to bridge field networks with central office, along with standard 

routing protocols. This setup only provides slow routing, sub-optimal routes and coarse-grained 

protection against compromised components. This research, however, aims to overcome the 

drawbacks of conventional networks by using SDN. In this thesis, we intend to demonstrate the 

possibility that the SDN approach can (a) facilitate device communication of OpenFMB-DDS 

applications across large geographical distances, (b) improve the performance in latency for DDS 

applications compared to some existing solution and (c) enhance security of the power system with 

fault isolation. 

The rest of this thesis is organized as follows: In Chapter 2 , we introduce OpenFMB-DDS, 

a new framework we seek to support and tools we use to achieve such goal. In Chapter 3 , we 

review past research where SDN and power grids intersect and some existing solutions, including 

commercial ones. In Chapter 4 , we present the assumptions, the problem statement, the 

approaches and the results. In Chapter 5 , we present a physical setup to further prove the viability 

of our solution. In Chapter 6 , we discuss possible alternative approaches. Lastly, in Chapter 7 , 

we propose some possible future development, reflect on the entire process of our design and 

finally conclude this thesis. 
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Chapter 2  

Background 

In section 2.1, we explain the advantages of a microgrid design and a sample topology. In 

section 2.2, we discuss the need for an open standard for future devices and discuss how OpenFMB 

charts a course forward. In section 2.3, we provide a high-level view of the reliable middleware 

that bridges OpenFMB and the underlying network. The two sections provide us some background 

knowledge of smart-grid designs and the motivation for this research. Then in section 2.4, we 

introduce the concept of software-defined networking and discuss why it helps achieve the goal of 

the research. Lastly in section 2.5, we prepare readers with the knowledge of the tools and 

protocols in use. 

2.1 Microgrid 

Motor ZIP

Critical 
Load

Substation 1

MG1 MG2
POI-1 POI-2

Substation 2

NG PV

ESS

ZIP

Critical 
Load

Diesel

ESS PV

Motor

 

Figure 1 A use case with two microgrids. The red and blue cubes represent reclosers, with red ones being closed 

and green ones being open by default. Circular devices represent power sources and rectangular ones power sinks. 

Lines and bars represent electrical interconnections. Abbreviations are as follows: MG: Microgrid; POI: Point of 

Interconnection; NG: Natural Gas; PV: Photovoltaic Panel; ESS: Energy Storage System; ZIP: Constant Impedance 

(Z), Current (I) and Power (P). 

Diagram courtesy of Alfonso Valdes. 

A traditional power grid design has a strictly hierarchical topology featuring centralized 

power plants, long-distance transmission lines and substations owned by utility companies. Central 

plants can take advantage of economies of scale, but this advantage has been offset by distributed 
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energy generation with the advent of smaller power sources (microsources). A microgrid design 

takes advantage of the proximity to residential, commercial and industrial areas to achieve greater 

efficiency and flexibility. Such design, with advanced controls, could possibly reduce the loss in 

distant power transmission, reduce disturbances in terms of power quality, provide resiliency in 

the event of outage [9] and increase efficiency through the use of waste heat [1].  

An example use case is demonstrated in Figure 1. It has two microgrids, MG1 and MG2, 

that are electrically connected to each other and, through substations, to the main grid. MG1 and 

MG2 maintain electrical connection to the main grid but electrical isolation between themselves 

by default. They can dynamically reconfigure electrical connections by using the reclosers in 

response to certain conditions. 

2.2 The Open Field Message Bus 

Unless one chooses to purchase power devices from a single vendor, there is a high 

likelihood that designers will encounter heterogeneous devices and different protocols. Traditional 

protocols are usually single-purpose that use a centralized control where there is clear dichotomy 

of masters and slaves. A conventional setup is to connect the field devices to the utility central 

office one by one (point to point). The centralized entity is responsible for collecting telemetric 

data from field devices for processing and issuing commands back to them. This, however, does 

not provide interoperability because field devices cannot directly interact among themselves. 

The Open Field Message Bus (OpenFMB) [6] seeks to address these issues by putting forth 

an open-source common information model that every field device shall conform to, either as is 

for newer devices right off the shelf or through adapters for existing ones. This new model enables 

distributed intelligence and scalability for deployment. Additionally, due to its distributed nature, 

more robustness in connectivity and autonomous decision making can be achieved.  

2.3 Reliable Middleware 

OpenFMB’s versatility comes not only from its data model (the upper layer) but also from 

the variety of middleware it can be adapted to, such as Message Queue Telemetry Transport 

(MQTT), Advanced Message Queue Protocol (AMQP) and Data Distributed Service (DDS) [10]. 

In this section, we introduce DDS and explain why we focus on this middleware over the others. 
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Figure 2 Logical view of DDS components [11]. The domain here facilitates logical isolation of different domain 

participants. Domain participants associate with each other via topics. 

The aforementioned protocols conform to the publish-subscribe model. Unlike a TCP/IP 

connection where end hosts are identified by their respective IP addresses and port numbers, in 

these protocols, end hosts exchange messages identified by their topics via the middleware. For 

example, in a vehicular system consisting of wheel speed sensors (WSS), anti-lock braking system 

(ABS) and electronic stability control (ESC), both ABS and ESC will be interested in the speeds 

of the wheels, so both naturally subscribe to the speed data published by the WSS. In a publish-

subscribe model as shown in Figure 2, data are not explicitly sent or retrieved from one endpoint 

to another but rather through topics that the endpoints share interest in. In this case, the topic is 

“Speed”.  

As the name suggests, DDS works in a distributed fashion. Unlike MQTT or AMQP, it 

does not rely on a broker server that can be a single point of failure. The DDS framework [12] is 

further divided into the data model and the wire protocol (Real-Time Publish-Subscribe protocol 

or RTPS). DDS allows users to define their own data objects and message filtering based on the 

attribute-value pairs in those objects. We avoid discussing the object model since this is largely 

handled by OpenFMB. Additionally, as this is a thesis on networking, our focus is limited to the 

wire protocol and how it interacts with our networking logic. 

