

SOFTWARE-DEFINED WIDE-AREA NETWORKS

FOR DISTRIBUTED MICROGRID POWER SYSTEMS

BY

XUANYAO ZHANG

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Advisor:

Research Assistant Professor Sibin Mohan

ii

Abstract

Cyber-physical systems have increasingly taken advantage of packet-switching networks

for control and data acquisition. A major example is the realization of the smart grid. On the

networking side, software-defined networking (SDN) has been trending for the past decade. With

the help of SDN, we are moving towards power grids that have both intelligence and security. In

this thesis, we focus on providing a versatile SDN infrastructure for power-system applications in

the environment of microgrids. We conduct simulations and collect statistics to demonstrate that

the SDN approach facilitates communications and enhances security for certain microgrid

applications.

iii

Acknowledgments

I would like to first express my gratitude to Professor Sibin Mohan, for his guidance on

this thesis and his advice on career development. I also want to thank Ashish Kashinath from our

SyNeRCyS research group with whom I have had the pleasure to work and, whenever I was bored,

to chat. I could always turn to him for help whenever I was in need.

I would also like to express my gratitude to researchers Alfonso Valdes and Richard

Macwan from the Information Trust Institute, with whom I often worked until afterhours. Last but

not least, I thank the rest of the team working on the project for Cybersecurity for Energy Delivery

Systems (CEDS), including Dmitry Ishchenko from ABB and David Lawrence and Stuart Laval

from Duke Energy. They expanded my knowledge beyond my discipline and provided me the

opportunity to work on a project that ultimately resulted in this thesis.

iv

Table of Contents

Chapter 1 Introduction... 1

Chapter 2 Background ... 3

2.1 Microgrid .. 3

2.2 The Open Field Message Bus ... 4

2.3 Reliable Middleware ... 4

2.4 Software-Defined Networking ... 5

2.5 Tools and Protocols .. 6

2.5.1 IP Multicast .. 7

Chapter 3 Related Work .. 9

Chapter 4 Design and Implementation ... 10

4.1 System Model ... 10

4.2 Interacting with the End Hosts ... 11

4.3 The Control Plane ... 11

4.3.1 Event Loops ... 12

4.4 Forwarding Plane .. 13

4.4.1 Simplify the Forwarding Plane Logic with MPLS .. 14

4.5 The Application Layer .. 16

Chapter 5 Deployment and Results ... 18

5.1 Results .. 20

Chapter 6 Other Design Considerations ... 21

6.1 Hub-and-Spoke Model with VXLAN .. 21

6.2 Building our Own SDN Switches ... 21

Chapter 7 Conclusions .. 23

7.1 Future Work .. 23

7.2 Reflections .. 23

7.3 Conclusion .. 25

References .. 26

Appendix A Sample Capture of an RTPS Packet .. 29

1

Chapter 1

Introduction

In the electric power industry, the trend is toward smartness for better control and smallness

for better efficiency and resiliency. This trend has led to the concept of microgrid [1]. A microgrid

is a localized group of electricity sources and loads within clearly defined electrical boundaries. A

microgrid as an entity can be connected to a main grid and other microgrids in grid-connected

mode, trading energy deficit or surplus and balancing the load on a larger scale. Or it can be

isolated from others and operate entirely on its own energy resources, thus preventing the spread

of grid failure due to natural disasters or human attacks [2]. The communication side largely

follows the topology of a microgrid design, i.e., intra- and inter-microgrid communications.

A very simple microgrid may consist of a microgrid controller, a human-machine interface,

a battery system and some protective relays. SCADA (supervisory control and data acquisition)

protocols have evolved in the past four decades from serial protocols such as Modbus [3] to modern

standards that use switched networks, including Ethernet and TCP or UDP over IP. Examples of

these include IEC 61850 [4] and DNP3 [5]. SCADA operation consists of a master that polls

devices for measurements, performs calculations and possibly issues commands to devices capable

of undertaking control actions. The actions, for example, can be tripping a relay to isolate a fault,

dispatching distributed energy resources (DER) to balance the load with the main grid and other

microgrids or changing DER power input settings in response to conditions.

As the electric power sector increasingly adopts smart-grid technology, network-enabled

devices (for measurements) and control have become widespread. Reliance on common lower-

layer standards such as Ethernet and IP enables greater versatility in configuration, topology and

coordination for devices. However, it also poses challenges in connectivity and security as newer

communication protocols emerge (such as OpenFMB [6]) and the attack surface increases as

evidenced in the recent cyberattack on Ukraine’s power grid [7]. Such trends in power systems

prompt this research to leverage a new networking paradigm, software-defined networking (SDN)

[8], to better serve the infrastructural need of power system networks.

Conventional networks work in a distributed fashion where routers use well-defined

protocols to exchange messages with peers to converge to a steady state so that packets are

2

correctly forwarded. SDN eliminates this process by having a central authority that controls routers

directly. This paradigm allows the central entity to have a global view of the networks. Therefore,

it can swiftly respond to any change of state and enforce new policies. We find this approach

distinctly suitable for managing the networking infrastructure of power systems containing

microgrids. With SDN, we can achieve faster routing, traffic prioritization and device or microgrid

isolation. These qualities are well suited for microgrid designs because they are real-time systems

where the speed of communication needs to match up to that of the change of electrical

characteristics.

The typical networking setup of power systems retains conventional techniques, including

the use of point-to-point VPNs to bridge field networks with central office, along with standard

routing protocols. This setup only provides slow routing, sub-optimal routes and coarse-grained

protection against compromised components. This research, however, aims to overcome the

drawbacks of conventional networks by using SDN. In this thesis, we intend to demonstrate the

possibility that the SDN approach can (a) facilitate device communication of OpenFMB-DDS

applications across large geographical distances, (b) improve the performance in latency for DDS

applications compared to some existing solution and (c) enhance security of the power system with

fault isolation.

The rest of this thesis is organized as follows: In Chapter 2 , we introduce OpenFMB-DDS,

a new framework we seek to support and tools we use to achieve such goal. In Chapter 3 , we

review past research where SDN and power grids intersect and some existing solutions, including

commercial ones. In Chapter 4 , we present the assumptions, the problem statement, the

approaches and the results. In Chapter 5 , we present a physical setup to further prove the viability

of our solution. In Chapter 6 , we discuss possible alternative approaches. Lastly, in Chapter 7 ,

we propose some possible future development, reflect on the entire process of our design and

finally conclude this thesis.

3

Chapter 2

Background

In section 2.1, we explain the advantages of a microgrid design and a sample topology. In

section 2.2, we discuss the need for an open standard for future devices and discuss how OpenFMB

charts a course forward. In section 2.3, we provide a high-level view of the reliable middleware

that bridges OpenFMB and the underlying network. The two sections provide us some background

knowledge of smart-grid designs and the motivation for this research. Then in section 2.4, we

introduce the concept of software-defined networking and discuss why it helps achieve the goal of

the research. Lastly in section 2.5, we prepare readers with the knowledge of the tools and

protocols in use.