2.4 Software-Defined Networking 

Software-defined networking (SDN) [8] has been a trending topic since its inception a 

decade ago. In this section we introduce what it is and how it facilitates communication and 

provides security. 
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Traditionally, core network switches use distributed protocols such as OSPF and BGP [13] 

to learn the global topology and peer relationships. They then calculate the optimal paths to 

destinations from the learned topology or relationships in order to determine which neighbors 

should be forwarded the packets, subject to business relationships and regulations. Due to the 

nature of these distributed algorithms, it is a slow process for the switches to converge to a 

consistent state where packets are correctly and efficiently forwarded. Furthermore, any change of 

state in the topology (such as a switch breaking down or a link becoming congested) will disrupt 

the equilibrium and cause the (slow) convergence process to start again. 

SDN seeks to eliminate the need for a distributed process by introducing a centralized 

control plane as a replacement for the routing logic residing at individual switches. The controller 

gathers routing messages from border gateway routers, computes the optimal solutions and then 

formulates them as simple match-action rules to install onto the switches (forwarding plane). A 

full-scope implementation also has an application layer that interfaces with the controller to allow 

the user to change switching behaviors and monitor the state of the network. SDN speeds up 

routing, eases management and provides possibility for traffic engineering that cannot be achieved 

in a traditional network.  

This thesis focuses on a specific application of SDN, viz., the software-defined wide-area 

network (SD-WAN) because our efforts aim primarily to provide connectivity for field devices 

within microgrids that constitute local-area networks (LAN) and across multiple microgrids via a 

wide-area network (WAN). We also provide support for isolating individual devices or entire 

microgrids to protect the power system from compromised nodes. 

2.5 Tools and Protocols 

Mininet [14] is an emulator that allows rapid prototyping of a large network. It leverages 

the Linux kernel to create virtual Ethernet interfaces (veth) in different network namespaces and 

Open vSwitch to create virtual switches that the interfaces can attach to. With veth comes the 

benefit of capturing and analyzing traffic with tools such as Tcpdump and Wireshark [15]. Mininet 

also provides shell interfaces (bash) for virtual hosts through process-based virtualization so that 

traffic can be generated and received in the simulation, thus providing an end-to-end testbed for 

SDN implementations. Most of the testing in this thesis was conducted in the Mininet framework. 
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Open vSwitch [16] (OVS) provides the functionality of the SDN forwarding plane 

(switches and links). It consists of several user-space utilities to configure topology, provide 

OpenFlow interface for the SDN controller and interact with its kernel Datapath module that 

provides low-latency, high-throughput packet forwarding. As we move towards deployment, we 

use OVS commands to manipulate the OVS database directly to fine-tune and retain the setup in 

a persistent manner. 

Ryu [17] is an open-source Python framework for developing SDN controllers. It supports 

OpenFlow protocol versions 1.0 through 1.5, the latest release. It also incorporates a Web Server 

Gateway Interface (WSGI) component for developers to implement the application layer of the 

SDN, enabling on-the-fly reconfiguration of the control plane. 

OpenFlow [18] has emerged as the de-facto standard protocol for SDN development. It 

allows the controller to direct actions for packets based on their headers and provides a few 

methods to query for the switches’ statistics, such as the number of bytes or packets that have been 

transmitted or received for a given interface and the state of interfaces. 

2.5.1 IP Multicast 

In the world of power systems [19], multicast plays a critical role for many publish-

subscribe protocols. Many field devices do not have a great amount of computing power. The 

industrial Ethernet switches do not have large throughput either unlike commercial switches at 

data centers. Multicast can reduce unnecessary traffic by pushing traffic duplication toward the 

last links as far as possible, which, in turn, reduces the load on the senders and backbone switches. 

IP Multicast is divided into two parts, the WAN segment and the LAN segment. The WAN 

side consists of routers that usually run Protocol Independent Multicast (PIM) protocols for 

forwarding traffic. PIM has two modes: the dense mode (DM) [20] and sparse mode (SM) [21]. 

The DM postulates a scenario where the majority of end hosts in the network are interested in 

certain particular multicast traffic, so the idea is to (a) flood the entire autonomous system with 

such traffic and (b) let downstream routers notify upstream routers that they do not want such 

traffic if there are no interested listeners. The SM does the opposite. It works by designating a 

rendezvous point (RP), where the senders and receivers “meet” to complete forwarding paths and 

multicast traffic is duplicated. Once the edge routers for listeners learn the sender’s address, the 

routers can trace back and pull multicast traffic along the shortest path while pruning the original 
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path. Both methods are slow and inefficient and no ISPs, to our knowledge, support multicast 

without a special agreement. To further complicate matters, our microgrids might belong to 

different internet providers. The LAN side only involves the edge routers and end hosts to which 

they are connected. Internet Group Management Protocol (IGMP) or Multicast Listener Discovery 

(MLD) [22], [23] messages are exchanged for membership management in LAN. Essentially, 

whenever a host wants to join or leave a multicast group, it sends out a multicast message destined 

for that specific group to report “joining” or “leaving”, and then the edge router is responsible for 

picking up such reports to keep track of which end host is in which multicast group. In addition to 

self-reporting by end hosts, the edge routers are also responsible for periodically sending out IGMP 

queries for membership reports, lest any leave messages be lost, or hosts crash before sending such 

message.  
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Chapter 3  

Related Work 

Most of the SDN research in the area of power systems seems to have focused on single-

grid use cases. Pfeiffenberger et al. [24] presented a way for efficient data delivery of multicast 

traffic with fault tolerance and with a focus on IEC 61850 traffic. Cahn et al. [25] tried to adapt 

SDN for the power grid as it transitions into smart grid, in order to provide better management, 

auto-configuration and security. 

Other research [26], [27] primarily deals with several different field devices within the 

same power grid and seeks to identify and optimize real-time flows in such a system or to improve 

security through filtering. I would argue such efforts still fall within the scope of the generic 

application of SDN. To the best of our knowledge, ours seems to be the first to use SDN for traffic, 

both within and across microgrids.  

There is a component to RTI’s DDS framework called Routing Service [28]. It is an out-

of-the-box solution to bridge DDS applications across different publish-subscribe domains and 

LANs. The idea is to have a service application running in every LAN that subscribes to all DDS 

messages. The services are preconfigured with their peers’ IP addresses and listening ports, so that 

messages can traverse from one LAN to another through the services that act like proxy servers. 

This solves the connectivity issue but is very inefficient as messages do not go from source to 

destination directly. Furthermore, this solution is limited to DDS or perhaps only RTI’s 

implementation of it, thus lacking interoperability. 

For the commercial use, SD-WAN [29] is gradually replacing traditional services such as 

T-carrier and MPLS [30]. It is mostly used to optimize traffic for multi-homed offices and provide 

dedicated and secured connectivity between branch offices. Existing solutions include Cisco’s 

iWAN [31] and Riverbed’s SteelConnect [32]. While they likely already provide multicast support 

across branch offices, they might not allow customizability for power-system protocols on a per-

flow basis.  
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Chapter 4  

Design and Implementation 

In this chapter, we begin by presenting a power-grid use case that reflects a real-world 

scenario. Then we delve into the technical details of IP Multicast and we explain the core design 

of the SDN controller that is the control logic and the forwarding rules derived from it. Finally, we 

present an interface for external inputs to change the controller’s behaviors and retrieve the state 

of the network, thus demonstrating a full-stack solution in SDN. 

4.1 System Model  

 

Figure 3 Topology for our experiments. “Gateways” and “routers” signify SDN controllers. Blue loops with arrows 

through them signify SDN switches. Command-line interfaces in black backgrounds signify end hosts. Links are in 

blue or red, respectively, representing the transport network and management network. 

We simulate a physical setup that includes three microgrids inter-connected through a 

WAN and two field devices residing at each microgrid. We “own” every microgrid, e.g., the 

networking infrastructure and the field devices, but we do not have any control over the WAN that 

is operated by third parties such as AT&T and Verizon. Figure 3 shows our simulated network in 

Mininet. Switches s1, s2 and s3 act as gateways, each residing at a microgrid, numbered from 1 to 

3. We assume gateways have as many ports as we want so that all end hosts (field devices) can be 

directly connected to the gateways. This improves control as we can police the traffic of any given 

host with the controller for the gateways. Switches s4, s5 and s6 simulate the WAN. They have a 

separate controller because an energy company does not usually own the networking infrastructure 
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beyond their properties. Consequently, we do not assume any control over this controller. 

Following the conventional architecture of SDN, a separate management network is provided 

between the controllers and switches, connected through red links.  

Each microgrid, also a subnet, is assigned a private IP range. A host thus can be assigned 

the address 172.16.<Grid ID>.<Host ID +1>. The gateways themselves hold the addresses 172.16.<Grid 

ID>.1 and each of them also has a public IP or MPLS label. 

4.2 Interacting with the End Hosts 

A few commonplace mechanisms are implemented to handle protocols such as Address 

Resolution Protocol (ARP) [33] in order to provide standard IP and MAC unicast. We will not 

expand on these components in order to focus on the key issues. 

4.3 The Control Plane 

 

Figure 4 This is the topology of the overlay network formed using VXLAN. In this topology, there are three 

microgirds and correspondingly three gateways, each with two southbound ports to the end hosts and two 

northbound ports to other microgrids. 

This design, as shown in Figure 4, seeks to flatten the design with the help of Virtual 

Extensible LAN (VXLAN), a layer-2 tunneling protocol [34]. A VXLAN end point takes the entire 

packet, encapsulates it in UDP/IP and sends it over to another end point. In this design, we set up 

as many northbound interfaces as there are peers, which means there will be (𝑛 − 1) ∗ 𝑛 2⁄  point-

to-point tunneling links, forming a full mesh. The first problem we encounter is loops. The 

traditional solution is the spanning tree algorithm that prunes additional links and makes them 
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inactive backup lest active links fail. This works fine in a small scale, physical LAN environment. 

In our case, however, each northbound link is potentially across a distant geography, with limited 

bandwidth and high latency. In order to preserve the optimal routes that are the direct links from 

one to another, we divide interfaces into two categories, the northbound ones that are VXLAN and 

the southbound ones that are end hosts (field devices). For broadcast traffic received from the 

southbound interfaces, a switch floods it to all other interfaces. For broadcast traffic received from 

the northbound interface, it only floods it to southbound interfaces, knowing they must have 

already been flooded to other switches by the first hop gateway. 

4.3.1 Event Loops 

 

Figure 5 The control plane logic consists of four event loops. The rightmost loop is the query thread. The second 

from the right is the timer thread. The two loops on the left handle IGMP join and leave messages. 

The control plane logic has multiple threads to deal with different aspects, as summarized 

in Figure 5. The query thread, every 60 seconds, sends out membership requests to southbound 

hosts, triggering passive membership reports within the response interval (10 seconds). The timer 

thread, every unit of time, increments the time counter for each listening port. If the time counter 

reaches 75 seconds (the amount of time should be greater than the query interval plus the response 

interval), it times out and is evicted from the control plane. A more frequent query results in a 
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higher-resolution view of the state of the network but increases the burden on the management 

network and the SDN controller. We choose an interval of 60 seconds which is about half of the 

suggested value of 125 according to the RFC [22]. 

The rest of Figure 5 demonstrates the control plane logic for IGMP messages running for 

each gateway. Whenever an end host reports joining or leaving a multicast group, the messages 

are sent to the control plane logic at every gateway. If not already existent, the handling routine 

sets up a “listeners_port” dictionary for each multicast group and adds an entry with the key being  

the port number from which the report comes in and the value being an “IgmpListeners” class, as 

shown in Figure 6. Then, the address of the listener will be added to the set “listeners_addresses”. 