2.1 Microgrid

Motor ZIP

Critical
Load

Substation 1

MG1 MG2
POI-1 POI-2

Substation 2

NG PV

ESS

ZIP

Critical
Load

Diesel

ESS PV

Motor

Figure 1 A use case with two microgrids. The red and blue cubes represent reclosers, with red ones being closed

and green ones being open by default. Circular devices represent power sources and rectangular ones power sinks.

Lines and bars represent electrical interconnections. Abbreviations are as follows: MG: Microgrid; POI: Point of

Interconnection; NG: Natural Gas; PV: Photovoltaic Panel; ESS: Energy Storage System; ZIP: Constant Impedance

(Z), Current (I) and Power (P).

Diagram courtesy of Alfonso Valdes.

A traditional power grid design has a strictly hierarchical topology featuring centralized

power plants, long-distance transmission lines and substations owned by utility companies. Central

plants can take advantage of economies of scale, but this advantage has been offset by distributed

4

energy generation with the advent of smaller power sources (microsources). A microgrid design

takes advantage of the proximity to residential, commercial and industrial areas to achieve greater

efficiency and flexibility. Such design, with advanced controls, could possibly reduce the loss in

distant power transmission, reduce disturbances in terms of power quality, provide resiliency in

the event of outage [9] and increase efficiency through the use of waste heat [1].

An example use case is demonstrated in Figure 1. It has two microgrids, MG1 and MG2,

that are electrically connected to each other and, through substations, to the main grid. MG1 and

MG2 maintain electrical connection to the main grid but electrical isolation between themselves

by default. They can dynamically reconfigure electrical connections by using the reclosers in

response to certain conditions.

2.2 The Open Field Message Bus

Unless one chooses to purchase power devices from a single vendor, there is a high

likelihood that designers will encounter heterogeneous devices and different protocols. Traditional

protocols are usually single-purpose that use a centralized control where there is clear dichotomy

of masters and slaves. A conventional setup is to connect the field devices to the utility central

office one by one (point to point). The centralized entity is responsible for collecting telemetric

data from field devices for processing and issuing commands back to them. This, however, does

not provide interoperability because field devices cannot directly interact among themselves.

The Open Field Message Bus (OpenFMB) [6] seeks to address these issues by putting forth

an open-source common information model that every field device shall conform to, either as is

for newer devices right off the shelf or through adapters for existing ones. This new model enables

distributed intelligence and scalability for deployment. Additionally, due to its distributed nature,

more robustness in connectivity and autonomous decision making can be achieved.

2.3 Reliable Middleware

OpenFMB’s versatility comes not only from its data model (the upper layer) but also from

the variety of middleware it can be adapted to, such as Message Queue Telemetry Transport

(MQTT), Advanced Message Queue Protocol (AMQP) and Data Distributed Service (DDS) [10].

In this section, we introduce DDS and explain why we focus on this middleware over the others.

5

Figure 2 Logical view of DDS components [11]. The domain here facilitates logical isolation of different domain

participants. Domain participants associate with each other via topics.

The aforementioned protocols conform to the publish-subscribe model. Unlike a TCP/IP

connection where end hosts are identified by their respective IP addresses and port numbers, in

these protocols, end hosts exchange messages identified by their topics via the middleware. For

example, in a vehicular system consisting of wheel speed sensors (WSS), anti-lock braking system

(ABS) and electronic stability control (ESC), both ABS and ESC will be interested in the speeds

of the wheels, so both naturally subscribe to the speed data published by the WSS. In a publish-

subscribe model as shown in Figure 2, data are not explicitly sent or retrieved from one endpoint

to another but rather through topics that the endpoints share interest in. In this case, the topic is

“Speed”.

As the name suggests, DDS works in a distributed fashion. Unlike MQTT or AMQP, it

does not rely on a broker server that can be a single point of failure. The DDS framework [12] is

further divided into the data model and the wire protocol (Real-Time Publish-Subscribe protocol

or RTPS). DDS allows users to define their own data objects and message filtering based on the

attribute-value pairs in those objects. We avoid discussing the object model since this is largely

handled by OpenFMB. Additionally, as this is a thesis on networking, our focus is limited to the

wire protocol and how it interacts with our networking logic.

2.4 Software-Defined Networking

Software-defined networking (SDN) [8] has been a trending topic since its inception a

decade ago. In this section we introduce what it is and how it facilitates communication and

provides security.

6

Traditionally, core network switches use distributed protocols such as OSPF and BGP [13]

to learn the global topology and peer relationships. They then calculate the optimal paths to

destinations from the learned topology or relationships in order to determine which neighbors

should be forwarded the packets, subject to business relationships and regulations. Due to the

nature of these distributed algorithms, it is a slow process for the switches to converge to a

consistent state where packets are correctly and efficiently forwarded. Furthermore, any change of

state in the topology (such as a switch breaking down or a link becoming congested) will disrupt

the equilibrium and cause the (slow) convergence process to start again.

SDN seeks to eliminate the need for a distributed process by introducing a centralized

control plane as a replacement for the routing logic residing at individual switches. The controller

gathers routing messages from border gateway routers, computes the optimal solutions and then

formulates them as simple match-action rules to install onto the switches (forwarding plane). A

full-scope implementation also has an application layer that interfaces with the controller to allow

the user to change switching behaviors and monitor the state of the network. SDN speeds up

routing, eases management and provides possibility for traffic engineering that cannot be achieved

in a traditional network.

This thesis focuses on a specific application of SDN, viz., the software-defined wide-area

network (SD-WAN) because our efforts aim primarily to provide connectivity for field devices

within microgrids that constitute local-area networks (LAN) and across multiple microgrids via a

wide-area network (WAN). We also provide support for isolating individual devices or entire

microgrids to protect the power system from compromised nodes.

2.5 Tools and Protocols

Mininet [14] is an emulator that allows rapid prototyping of a large network. It leverages

the Linux kernel to create virtual Ethernet interfaces (veth) in different network namespaces and

Open vSwitch to create virtual switches that the interfaces can attach to. With veth comes the

benefit of capturing and analyzing traffic with tools such as Tcpdump and Wireshark [15]. Mininet

also provides shell interfaces (bash) for virtual hosts through process-based virtualization so that

traffic can be generated and received in the simulation, thus providing an end-to-end testbed for

SDN implementations. Most of the testing in this thesis was conducted in the Mininet framework.

7

Open vSwitch [16] (OVS) provides the functionality of the SDN forwarding plane

(switches and links). It consists of several user-space utilities to configure topology, provide

OpenFlow interface for the SDN controller and interact with its kernel Datapath module that

provides low-latency, high-throughput packet forwarding. As we move towards deployment, we

use OVS commands to manipulate the OVS database directly to fine-tune and retain the setup in

a persistent manner.

Ryu [17] is an open-source Python framework for developing SDN controllers. It supports

OpenFlow protocol versions 1.0 through 1.5, the latest release. It also incorporates a Web Server

Gateway Interface (WSGI) component for developers to implement the application layer of the

SDN, enabling on-the-fly reconfiguration of the control plane.

OpenFlow [18] has emerged as the de-facto standard protocol for SDN development. It

allows the controller to direct actions for packets based on their headers and provides a few

methods to query for the switches’ statistics, such as the number of bytes or packets that have been

transmitted or received for a given interface and the state of interfaces.

2.5.1 IP Multicast

In the world of power systems [19], multicast plays a critical role for many publish-

subscribe protocols. Many field devices do not have a great amount of computing power. The

industrial Ethernet switches do not have large throughput either unlike commercial switches at

data centers. Multicast can reduce unnecessary traffic by pushing traffic duplication toward the

last links as far as possible, which, in turn, reduces the load on the senders and backbone switches.

IP Multicast is divided into two parts, the WAN segment and the LAN segment. The WAN

side consists of routers that usually run Protocol Independent Multicast (PIM) protocols for

forwarding traffic. PIM has two modes: the dense mode (DM) [20] and sparse mode (SM) [21].

The DM postulates a scenario where the majority of end hosts in the network are interested in

certain particular multicast traffic, so the idea is to (a) flood the entire autonomous system with

such traffic and (b) let downstream routers notify upstream routers that they do not want such

traffic if there are no interested listeners. The SM does the opposite. It works by designating a

rendezvous point (RP), where the senders and receivers “meet” to complete forwarding paths and

multicast traffic is duplicated. Once the edge routers for listeners learn the sender’s address, the

routers can trace back and pull multicast traffic along the shortest path while pruning the original

8

path. Both methods are slow and inefficient and no ISPs, to our knowledge, support multicast

without a special agreement. To further complicate matters, our microgrids might belong to

different internet providers. The LAN side only involves the edge routers and end hosts to which

they are connected. Internet Group Management Protocol (IGMP) or Multicast Listener Discovery

(MLD) [22], [23] messages are exchanged for membership management in LAN. Essentially,

whenever a host wants to join or leave a multicast group, it sends out a multicast message destined

for that specific group to report “joining” or “leaving”, and then the edge router is responsible for

picking up such reports to keep track of which end host is in which multicast group. In addition to

self-reporting by end hosts, the edge routers are also responsible for periodically sending out IGMP

queries for membership reports, lest any leave messages be lost, or hosts crash before sending such

message.

9

Chapter 3

Related Work

Most of the SDN research in the area of power systems seems to have focused on single-

grid use cases. Pfeiffenberger et al. [24] presented a way for efficient data delivery of multicast

traffic with fault tolerance and with a focus on IEC 61850 traffic. Cahn et al. [25] tried to adapt

SDN for the power grid as it transitions into smart grid, in order to provide better management,

auto-configuration and security.

Other research [26], [27] primarily deals with several different field devices within the

same power grid and seeks to identify and optimize real-time flows in such a system or to improve

security through filtering. I would argue such efforts still fall within the scope of the generic

application of SDN. To the best of our knowledge, ours seems to be the first to use SDN for traffic,

both within and across microgrids.

There is a component to RTI’s DDS framework called Routing Service [28]. It is an out-

of-the-box solution to bridge DDS applications across different publish-subscribe domains and

LANs. The idea is to have a service application running in every LAN that subscribes to all DDS

messages. The services are preconfigured with their peers’ IP addresses and listening ports, so that

messages can traverse from one LAN to another through the services that act like proxy servers.

This solves the connectivity issue but is very inefficient as messages do not go from source to

destination directly. Furthermore, this solution is limited to DDS or perhaps only RTI’s

implementation of it, thus lacking interoperability.

For the commercial use, SD-WAN [29] is gradually replacing traditional services such as

T-carrier and MPLS [30]. It is mostly used to optimize traffic for multi-homed offices and provide

dedicated and secured connectivity between branch offices. Existing solutions include Cisco’s

iWAN [31] and Riverbed’s SteelConnect [32]. While they likely already provide multicast support

across branch offices, they might not allow customizability for power-system protocols on a per-

flow basis.

10

Chapter 4

Design and Implementation

In this chapter, we begin by presenting a power-grid use case that reflects a real-world

scenario. Then we delve into the technical details of IP Multicast and we explain the core design

of the SDN controller that is the control logic and the forwarding rules derived from it. Finally, we

present an interface for external inputs to change the controller’s behaviors and retrieve the state

of the network, thus demonstrating a full-stack solution in SDN.

4.1 System Model

Figure 3 Topology for our experiments. “Gateways” and “routers” signify SDN controllers. Blue loops with arrows

through them signify SDN switches. Command-line interfaces in black backgrounds signify end hosts. Links are in

blue or red, respectively, representing the transport network and management network.

We simulate a physical setup that includes three microgrids inter-connected through a

WAN and two field devices residing at each microgrid. We “own” every microgrid, e.g., the

networking infrastructure and the field devices, but we do not have any control over the WAN that

is operated by third parties such as AT&T and Verizon. Figure 3 shows our simulated network in

Mininet. Switches s1, s2 and s3 act as gateways, each residing at a microgrid, numbered from 1 to

3. We assume gateways have as many ports as we want so that all end hosts (field devices) can be

directly connected to the gateways. This improves control as we can police the traffic of any given

host with the controller for the gateways. Switches s4, s5 and s6 simulate the WAN. They have a

separate controller because an energy company does not usually own the networking infrastructure

11

beyond their properties. Consequently, we do not assume any control over this controller.

Following the conventional architecture of SDN, a separate management network is provided

between the controllers and switches, connected through red links.

Each microgrid, also a subnet, is assigned a private IP range. A host thus can be assigned

the address 172.16.<Grid ID>.<Host ID +1>. The gateways themselves hold the addresses 172.16.<Grid

ID>.1 and each of them also has a public IP or MPLS label.

4.2 Interacting with the End Hosts

A few commonplace mechanisms are implemented to handle protocols such as Address

Resolution Protocol (ARP) [33] in order to provide standard IP and MAC unicast. We will not

expand on these components in order to focus on the key issues.

4.3 The Control Plane

Figure 4 This is the topology of the overlay network formed using VXLAN. In this topology, there are three

microgirds and correspondingly three gateways, each with two southbound ports to the end hosts and two

northbound ports to other microgrids.

This design, as shown in Figure 4, seeks to flatten the design with the help of Virtual

Extensible LAN (VXLAN), a layer-2 tunneling protocol [34]. A VXLAN end point takes the entire

packet, encapsulates it in UDP/IP and sends it over to another end point. In this design, we set up

as many northbound interfaces as there are peers, which means there will be (𝑛 − 1) ∗ 𝑛 2⁄ point-

to-point tunneling links, forming a full mesh. The first problem we encounter is loops. The

traditional solution is the spanning tree algorithm that prunes additional links and makes them

12

inactive backup lest active links fail. This works fine in a small scale, physical LAN environment.

In our case, however, each northbound link is potentially across a distant geography, with limited

bandwidth and high latency. In order to preserve the optimal routes that are the direct links from

one to another, we divide interfaces into two categories, the northbound ones that are VXLAN and

the southbound ones that are end hosts (field devices). For broadcast traffic received from the

southbound interfaces, a switch floods it to all other interfaces. For broadcast traffic received from

the northbound interface, it only floods it to southbound interfaces, knowing they must have

already been flooded to other switches by the first hop gateway.

4.3.1 Event Loops

Figure 5 The control plane logic consists of four event loops. The rightmost loop is the query thread. The second

from the right is the timer thread. The two loops on the left handle IGMP join and leave messages.