Whenever a “join” message arrives from any end host, the “time_counter” is reset to zero for the 

listening port (“IgmpListeners”) it is attached to. Whenever a “leave” message arrives, it removes 

such end host from the “listeners_addresses”. There are two cases where an “IgmpListeners” class 

should terminate and evict itself, either when the timer reaches 75 or when all of its end hosts have 

reported leaving the group. 

 

Figure 6 Data structure for bookkeeping. The “_mcast” structure is a dictionary that has multicast addresses as the 

keys and pointers as the values, pointing to other dictionaries that are “listeners_port”. Each “listeners_port” 

dictionary has port numbers as keys and their values point towards “IgmpListeners” dictionaries. 

4.4 Forwarding Plane 

The data structure in Figure 7 reflects what should be installed on the gateway switches. 

Each existing entry in the “_mcast” dictionary corresponds to two action groups that are collections 

of actions. They together have as many output ports as there are entries in the “listeners_port” 

dictionary where those ports are split into two groups based on locality, one for southbound 

interfaces and the other for northbound ones. The check for tunneling ID determines if a multicast 
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packet arrives from a remote microgrid (gateway), in which case the packet can only be duplicated 

for local ports (southbound) to prevent broadcast storm. Otherwise, a packet can be duplicated for 

any port as long as there is at least one listener attached, if such packet originates locally.  

When an “IgmpListeners” class is evicted, it modifies the action group by removing the 

output port. If both action groups contain zero ports, meaning there are zero listeners anywhere, 

the flow rule is evicted from the switch.  

 

Figure 7 Forwarding plane structure showing a flow table for multicast packets and associated action groups. The 

flow rules table maintains two entries for each multicast group, one for packets from northbound ports and the other 

for from southbound ports. The entries in the action groups are ports the listeners are attached to. Ports in action 

groups should be separated based on northbound or soutbhound 

Recounting the entries in the forwarding plane, for each IPv4 multicast group, there are 

two flow rules, two action groups and as many ports as needed in the two groups. In the OpenFlow 

1.4 standard, there are 232 action groups. In IPv4, there are 228 multicast groups so we will not 

run out of action groups. But in IPv6, the number of multicast addresses far exceeds 232. 

4.4.1 Simplify the Forwarding Plane Logic with MPLS 

We soon realized some of the shortcomings from flattening the network into a giant LAN. 

The first problem comes from the fact that the number of tunneling links grow in the order of 

𝑂(𝑛2). This joint project is still in its early phase with the goal of deploying five microgrids. As 

the number of grids grows, however, this becomes increasingly unwieldy. The second issue comes 

from it being a LAN. VXLAN is a layer-2 tunneling protocol designed for building overlay 

networks for VMs in a data center. Messages like ARP are flooded across the entire overlay 

network, which puts too much burden on the network, especially the WAN part. The third problem 
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comes from dynamic configurability. OpenFlow is inherently incapable of processing any 

tunneling protocol headers, so we rely upon OVS to provide the tunneling end points. This requires 

reconfiguration for both the SDN controller and the gateways every time we want to add a new 

grid into the system, which is in the order of O(n).  

With such consideration, we decided to switch to a design with the help of Multi-protocol 

Label Switching (MPLS). In this design, we restrict the LAN switching to within the microgrids, 

only allowing layer-3 traffic to go northbound. We incorporated proper ARP handling into the 

SDN controller to reduce the amount of traffic flooding. In addition, because MPLS is native to 

OpenFlow since version 1.1, we can reduce the northbound ports to only one per microgrid and 

migrate the dynamic reconfiguration of power grid topology to the SDN controller, such as adding 

a new microgrid to the existing setup. Now, the number of northbound links is reduced to the order 

of 𝑂(𝑛) and the number of gateways requiring reconfiguration to zero. 

Flow rules 

Match: IP==224.0.0.1 Actions={(Forward to port 1,2,3), (Push MPLS ),(Forward to port 101)} 

......  

...... 

...... 

...... 

Figure 8 Forwarding plane structure showing the flow table for multicast packets in MPLS design, which only 

requires one entry per multicast group 

Incoming traffic via the northbound interface is assumed to be always MPLS tagged, so it 

is first stripped of its MPLS header and then checked to see if it is a multicast packet before being 

sent to the multicast flow table. Another advantage in this design is that you do not need to 

differentiate the ingress port of a packet because the same action can be applied to all without 

causing broadcast storm, due to the fact that OpenFlow will ignore output actions to the ingress 

interface, unless explicitly specified. For the same reason, we no longer need to split every flow 

rule into two to separately handle traffic originating from the local grid versus traffic from remote 

grids, and we completely get rid of the use of action groups, resulting in similar flow rules laid out 

in Figure 8. This design greatly simplifies the forwarding plane and we are down to only one entry 

per multicast group to deal with on the forwarding plane. 
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4.5 The Application Layer 

So far, we have dealt only with the forwarding plane and control plane. Now we need to 

introduce some human control on the fly. This is the application layer of the SDN hierarchy. We 

incorporate some Representational State Transfer (REST) interfaces into our controller to achieve 

some security measures as shown in Table 1. 

Table 1 A List of APIs for the Application Layer 

Name  HTTP Request Path Method(s) Body of Response(s) 

Description 

list_table /gateways/table/{dpid} GET “ip to mac” 

“mac_to_port” 

Queries the controller for end hosts’ information at a specific datapath.  

 

The response “ip_to_mac” shows the MAC addresses of end hosts with specific 

IPs. “mac_to_port” shows which southbound ports the end hosts with specific 

MAC addresses are attached to. 

isolate /gateways/isolate/{dpid}/{port_no} POST “isolated_dpids_ports” 

Shuts down a specific port of a specific Datapath (gateway). If the “port_no” is 0, it 

shuts down every single port of the Datapath and cuts off any intra- and inter-grid 

communication. If the “port_no” is the northbound port, it shuts down the inter-

grid communication but devices within the microgrid can still communicate with 

each other properly. Both actions will eliminate other microgrids’ awareness of 

multicast state of the isolated microgrid, which, in turn, eliminates unnecessary 

northbound traffic that will eventually be rejected. If the “port_no” is one of the 

southbound ports, only that specific device is isolated from the rest of the system. 

 

The response “isolated_dpids_ports” keeps track of the isolated ports of the 

gateways. 

deisolate /gateways/deisolate/{dpid}/{port_no} POST “isolated_dpids_ports” 

Undoes “isolate”. 

 

The response is the same as that of the “isolate” API. 

allocate /gateways/allocate/{dpid} POST None 

Allocates resources for a new microgrid that joins the system.  

 

The body of the POST method should contain the MPLS label assigned to this 

microgrid, the port number of the northbound interface, the IP and MAC of the 

default gateway and the subnet mask. 

 

If the inputs are correct and the resources to allocate pose no conflicts with existing 

setup, “200 OK” is returned. Otherwise it returns “400 Bad Request” or “409 

Conflict”. 
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To use the APIs, one will send appropriate HTTP requests to the address Domain Name or 

IP/HTTP Request Path, with contents in braces replaced by actual identifiers. The responses are 

in JSON formats, returning a list of states in the controller. In the case of incorrect requests, a “404 

Not Found” response is returned, unless specified otherwise. 
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Chapter 5  

Deployment and Results 

We implemented the setup described in Chapter 4 in hardware to demonstrate feasibility 

in a realistic scenario. However, we were met with multiple constraints. First, we do not have an 

MPLS infrastructure. Secondly, we could be limited to only one public interface per microgrid, 

forcing us to move forward with in-band SDN control, which means we will use the same network 

for transport and management. With such considerations, we try to emulate an MPLS infrastructure 

with the help of tunneling -- resulting in a mixed usage of VXLAN and MPLS. 

 

Figure 9 The current topology for deployment. The virtual routers on the blue cloud translate MPLS labels to 

VXLAN encapsulation. The routers outside the cloud are MPLS routers. 

Figure 9 shows the high-level table-top setup of our experiment. The infrastructure is set 

up with three PC towers, one laptop and a simple layer-2 switch. Each PC tower has five Ethernet 

ports, with one connected to the layer-2 switch. The laptop is also connected to the switch and runs 

the Ryu SDN controller. Each of the three towers runs a Linux 4.15 with OVS 2.5 installed. It runs 

two instances, one being the MPLS SDN instance as described in section 4.4.1 and the other for 

converting MPLS-tagged packets to VXLAN encapsulation. The number of tunneling pairs still 

remains in the order of 𝑂(𝑛2), but we have decoupled it from the control plane. 

Internet 

SDN Controller 

Microgrid 

1 

Microgrid 

 

Microgrid 

 

Emulated MPLS Network 
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Most of the debugging was done using RTI’s performance test (a command-line 

application to measure the latency and throughput in different configurable scenarios that use DDS 

middleware to send messages [35]).  Therefore, any application built on top of DDS should work 

as is. But to move our design closer to reality, we also used the OpenFMB-DDS demo [36] to 

demonstrate the SD-WAN infrastructure. We have a total of four Raspberry Pis and five OpenFMB 

applications. We attach the Pis to two of the PC Towers, two for each. The applications running 

on the Pis are a human-machine interface (HMI), a battery simulator, a recloser simulator, a solar 

panel simulator and a load simulator. The latter four are assigned to the Pis, one for each, with the 

HMI assigned to the first Pi. The HMI, as shown in Figure 10, is a web UI that allows the user to 

monitor the state of the microgrid. If we isolate any port or grid, the associated end hosts will 

disappear from the HMI, indicating the communication channels to them have been cut off. 

 

Figure 10 The HMI monitoring four field device simulators. This is a snapshot of the web UI. The Device Profiles 

section displays, clockwise from top left, a recloser, a battery, an electrical load, and a solar panel. 
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5.1 Results 

Aside from the connectivity and security that have been tested, we can also compare our 

solution to existing ones. Centralized decision-making is faster than running distributed algorithms. 

This holds much more importance for multicast traffic due to the constant change of membership. 

Our design should be logically faster than any conventional routing protocols but comparing with 

the conventional designs would not be easy, because we neither know the exact WAN topology 

where we will deploy this solution nor have the commercial switches to construct a conventional 

network for such a topology. However, we can still compare it with an existing solution that seeks 

to avoid the problem of multicast across WAN, i.e., the RTI’s Routing Service (RS). Table 2 

shows the results collected from running the latency test of RTI’s Performance Test with the 

default QoS (Quality of Service) profile over a span of 600 seconds. The statistics were collected 

from two setups, one in an environment simulated with Mininet as described in section 4.1 and the 

other using the table-top setup in Figure 9. The test consists of (a) a publisher in one LAN that 

publishes data to test bandwidth and periodically inserts requests for pings in the packets and (b) 

a subscriber in another LAN that acknowledges the data and responds to the publisher for the ping 

requests. The test also includes an RS instance in the publisher’s LAN for both setups but only the 

simulation in Mininet has another RS instance in the subscriber’s LAN due to resource constraint. 

The results show that using RS incurs substantial latency compared to our solution (native 

connection). There are multiple reasons, but the first and foremost one is that the RS inserts one 

or more hops between the endpoints. The RS also uses its own QoS profile in data transport 

including messages parsing, filtering and reassembly. This additional packet processing 

contributes to the end-to-end latency. It should also be pointed out that the RS enforces the use of 

TCP/IP for reliable transport and NAT traversal across the WAN and the use of a reliable protocol 

might have negative impact on real-time applications.  