The control plane logic has multiple threads to deal with different aspects, as summarized

in Figure 5. The query thread, every 60 seconds, sends out membership requests to southbound

hosts, triggering passive membership reports within the response interval (10 seconds). The timer

thread, every unit of time, increments the time counter for each listening port. If the time counter

reaches 75 seconds (the amount of time should be greater than the query interval plus the response

interval), it times out and is evicted from the control plane. A more frequent query results in a

Control Plane Logic

Unit of time lapsed

Every 60 seconds

lapsed

Upon receiving a "join" request

Event-driven Loops

Rest timer

Host already
exists?

Evict port from

control plane

Repeat

Add port to

control plane

Upon receiving a "leave" request

Increment

timers for all

Send IGMP

membership query

to all hosts
Timer exceeded

75s?

13

higher-resolution view of the state of the network but increases the burden on the management

network and the SDN controller. We choose an interval of 60 seconds which is about half of the

suggested value of 125 according to the RFC [22].

The rest of Figure 5 demonstrates the control plane logic for IGMP messages running for

each gateway. Whenever an end host reports joining or leaving a multicast group, the messages

are sent to the control plane logic at every gateway. If not already existent, the handling routine

sets up a “listeners_port” dictionary for each multicast group and adds an entry with the key being

the port number from which the report comes in and the value being an “IgmpListeners” class, as

shown in Figure 6. Then, the address of the listener will be added to the set “listeners_addresses”.

Whenever a “join” message arrives from any end host, the “time_counter” is reset to zero for the

listening port (“IgmpListeners”) it is attached to. Whenever a “leave” message arrives, it removes

such end host from the “listeners_addresses”. There are two cases where an “IgmpListeners” class

should terminate and evict itself, either when the timer reaches 75 or when all of its end hosts have

reported leaving the group.

Figure 6 Data structure for bookkeeping. The “_mcast” structure is a dictionary that has multicast addresses as the

keys and pointers as the values, pointing to other dictionaries that are “listeners_port”. Each “listeners_port”

dictionary has port numbers as keys and their values point towards “IgmpListeners” dictionaries.

4.4 Forwarding Plane

The data structure in Figure 7 reflects what should be installed on the gateway switches.

Each existing entry in the “_mcast” dictionary corresponds to two action groups that are collections

of actions. They together have as many output ports as there are entries in the “listeners_port”

dictionary where those ports are split into two groups based on locality, one for southbound

interfaces and the other for northbound ones. The check for tunneling ID determines if a multicast

dict._mcast

224.0.0.1

......

239.0.0.1

......

......

dict.listeners_port

port 1

port 2

port 3

......

Class IgmpListeners

this_port_number

time_counter

listeners_addresses

add_listener()

del_listener()

count_up()

14

packet arrives from a remote microgrid (gateway), in which case the packet can only be duplicated

for local ports (southbound) to prevent broadcast storm. Otherwise, a packet can be duplicated for

any port as long as there is at least one listener attached, if such packet originates locally.

When an “IgmpListeners” class is evicted, it modifies the action group by removing the

output port. If both action groups contain zero ports, meaning there are zero listeners anywhere,

the flow rule is evicted from the switch.

Figure 7 Forwarding plane structure showing a flow table for multicast packets and associated action groups. The

flow rules table maintains two entries for each multicast group, one for packets from northbound ports and the other

for from southbound ports. The entries in the action groups are ports the listeners are attached to. Ports in action

groups should be separated based on northbound or soutbhound

Recounting the entries in the forwarding plane, for each IPv4 multicast group, there are

two flow rules, two action groups and as many ports as needed in the two groups. In the OpenFlow

1.4 standard, there are 232 action groups. In IPv4, there are 228 multicast groups so we will not

run out of action groups. But in IPv6, the number of multicast addresses far exceeds 232.

4.4.1 Simplify the Forwarding Plane Logic with MPLS

We soon realized some of the shortcomings from flattening the network into a giant LAN.

The first problem comes from the fact that the number of tunneling links grow in the order of

𝑂(𝑛2). This joint project is still in its early phase with the goal of deploying five microgrids. As

the number of grids grows, however, this becomes increasingly unwieldy. The second issue comes

from it being a LAN. VXLAN is a layer-2 tunneling protocol designed for building overlay

networks for VMs in a data center. Messages like ARP are flooded across the entire overlay

network, which puts too much burden on the network, especially the WAN part. The third problem

flow rules

Match: IP==224.0.0.1 tunneling==None

Match: IP==224.0.0.1 tunneling==Yes

......

......

......

Action Group to northbound interfaces

port 1

port 2

port 3

......

Action Group to southbound interfaces

port 101

port 102

port 103

......

15

comes from dynamic configurability. OpenFlow is inherently incapable of processing any

tunneling protocol headers, so we rely upon OVS to provide the tunneling end points. This requires

reconfiguration for both the SDN controller and the gateways every time we want to add a new

grid into the system, which is in the order of O(n).

With such consideration, we decided to switch to a design with the help of Multi-protocol

Label Switching (MPLS). In this design, we restrict the LAN switching to within the microgrids,

only allowing layer-3 traffic to go northbound. We incorporated proper ARP handling into the

SDN controller to reduce the amount of traffic flooding. In addition, because MPLS is native to

OpenFlow since version 1.1, we can reduce the northbound ports to only one per microgrid and

migrate the dynamic reconfiguration of power grid topology to the SDN controller, such as adding

a new microgrid to the existing setup. Now, the number of northbound links is reduced to the order

of 𝑂(𝑛) and the number of gateways requiring reconfiguration to zero.

Flow rules

Match: IP==224.0.0.1 Actions={(Forward to port 1,2,3), (Push MPLS),(Forward to port 101)}

......

......

......

......

Figure 8 Forwarding plane structure showing the flow table for multicast packets in MPLS design, which only

requires one entry per multicast group

Incoming traffic via the northbound interface is assumed to be always MPLS tagged, so it

is first stripped of its MPLS header and then checked to see if it is a multicast packet before being

sent to the multicast flow table. Another advantage in this design is that you do not need to

differentiate the ingress port of a packet because the same action can be applied to all without

causing broadcast storm, due to the fact that OpenFlow will ignore output actions to the ingress

interface, unless explicitly specified. For the same reason, we no longer need to split every flow

rule into two to separately handle traffic originating from the local grid versus traffic from remote

grids, and we completely get rid of the use of action groups, resulting in similar flow rules laid out

in Figure 8. This design greatly simplifies the forwarding plane and we are down to only one entry

per multicast group to deal with on the forwarding plane.

16

4.5 The Application Layer

So far, we have dealt only with the forwarding plane and control plane. Now we need to

introduce some human control on the fly. This is the application layer of the SDN hierarchy. We

incorporate some Representational State Transfer (REST) interfaces into our controller to achieve

some security measures as shown in Table 1.

Table 1 A List of APIs for the Application Layer

Name HTTP Request Path Method(s) Body of Response(s)

Description

list_table /gateways/table/{dpid} GET “ip to mac”

“mac_to_port”

Queries the controller for end hosts’ information at a specific datapath.