Table 2 Latency Test in Different Environments 

Latency (microsecond) Avg Std Min Max 

Mininet Native 85 27.1 42 8109 

RS (pub side only) 218 76.7 132 9906 

RS (pub and sub sides) 371 123.7 216 12491 

Table-top Native 888 169.6 482 9672 

RS (pub side only) 1431 255.0 1015 12513 
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Chapter 6  

Other Design Considerations 

6.1 Hub-and-Spoke Model with VXLAN 

Constrained by the possibility that we will not have an MPLS infrastructure, we try to 

address the scalability issue in point-to-point tunneling. A solution could be to have a hub node 

residing independently of all microgrids and have all microgrids connect to it through tunneling 

as shown in Figure 11. This way, we keep the number of tunnels in the order of 𝑂(𝑛). However, 

aside from being similar to the conventional setup where the tunneling hub resembles the control 

room (central office), this approach has other obvious downsides. First, all inter-grid traffic will 

cross the hub thus severely burdening the hub and relevant links. Secondly, every inter-grid packet 

will take a detour through the hub resulting in causing unnecessarily latency, which is very 

undesirable for a real-time system. For these reasons, we chose not to proceed with the hub-and-

spoke model. 

 

Figure 11 A possible hub-and-spoke model where each microgrid only maintains a single tunnel to the hub. 

6.2 Building our Own SDN Switches 

Having 5 ports per microgrid is enough for the time being, but as we progress further, we 

will attach more devices. The use case in Figure 1 requires eight southbound ports per microgrid 

that can be satisfied with a regular PC tower with two 4-port network interface cards (NIC). 

However, inserting ever more NICs is not a scalable solution. 

Internet 

SDN Controller 

Microgrid 1 

Microgrid 2 

Microgrid 3 
Tunneling Hub 
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Inspired by the solution of separating the tunneling switch from the SDN switch, we are 

working on expanding the number of physical interfaces with the help of Virtual LAN (VLAN). 

We can create as many virtual interfaces as we need for a single port on the PC and assign each a 

unique VLAN ID. Secondly, we assign these virtual interfaces to the SDN switch where they 

appear to be physical interfaces from the SDN controller’s perspective. Next, we designate the 

same number of untagged VLAN ports on the switch and a tagged trunk port and then bridge the 

untagged ports with the trunk port. Lastly, we connect the PC’s physical port to the trunk port of 

the switch. Hence, the virtual interfaces of the SDN switch will mirror those untagged ports on the 

physical switch. This greatly expands the number of ports we need with the penalty of forcing 

every packet through the PC and congesting the trunk link. 

So far, we have tested this approach for intra-microgrid (LAN) communication and 

collected some statistics with two Raspberry Pis (version 3 model B+). The networking 

infrastructure is built with an HP 2920-24G switch and a PC tower with a multiport NIC (OS: 

Linux 4.15 CPU: Intel Core i5-2500 @ 3.30Ghz; NIC: Intel 82576). Table 3 shows the results 

from different types of connection between the two Pis by pinging from one Pi to another using 

default parameters over a span of 600 seconds. The results show OVS with VLAN expansion 

incurs about 0.1-0.3 milliseconds of latency compared to simpler configurations. Put in perspective, 

such latency penalty can be considered tolerable when compared to the end-to-end timing 

requirement of 4 milliseconds for a layer-2 substation protocol IEC 61850 GOOSE [37]. 

Table 3 Latency Statistics for Different Configurations 

Latency (milisecond) Min Avg Max Std 

Via only an Ethernet cable 

(direct link) 

0.388 0.498 0.587 0.045 

Via the switch 

(packets processed by hardware) 

0.326 0.433 0.560 0.052 

Via the PC 

(using two ports, packets processed by OVS) 

0.399 0.612 0.841 0.054 

Via the switch and the PC 

(using one port with VLAN, packets processed by OVS) 

0.491 0.745 0.887 0.075 
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Chapter 7  

Conclusions 

7.1 Future Work 

We have increased our attack surface by using a full-fledged operating system and in-band 

control for the gateways. Some mitigations include securing OpenFlow with TLS, encrypting 

tunneling traffic with IPSec [38] and hardening Linux with SELinux [39] and firewalling 

There is some correlation between DDS’ domain and topic and IP’s multicast group. We 

may be able to achieve finer-grained control of topics by isolating a host from certain multicast 

groups such that a compromised or malicious host cannot subscribe to certain topics. We can also 

integrate an intrusion detection system to our system, such as Zeek (formerly Bro) [40], to help 

the SDN controller make decisions.  

The current deployment requires some non-trivial pre-configuration for the PC boxes in 

shell script. We seek to ease this process with an automatic provisioning tool like Ansible [41] to 

configure new and existing microgrids. Since we already have the separation in SDN between the 

control plane and the application layer, we seek to provide a unified application layer to interface 

with both the SDN controller and Ansible. 

7.2 Reflections 

We have tried a variety of commercial hardware switches that support OpenFlow, such as 

HP Aruba 2920 and Pica8 P-3297. Unfortunately, none proved viable. Following are some of the 

issues we encountered: (a) lack of tunneling support or limitation of the number of remote 

tunneling end points; (b) enforcement of strict header matching where, for example, one must 

explicitly define both the source and destination addresses in the MAC header, thus blowing up 

the flow tables with unnecessary entries to an unwieldy proportion; (c) lack of support for optional 

protocols. The latter two issues constitute most of the impediment, because the OpenFlow standard 

leaves much room for manufacturers to decide which features they want to incorporate into their 

products, meaning two switches that support the same OpenFlow version could have different sets 

of functionalities, which, in turn, means that an SDN controller that works for switch A does not 
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necessarily work for switch B [42]. This significantly restricts interoperability and portability [42], 

[43]. 