The response “ip_to_mac” shows the MAC addresses of end hosts with specific

IPs. “mac_to_port” shows which southbound ports the end hosts with specific

MAC addresses are attached to.

isolate /gateways/isolate/{dpid}/{port_no} POST “isolated_dpids_ports”

Shuts down a specific port of a specific Datapath (gateway). If the “port_no” is 0, it

shuts down every single port of the Datapath and cuts off any intra- and inter-grid

communication. If the “port_no” is the northbound port, it shuts down the inter-

grid communication but devices within the microgrid can still communicate with

each other properly. Both actions will eliminate other microgrids’ awareness of

multicast state of the isolated microgrid, which, in turn, eliminates unnecessary

northbound traffic that will eventually be rejected. If the “port_no” is one of the

southbound ports, only that specific device is isolated from the rest of the system.

The response “isolated_dpids_ports” keeps track of the isolated ports of the

gateways.

deisolate /gateways/deisolate/{dpid}/{port_no} POST “isolated_dpids_ports”

Undoes “isolate”.

The response is the same as that of the “isolate” API.

allocate /gateways/allocate/{dpid} POST None

Allocates resources for a new microgrid that joins the system.

The body of the POST method should contain the MPLS label assigned to this

microgrid, the port number of the northbound interface, the IP and MAC of the

default gateway and the subnet mask.

If the inputs are correct and the resources to allocate pose no conflicts with existing

setup, “200 OK” is returned. Otherwise it returns “400 Bad Request” or “409

Conflict”.

17

To use the APIs, one will send appropriate HTTP requests to the address Domain Name or

IP/HTTP Request Path, with contents in braces replaced by actual identifiers. The responses are

in JSON formats, returning a list of states in the controller. In the case of incorrect requests, a “404

Not Found” response is returned, unless specified otherwise.

18

Chapter 5

Deployment and Results

We implemented the setup described in Chapter 4 in hardware to demonstrate feasibility

in a realistic scenario. However, we were met with multiple constraints. First, we do not have an

MPLS infrastructure. Secondly, we could be limited to only one public interface per microgrid,

forcing us to move forward with in-band SDN control, which means we will use the same network

for transport and management. With such considerations, we try to emulate an MPLS infrastructure

with the help of tunneling -- resulting in a mixed usage of VXLAN and MPLS.

Figure 9 The current topology for deployment. The virtual routers on the blue cloud translate MPLS labels to

VXLAN encapsulation. The routers outside the cloud are MPLS routers.

Figure 9 shows the high-level table-top setup of our experiment. The infrastructure is set

up with three PC towers, one laptop and a simple layer-2 switch. Each PC tower has five Ethernet

ports, with one connected to the layer-2 switch. The laptop is also connected to the switch and runs

the Ryu SDN controller. Each of the three towers runs a Linux 4.15 with OVS 2.5 installed. It runs

two instances, one being the MPLS SDN instance as described in section 4.4.1 and the other for

converting MPLS-tagged packets to VXLAN encapsulation. The number of tunneling pairs still

remains in the order of 𝑂(𝑛2), but we have decoupled it from the control plane.

Internet

SDN Controller

Microgrid

1

Microgrid

Microgrid

Emulated MPLS Network

19

Most of the debugging was done using RTI’s performance test (a command-line

application to measure the latency and throughput in different configurable scenarios that use DDS

middleware to send messages [35]). Therefore, any application built on top of DDS should work

as is. But to move our design closer to reality, we also used the OpenFMB-DDS demo [36] to

demonstrate the SD-WAN infrastructure. We have a total of four Raspberry Pis and five OpenFMB

applications. We attach the Pis to two of the PC Towers, two for each. The applications running

on the Pis are a human-machine interface (HMI), a battery simulator, a recloser simulator, a solar

panel simulator and a load simulator. The latter four are assigned to the Pis, one for each, with the

HMI assigned to the first Pi. The HMI, as shown in Figure 10, is a web UI that allows the user to

monitor the state of the microgrid. If we isolate any port or grid, the associated end hosts will

disappear from the HMI, indicating the communication channels to them have been cut off.

Figure 10 The HMI monitoring four field device simulators. This is a snapshot of the web UI. The Device Profiles

section displays, clockwise from top left, a recloser, a battery, an electrical load, and a solar panel.

20

5.1 Results

Aside from the connectivity and security that have been tested, we can also compare our

solution to existing ones. Centralized decision-making is faster than running distributed algorithms.

This holds much more importance for multicast traffic due to the constant change of membership.

Our design should be logically faster than any conventional routing protocols but comparing with

the conventional designs would not be easy, because we neither know the exact WAN topology

where we will deploy this solution nor have the commercial switches to construct a conventional

network for such a topology. However, we can still compare it with an existing solution that seeks

to avoid the problem of multicast across WAN, i.e., the RTI’s Routing Service (RS). Table 2

shows the results collected from running the latency test of RTI’s Performance Test with the

default QoS (Quality of Service) profile over a span of 600 seconds. The statistics were collected

from two setups, one in an environment simulated with Mininet as described in section 4.1 and the

other using the table-top setup in Figure 9. The test consists of (a) a publisher in one LAN that

publishes data to test bandwidth and periodically inserts requests for pings in the packets and (b)

a subscriber in another LAN that acknowledges the data and responds to the publisher for the ping

requests. The test also includes an RS instance in the publisher’s LAN for both setups but only the

simulation in Mininet has another RS instance in the subscriber’s LAN due to resource constraint.

The results show that using RS incurs substantial latency compared to our solution (native

connection). There are multiple reasons, but the first and foremost one is that the RS inserts one

or more hops between the endpoints. The RS also uses its own QoS profile in data transport

including messages parsing, filtering and reassembly. This additional packet processing

contributes to the end-to-end latency. It should also be pointed out that the RS enforces the use of

TCP/IP for reliable transport and NAT traversal across the WAN and the use of a reliable protocol

might have negative impact on real-time applications.

Table 2 Latency Test in Different Environments

Latency (microsecond) Avg Std Min Max

Mininet Native 85 27.1 42 8109

RS (pub side only) 218 76.7 132 9906

RS (pub and sub sides) 371 123.7 216 12491

Table-top Native 888 169.6 482 9672

RS (pub side only) 1431 255.0 1015 12513

21

Chapter 6

Other Design Considerations

6.1 Hub-and-Spoke Model with VXLAN

Constrained by the possibility that we will not have an MPLS infrastructure, we try to

address the scalability issue in point-to-point tunneling. A solution could be to have a hub node

residing independently of all microgrids and have all microgrids connect to it through tunneling

as shown in Figure 11. This way, we keep the number of tunnels in the order of 𝑂(𝑛). However,

aside from being similar to the conventional setup where the tunneling hub resembles the control

room (central office), this approach has other obvious downsides. First, all inter-grid traffic will

cross the hub thus severely burdening the hub and relevant links. Secondly, every inter-grid packet

will take a detour through the hub resulting in causing unnecessarily latency, which is very

undesirable for a real-time system. For these reasons, we chose not to proceed with the hub-and-

spoke model.

Figure 11 A possible hub-and-spoke model where each microgrid only maintains a single tunnel to the hub.

6.2 Building our Own SDN Switches

Having 5 ports per microgrid is enough for the time being, but as we progress further, we

will attach more devices. The use case in Figure 1 requires eight southbound ports per microgrid

that can be satisfied with a regular PC tower with two 4-port network interface cards (NIC).