Aside from the hardware restrictions, we believe there are flaws intrinsic to the OpenFlow 

model itself. Since version 1.0, it has gone through four major revisions [18]. Some of the key 

changes are as follows: version 1.1 added the support for MPLS and VLAN headers and introduced 

the concept of multi-layered flow tables; version 1.2 added the support for IPv6 and enhanced the 

support for existing protocols with additional fields; version 1.3 introduced flow metering and 

provided some interaction with tunneling interfaces with the “Tunnel-ID” metadata; version 1.4 

enhanced the support for existing protocols with even more fields; the latest revision 1.5 introduced 

the concept of egress tables, allowing packets to be processed one more time after they are 

forwarded. One can see that a trend is to add more features for new protocols and improve support 

for existing ones. It is safe to speculate that VXLAN, what we use right now, might be included in 

the future. However, this model does not provide universality, especially with regard to uncommon 

or new protocol standards.  

The Routing Service plays an important role in enabling DDS communication in 

conventional networks across the WAN under varying conditions of connectivity without the need 

to modify existing DDS applications. Due to the disparate characteristics in connectivity between 

LANs and WANs, the RS uses its own QoS profile for message filtering and delivery, mostly for 

conserving bandwidth and reducing loss rate. If we look at a packet from the sample capture of the 

RTPS in Appendix A, we can see that DDS provides rich data fields, such as Type Name, 

Reliability, Acknowledge Kind, Queue Size and Time-Based Filter. If we can take advantage of 

such fields, we can incorporate the QoS and IDS into the data plane and provide arbitrary filtering 

for DDS packets. This is harder for OpenFlow because it sought to commoditize hardware switches 

with fixed-function data planes, i.e., ASICs, most of which only recognize well-known protocols 

like Ethernet frame, IEEE 802.1Q, IPv4 or IPv6.  

P4, a domain-specific programming language [44], however, seems to be a promising 

candidate to address these issues. With P4, we are no longer limited to software-defining only the 

control plane. We can also programmatically define the functionality of the data plane that can be 

either software (like OVS’ kernel module) or hardware (like an FPGA that is able to pipeline 

packet processing at line rate). In any case, a programmable data plane allows the programmer to 
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freely define how to match a packet’s header and what actions to take on it, coping with the ever-

evolving networking field.  

7.3 Conclusion 

The cyber-physical system for the power grid is quickly evolving toward a smart-grid 

design with microgrids. We need a dynamic networking infrastructure to better suit the need of 

smart-grid applications. We believe that, with SDN, this is possible. We propose this SD-WAN 

approach to facilitate the communication for the OpenFMB-DDS framework and provide basic 

security measures. We show that individual devices can be isolated to protect the system against 

malicious applications with hardware switches, controllers and field device simulators. We also 

discuss other possible designs that trade efficiency for simplicity or use a hardware combination 

that seeks to strike a balance between expandability and performance. Lastly, we look at what 

additional security and protections we can provide for both power equipment and the networking 

infrastructure within the current framework. We also review some issues encountered along the 

way and reflect on the OpenFlow standard and the fundamental idea of SDN, thus providing insight 

into how we can achieve greater flexibility and the exact functionality we want. 
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Appendix A 

Sample Capture of an RTPS Packet 

Frame 120: 530 bytes on wire (4240 bits), 530 bytes captured (4240 bits) on interface 0 

Ethernet II, Src: Raspberr_33:a1:77 (b8:27:eb:33:a1:77), Dst: IPv4mcast_7f:00:01 (01:00:5e:7f:00:01) 

Internet Protocol Version 4, Src: 172.16.1.2, Dst: 239.255.0.1 

User Datagram Protocol, Src Port: 38147, Dst Port: 7400 

Real-Time Publish-Subscribe Wire Protocol 

    Magic: RTPS 

    Protocol version: 2.1 

        major: 2 

        minor: 1 

    vendorId: 01.01 (Real-Time Innovations, Inc. - Connext DDS) 

    guidPrefix: ac100102000029aa00000001 

        hostId: 0xac100102 

        appId: 0x000029aa 

        instanceId: 0x00000001 

    Default port mapping: MULTICAST_METATRAFFIC, domainId=0 

        [domain_id: 0] 

        [traffic_nature: MULTICAST_METATRAFFIC (2)] 

    submessageId: INFO_TS (0x09) 

        Flags: 0x01, Endianness bit 

            0... .... = Reserved: Not set 

            .0.. .... = Reserved: Not set 

            ..0. .... = Reserved: Not set 

            ...0 .... = Reserved: Not set 

            .... 0... = Reserved: Not set 

            .... .0.. = Reserved: Not set 

            .... ..0. = Timestamp flag: Not set 

            .... ...1 = Endianness bit: Set 

        octetsToNextHeader: 8 

        Timestamp: Nov  2, 2018 19:53:29.000735999 UTC 

    submessageId: DATA (0x15) 

        Flags: 0x05, Data present, Endianness bit 

            0... .... = Reserved: Not set 

            .0.. .... = Reserved: Not set 

            ..0. .... = Reserved: Not set 

            ...0 .... = Reserved: Not set 

            .... 0... = Serialized Key: Not set 

            .... .1.. = Data present: Set 

            .... ..0. = Inline QoS: Not set 

            .... ...1 = Endianness bit: Set 

        octetsToNextHeader: 3204 

        0000 0000 0000 0000 = Extra flags: 0x0000 

        Octets to inline QoS: 16 

        readerEntityId: ENTITYID_UNKNOWN (0x00000000) 

            readerEntityKey: 0x000000 

            readerEntityKind: Application-defined unknown kind (0x00) 

        writerEntityId: ENTITYID_BUILTIN_SUBSCRIPTIONS_WRITER (0x000004c2) 

            writerEntityKey: 0x000004 

            writerEntityKind: Built-in writer (with key) (0xc2) 

        writerSeqNumber: 6 

        serializedData 

            encapsulation kind: PL_CDR_LE (0x0003) 

            encapsulation options: 0x0000 

            serializedData: 