However, inserting ever more NICs is not a scalable solution.

Internet

SDN Controller

Microgrid 1

Microgrid 2

Microgrid 3
Tunneling Hub

22

Inspired by the solution of separating the tunneling switch from the SDN switch, we are

working on expanding the number of physical interfaces with the help of Virtual LAN (VLAN).

We can create as many virtual interfaces as we need for a single port on the PC and assign each a

unique VLAN ID. Secondly, we assign these virtual interfaces to the SDN switch where they

appear to be physical interfaces from the SDN controller’s perspective. Next, we designate the

same number of untagged VLAN ports on the switch and a tagged trunk port and then bridge the

untagged ports with the trunk port. Lastly, we connect the PC’s physical port to the trunk port of

the switch. Hence, the virtual interfaces of the SDN switch will mirror those untagged ports on the

physical switch. This greatly expands the number of ports we need with the penalty of forcing

every packet through the PC and congesting the trunk link.

So far, we have tested this approach for intra-microgrid (LAN) communication and

collected some statistics with two Raspberry Pis (version 3 model B+). The networking

infrastructure is built with an HP 2920-24G switch and a PC tower with a multiport NIC (OS:

Linux 4.15 CPU: Intel Core i5-2500 @ 3.30Ghz; NIC: Intel 82576). Table 3 shows the results

from different types of connection between the two Pis by pinging from one Pi to another using

default parameters over a span of 600 seconds. The results show OVS with VLAN expansion

incurs about 0.1-0.3 milliseconds of latency compared to simpler configurations. Put in perspective,

such latency penalty can be considered tolerable when compared to the end-to-end timing

requirement of 4 milliseconds for a layer-2 substation protocol IEC 61850 GOOSE [37].

Table 3 Latency Statistics for Different Configurations

Latency (milisecond) Min Avg Max Std

Via only an Ethernet cable

(direct link)

0.388 0.498 0.587 0.045

Via the switch

(packets processed by hardware)

0.326 0.433 0.560 0.052

Via the PC

(using two ports, packets processed by OVS)

0.399 0.612 0.841 0.054

Via the switch and the PC

(using one port with VLAN, packets processed by OVS)

0.491 0.745 0.887 0.075

23

Chapter 7

Conclusions

7.1 Future Work

We have increased our attack surface by using a full-fledged operating system and in-band

control for the gateways. Some mitigations include securing OpenFlow with TLS, encrypting

tunneling traffic with IPSec [38] and hardening Linux with SELinux [39] and firewalling

There is some correlation between DDS’ domain and topic and IP’s multicast group. We

may be able to achieve finer-grained control of topics by isolating a host from certain multicast

groups such that a compromised or malicious host cannot subscribe to certain topics. We can also

integrate an intrusion detection system to our system, such as Zeek (formerly Bro) [40], to help

the SDN controller make decisions.

The current deployment requires some non-trivial pre-configuration for the PC boxes in

shell script. We seek to ease this process with an automatic provisioning tool like Ansible [41] to

configure new and existing microgrids. Since we already have the separation in SDN between the

control plane and the application layer, we seek to provide a unified application layer to interface

with both the SDN controller and Ansible.

7.2 Reflections

We have tried a variety of commercial hardware switches that support OpenFlow, such as

HP Aruba 2920 and Pica8 P-3297. Unfortunately, none proved viable. Following are some of the

issues we encountered: (a) lack of tunneling support or limitation of the number of remote

tunneling end points; (b) enforcement of strict header matching where, for example, one must

explicitly define both the source and destination addresses in the MAC header, thus blowing up

the flow tables with unnecessary entries to an unwieldy proportion; (c) lack of support for optional

protocols. The latter two issues constitute most of the impediment, because the OpenFlow standard

leaves much room for manufacturers to decide which features they want to incorporate into their

products, meaning two switches that support the same OpenFlow version could have different sets

of functionalities, which, in turn, means that an SDN controller that works for switch A does not

24

necessarily work for switch B [42]. This significantly restricts interoperability and portability [42],

[43].

Aside from the hardware restrictions, we believe there are flaws intrinsic to the OpenFlow

model itself. Since version 1.0, it has gone through four major revisions [18]. Some of the key

changes are as follows: version 1.1 added the support for MPLS and VLAN headers and introduced

the concept of multi-layered flow tables; version 1.2 added the support for IPv6 and enhanced the

support for existing protocols with additional fields; version 1.3 introduced flow metering and

provided some interaction with tunneling interfaces with the “Tunnel-ID” metadata; version 1.4

enhanced the support for existing protocols with even more fields; the latest revision 1.5 introduced

the concept of egress tables, allowing packets to be processed one more time after they are

forwarded. One can see that a trend is to add more features for new protocols and improve support

for existing ones. It is safe to speculate that VXLAN, what we use right now, might be included in

the future. However, this model does not provide universality, especially with regard to uncommon

or new protocol standards.

The Routing Service plays an important role in enabling DDS communication in

conventional networks across the WAN under varying conditions of connectivity without the need

to modify existing DDS applications. Due to the disparate characteristics in connectivity between

LANs and WANs, the RS uses its own QoS profile for message filtering and delivery, mostly for

conserving bandwidth and reducing loss rate. If we look at a packet from the sample capture of the

RTPS in Appendix A, we can see that DDS provides rich data fields, such as Type Name,

Reliability, Acknowledge Kind, Queue Size and Time-Based Filter. If we can take advantage of

such fields, we can incorporate the QoS and IDS into the data plane and provide arbitrary filtering

for DDS packets. This is harder for OpenFlow because it sought to commoditize hardware switches

with fixed-function data planes, i.e., ASICs, most of which only recognize well-known protocols

like Ethernet frame, IEEE 802.1Q, IPv4 or IPv6.

P4, a domain-specific programming language [44], however, seems to be a promising

candidate to address these issues. With P4, we are no longer limited to software-defining only the

control plane. We can also programmatically define the functionality of the data plane that can be

either software (like OVS’ kernel module) or hardware (like an FPGA that is able to pipeline

packet processing at line rate). In any case, a programmable data plane allows the programmer to

25

freely define how to match a packet’s header and what actions to take on it, coping with the ever-

evolving networking field.

7.3 Conclusion

The cyber-physical system for the power grid is quickly evolving toward a smart-grid

design with microgrids. We need a dynamic networking infrastructure to better suit the need of

smart-grid applications. We believe that, with SDN, this is possible. We propose this SD-WAN

approach to facilitate the communication for the OpenFMB-DDS framework and provide basic

security measures. We show that individual devices can be isolated to protect the system against

malicious applications with hardware switches, controllers and field device simulators. We also

discuss other possible designs that trade efficiency for simplicity or use a hardware combination

that seeks to strike a balance between expandability and performance. Lastly, we look at what

additional security and protections we can provide for both power equipment and the networking

infrastructure within the current framework. We also review some issues encountered along the

way and reflect on the OpenFlow standard and the fundamental idea of SDN, thus providing insight

into how we can achieve greater flexibility and the exact functionality we want.

26

References

[1] B. Lasseter, "Microgrids [distributed power generation]," in 2001 IEEE Power

Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194),

2001.

[2] D. T. Ton and M. A. Smith, "The U.S. Department of Energy's Microgrid Initiative," The

Electricity Journal, vol. 25, pp. 84-94, 2012.

[3] Modbus-IDA, "Modbus Application Protocol Specification v1.1a," 2004. [Online].

Available: http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1a.pdf.

[4] R. E. Mackiewicz, "Overview of IEC 61850 and Benefits," in 2006 IEEE PES Power

Systems Conference and Exposition, 2006.

[5] K. Curtis, "A DNP3 protocol primer," DNP User Group, vol. 2005, 2005.

[6] E. Mallett, "NAESB Developing Framework for Current and Future Grid

Interoperability," Natural Gas & Electricity, vol. 32, pp. 6-10, 2015.

[7] D. U. Case, "Analysis of the cyber attack on the Ukrainian power grid," Electricity

Information Sharing and Analysis Center (E-ISAC), 2016.

[8] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka and T. Turletti, "A survey of

software-defined networking: Past, present, and future of programmable networks," IEEE

Communications Surveys & Tutorials, vol. 16, pp. 1617-1634, 2014.

[9] M. Barnes, J. Kondoh, H. Asano, J. Oyarzabal, G. Ventakaramanan, R. Lasseter, N.

Hatziargyriou and T. Green, "Real-World MicroGrids-An Overview," in 2007 IEEE

International Conference on System of Systems Engineering, 2007.

[10] A. Foster, Messaging Technologies for the Industrial Internet and the Internet of Things

Whitepaper. A comparison between DDS, AMQP, MQTT, JMS, REST and CoAP,

Version, 2014.

[11] Real-Time Innovations, "An Introduction to Connext DDS," 2015. [Online]. Available:

https://community.rti.com/static/documentation/connext-

dds/5.2.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_Getting

Started/Content/GettingStarted/An_Introduction_to_.htm. [Accessed December 2018].

[12] Object Management Group, "About the Data Distribution Service Specification Version

1.4," 2015. [Online]. Available: https://www.omg.org/spec/DDS/About-DDS/.

[13] S. A. Thomas, in IP Switching and Routing Essentials: Understanding RIP, OSPF, BGP,

MPLS, CR-LDP, and RSVP-TE, New York, Wiley, 2002.

[14] R. L. S. De Oliveira, C. M. Schweitzer, A. A. Shinoda and L. R. Prete, "Using mininet for

emulation and prototyping software-defined networks," in 2014 IEEE Colombian

Conference on Communications and Computing (COLCOM), 2014.

[15] E. S. Pilli, R. C. Joshi and R. Niyogi, "Network forensic frameworks: Survey and

research challenges," Digital Investigation, vol. 7, pp. 14-27, 2010.

[16] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme, J. Gross, A. Wang,

J. Stringer, P. Shelar, M. Casado and K. Amidon, "The Design and Implementation of

Open vSwitch.," in NSDI, 2015.

27

[17] Ryu Project Team, "Ryu SDN Framework," 2017. [Online]. Available:

https://osrg.github.io/ryu/.

[18] "OpenFlow Switch Specification Version 1.5.1," Open Networking Foundation, 2015.

[Online]. Available: https://www.opennetworking.org/wp-

content/uploads/2014/10/openflow-switch-v1.5.1.pdf.

[19] J. Zhang and C. A. Gunter, "Application-aware secure multicast for power grid

communications," in 2010 First IEEE International Conference on Smart Grid

Communications, 2010.

[20] A. Adams, J. Nicholas and W. Siadak, "Protocol independent multicast-dense mode

(PIM-DM): Protocol specification (revised)," 2004.

[21] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley, V. Jacobson, C.-G.

Liu, P. Sharma and L. Wei, "Protocol independent multicast-sparse mode (PIM-SM):

Protocol specification," 1998.

[22] W. Fenner, "Internet group management protocol, version 2," 1997.

[23] H. Holbrook, B. Cain and B. Haberman, "Using internet group management protocol

version 3 (IGMPv3) and multicast listener discovery protocol version 2 (MLDv2) for

source-specific multicast," 2006.

[24] T. Pfeiffenberger, J. L. Du, P. B. Arruda and A. Anzaloni, "Reliable and flexible

communications for power systems: Fault-tolerant multicast with sdn/openflow," in New

Technologies, Mobility and Security (NTMS), 2015 7th International Conference on,

2015.

[25] A. Cahn, J. Hoyos, M. Hulse and E. Keller, "Software-defined energy communication

networks: From substation automation to future smart grids," in Smart Grid

Communications (SmartGridComm), 2013 IEEE International Conference on, 2013.

[26] T. Humernbrum, B. Hagedorn and S. Gorlatch, "Towards efficient multicast

communication in software-defined networks," in Distributed Computing Systems

Workshops (ICDCSW), 2016 IEEE 36th International Conference on, 2016.

[27] A. Goodney, S. Kumar, A. Ravi and Y. H. Cho, "Efficient PMU networking with

software defined networks," in Smart Grid Communications (SmartGridComm), 2013

IEEE International Conference on, 2013.

[28] Real-Time Innovations, "RTI Routing Service User's Manual," June 2017. [Online].

Available: https://community.rti.com/static/documentation/connext-

dds/5.3.0/doc/manuals/routing_service/RTI_Routing_Service_UsersManual.pdf.

[29] S. Gordeychik, D. Kolegov and A. Nikolaev, "SD-WAN Internet Census," arXiv preprint

arXiv:1808.09027, 2018.

[30] S. Chia, M. Gasparroni and P. Brick, "The next challenge for cellular networks:

backhaul," IEEE Microwave Magazine, vol. 10, pp. 54-66, 8 2009.

[31] D. L. Blair, M. L. Sullenberger, S. T. Lucas, S. W. Wood and A. Oswal, Intelligent wide

area network (IWAN), Google Patents, 2017.

[32] T. Balan, D. Robu and F. Sandu, "LISP Optimisation of Mobile Data Streaming in

Connected Societies," Mobile Information Systems, vol. 2016, 2016.

[33] D. Plummer, "Ethernet Address Resolution Protocol: Or converting network protocol

addresses to 48. bit Ethernet address for transmission on Ethernet hardware," 1982.

28

[34] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar, M. Bursell and C.

Wright, "Virtual extensible local area network (VXLAN): A framework for overlaying

virtualized layer 2 networks over layer 3 networks," 2014.

[35] J. Morales, A. Jimenez, A. Soto, I. Blancas and R. Wahlin, RTI Connext DDS

Performance Test, GitHub.

[36] A. Odermatt, "Simplified OpenFMB DDS Based Demonstration," [Online]. Available:

https://github.com/openfmb/openfmb-dds-demo.

[37] F. Clavel, E. Savary, P. Angays and A. Vieux-Melchior, "A network simulator for

IEC61850 architecture," in Petroleum and Chemical Industry Committee Conference,

Istanbul, 2013.

[38] S. Frankel and S. Krishnan, "IP security (IPsec) and internet key exchange (IKE)

document roadmap," 2011.

[39] S. Smalley, "Configuring the SELinux policy," NAI Labs Rep, pp. 2-7, 2002.