                PID_ENDPOINT_GUID 

                    parameterId: PID_ENDPOINT_GUID (0x005a) 

                    parameterLength: 16 
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                    Endpoint GUID: ac100102 000029aa 00000001 80000507 

                PID_TOPIC_NAME 

                    parameterId: PID_TOPIC_NAME (0x0005) 

                    parameterLength: 24 

                    topic: BatteryEventProfile 

                PID_TYPE_NAME 

                    parameterId: PID_TYPE_NAME (0x0007) 

                    parameterLength: 68 

                    typeName: OpenFMB_Information_Model::openfmb::essmodule::ESSEventProfile 

                PID_RELIABILITY 

                    parameterId: PID_RELIABILITY (0x001a) 

                    parameterLength: 12 

                    Kind: RELIABLE_RELIABILITY_QOS (0x00000002) 

                PID_ACK_KIND 

                    parameterId: PID_ACK_KIND (0x800b) 

                    parameterLength: 4 

                    Acknowledgment Kind: PROTOCOL_ACKNOWLEDGMENT (0x00000000) 

                PID_RECV_QUEUE_SIZE [deprecated] 

                    parameterId: PID_RECV_QUEUE_SIZE [deprecated] (0x0018) 

                    parameterLength: 4 

                    queueSize: 0xffffffff 

                PID_TIME_BASED_FILTER 

                    parameterId: PID_TIME_BASED_FILTER (0x0004) 

                    parameterLength: 8 

                    lease_duration: 0 sec 

                PID_LIVELINESS 

                    parameterId: PID_LIVELINESS (0x001b) 

                    parameterLength: 12 

                    PID_LIVELINESS 

                PID_DURABILITY 

                    parameterId: PID_DURABILITY (0x001d) 

                    parameterLength: 4 

                    Durability: VOLATILE_DURABILITY_QOS (0x00000000) 

                PID_DIRECT_COMMUNICATION 

                    parameterId: PID_DIRECT_COMMUNICATION (0x8011) 

                    parameterLength: 4 

                    Direct Communication: True 

                PID_OWNERSHIP 

                    parameterId: PID_OWNERSHIP (0x001f) 

                    parameterLength: 4 

                    Kind: SHARED_OWNERSHIP_QOS (0x00000000) 

                PID_PRESENTATION 

                    parameterId: PID_PRESENTATION (0x0021) 

                    parameterLength: 8 

                    Access Scope: INSTANCE_PRESENTATION_QOS (0x00000000) 

                    Coherent Access: False 

                    Ordered Access: False 

                PID_DESTINATION_ORDER 

                    parameterId: PID_DESTINATION_ORDER (0x0025) 

                    parameterLength: 4 

                    Kind: BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS (0x00000000) 

                PID_DEADLINE 

                    parameterId: PID_DEADLINE (0x0023) 

                    parameterLength: 8 

                    lease_duration: INFINITE 

                PID_LATENCY_BUDGET 

                    parameterId: PID_LATENCY_BUDGET (0x0027) 

                    parameterLength: 8 

                    lease_duration: 0 sec 

                PID_GROUP_ENTITY_ID 

                    parameterId: PID_GROUP_ENTITY_ID (0x0053) 

                    parameterLength: 4 
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                    Group entity ID: 0x80000509 (unknown kind (09): 0x800005) 

                PID_ENTITY_VIRTUAL_GUID 

                    parameterId: PID_ENTITY_VIRTUAL_GUID (0x8002) 

                    parameterLength: 16 

                    guidPrefix: ac100102000029aa00000001 

                    virtualGUIDSuffix: 0x80000507 (Application-defined reader (with key): 0x800005) 

                PID_SERVICE_KIND 

                    parameterId: PID_SERVICE_KIND (0x8003) 

                    parameterLength: 4 

                    serviceKind: NO_SERVICE_QOS (0x00000000) 

                PID_PROTOCOL_VERSION 

                    parameterId: PID_PROTOCOL_VERSION (0x0015) 

                    parameterLength: 4 

                    Protocol version: 2.1 

                PID_VENDOR_ID 

                    parameterId: PID_VENDOR_ID (0x0016) 

                    parameterLength: 4 

                    vendorId: 01.01 (Real-Time Innovations, Inc. - Connext DDS) 

                PID_PRODUCT_VERSION 

                    parameterId: PID_PRODUCT_VERSION (0x8000) 

                    parameterLength: 4 

                    Product version: 5.3.0.0 

                PID_DISABLE_POSITIVE_ACKS 

                    parameterId: PID_DISABLE_POSITIVE_ACKS (0x8005) 

                    parameterLength: 4 

                    disablePositiveAcks: False 

                PID_EXPECTS_VIRTUAL_HB 

                    parameterId: PID_EXPECTS_VIRTUAL_HB (0x8009) 

                    parameterLength: 4 

                    expectsVirtualHB: False 

                PID_ENTITY_NAME 

                    parameterId: PID_ENTITY_NAME (0x0062) 

                    parameterLength: 28 

                    entityName: Battery Event Reader 

                PID_TYPE_CONSISTENCY 

                    parameterId: PID_TYPE_CONSISTENCY (0x0074) 

                    parameterLength: 4 

                    Type Consistency Kind: ALLOW_TYPE_COERCION (0x0001) 

                PID_ENDPOINT_PROPERTY_CHANGE_EPOCH 

                    parameterId: PID_ENDPOINT_PROPERTY_CHANGE_EPOCH (0x8015) 

                    parameterLength: 8 

                    Endpoint Property Change Epoch: 1 

                PID_TYPE_OBJECT 

                    parameterId: PID_TYPE_OBJECT (0x0072) 

                    parameterLength: 2788 

                    Type Object 

                PID_ENDPOINT_SECURITY_ATTRIBUTES 

                    parameterId: PID_ENDPOINT_SECURITY_ATTRIBUTES (0x8018) 

                    parameterLength: 4 

                    Flags: 0x00000000 

                PID_SENTINEL 

                    parameterId: PID_SENTINEL (0x0001) 