[40] Paxson, Vern et al., "The Zeek network security monitor," [Online]. Available:

https://www.zeek.org/.

[41] L. Hochstein and R. Moser, in Ansible: Up and Running: Automating Configuration

Management and Deployment the Easy Way, O'Reilly Media, 2017.

[42] M. Kuzniar, P. Peresini, M. Canini, D. Venzano and D. Kostic, "A SOFT Way for

Openflow Switch Interoperability Testing," in Proceedings of the 8th International

Conference on Emerging Networking Experiments and Technologies, New York, NY,

USA, 2012.

[43] S. J. Vaughan-Nichols, "OpenFlow: The Next Generation of the Network?" Computer,

vol. 44, pp. 13-15, 8 2011.

[44] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D.

Talayco, A. Vahdat, G. Varghese and D. Walker, "P4: Programming protocol-

independent packet processors," ACM SIGCOMM Computer Communication Review,

vol. 44, pp. 87-95, 2014.

29

Appendix A

Sample Capture of an RTPS Packet

Frame 120: 530 bytes on wire (4240 bits), 530 bytes captured (4240 bits) on interface 0

Ethernet II, Src: Raspberr_33:a1:77 (b8:27:eb:33:a1:77), Dst: IPv4mcast_7f:00:01 (01:00:5e:7f:00:01)

Internet Protocol Version 4, Src: 172.16.1.2, Dst: 239.255.0.1

User Datagram Protocol, Src Port: 38147, Dst Port: 7400

Real-Time Publish-Subscribe Wire Protocol

 Magic: RTPS

 Protocol version: 2.1

 major: 2

 minor: 1

 vendorId: 01.01 (Real-Time Innovations, Inc. - Connext DDS)

 guidPrefix: ac100102000029aa00000001

 hostId: 0xac100102

 appId: 0x000029aa

 instanceId: 0x00000001

 Default port mapping: MULTICAST_METATRAFFIC, domainId=0

 [domain_id: 0]

 [traffic_nature: MULTICAST_METATRAFFIC (2)]

 submessageId: INFO_TS (0x09)

 Flags: 0x01, Endianness bit

 0... = Reserved: Not set

 .0.. = Reserved: Not set

 ..0. = Reserved: Not set

 ...0 = Reserved: Not set

 0... = Reserved: Not set

 0.. = Reserved: Not set

 0. = Timestamp flag: Not set

 1 = Endianness bit: Set

 octetsToNextHeader: 8

 Timestamp: Nov 2, 2018 19:53:29.000735999 UTC

 submessageId: DATA (0x15)

 Flags: 0x05, Data present, Endianness bit

 0... = Reserved: Not set

 .0.. = Reserved: Not set

 ..0. = Reserved: Not set

 ...0 = Reserved: Not set

 0... = Serialized Key: Not set

 1.. = Data present: Set

 0. = Inline QoS: Not set

 1 = Endianness bit: Set

 octetsToNextHeader: 3204

 0000 0000 0000 0000 = Extra flags: 0x0000

 Octets to inline QoS: 16

 readerEntityId: ENTITYID_UNKNOWN (0x00000000)

 readerEntityKey: 0x000000

 readerEntityKind: Application-defined unknown kind (0x00)

 writerEntityId: ENTITYID_BUILTIN_SUBSCRIPTIONS_WRITER (0x000004c2)

 writerEntityKey: 0x000004

 writerEntityKind: Built-in writer (with key) (0xc2)

 writerSeqNumber: 6

 serializedData

 encapsulation kind: PL_CDR_LE (0x0003)

 encapsulation options: 0x0000

 serializedData:

 PID_ENDPOINT_GUID

 parameterId: PID_ENDPOINT_GUID (0x005a)

 parameterLength: 16

30

 Endpoint GUID: ac100102 000029aa 00000001 80000507

 PID_TOPIC_NAME

 parameterId: PID_TOPIC_NAME (0x0005)

 parameterLength: 24

 topic: BatteryEventProfile

 PID_TYPE_NAME

 parameterId: PID_TYPE_NAME (0x0007)

 parameterLength: 68

 typeName: OpenFMB_Information_Model::openfmb::essmodule::ESSEventProfile

 PID_RELIABILITY

 parameterId: PID_RELIABILITY (0x001a)

 parameterLength: 12

 Kind: RELIABLE_RELIABILITY_QOS (0x00000002)

 PID_ACK_KIND

 parameterId: PID_ACK_KIND (0x800b)

 parameterLength: 4

 Acknowledgment Kind: PROTOCOL_ACKNOWLEDGMENT (0x00000000)

 PID_RECV_QUEUE_SIZE [deprecated]

 parameterId: PID_RECV_QUEUE_SIZE [deprecated] (0x0018)

 parameterLength: 4

 queueSize: 0xffffffff

 PID_TIME_BASED_FILTER

 parameterId: PID_TIME_BASED_FILTER (0x0004)

 parameterLength: 8

 lease_duration: 0 sec

 PID_LIVELINESS

 parameterId: PID_LIVELINESS (0x001b)

 parameterLength: 12

 PID_LIVELINESS

 PID_DURABILITY

 parameterId: PID_DURABILITY (0x001d)

 parameterLength: 4

 Durability: VOLATILE_DURABILITY_QOS (0x00000000)

 PID_DIRECT_COMMUNICATION

 parameterId: PID_DIRECT_COMMUNICATION (0x8011)

 parameterLength: 4

 Direct Communication: True

 PID_OWNERSHIP

 parameterId: PID_OWNERSHIP (0x001f)

 parameterLength: 4

 Kind: SHARED_OWNERSHIP_QOS (0x00000000)

 PID_PRESENTATION

 parameterId: PID_PRESENTATION (0x0021)

 parameterLength: 8

 Access Scope: INSTANCE_PRESENTATION_QOS (0x00000000)

 Coherent Access: False

 Ordered Access: False

 PID_DESTINATION_ORDER

 parameterId: PID_DESTINATION_ORDER (0x0025)

 parameterLength: 4

 Kind: BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS (0x00000000)

 PID_DEADLINE

 parameterId: PID_DEADLINE (0x0023)

 parameterLength: 8

 lease_duration: INFINITE

 PID_LATENCY_BUDGET

 parameterId: PID_LATENCY_BUDGET (0x0027)

 parameterLength: 8

 lease_duration: 0 sec

 PID_GROUP_ENTITY_ID

 parameterId: PID_GROUP_ENTITY_ID (0x0053)

 parameterLength: 4

31

 Group entity ID: 0x80000509 (unknown kind (09): 0x800005)

 PID_ENTITY_VIRTUAL_GUID

 parameterId: PID_ENTITY_VIRTUAL_GUID (0x8002)

 parameterLength: 16

 guidPrefix: ac100102000029aa00000001

 virtualGUIDSuffix: 0x80000507 (Application-defined reader (with key): 0x800005)

 PID_SERVICE_KIND

 parameterId: PID_SERVICE_KIND (0x8003)

 parameterLength: 4

 serviceKind: NO_SERVICE_QOS (0x00000000)

 PID_PROTOCOL_VERSION

 parameterId: PID_PROTOCOL_VERSION (0x0015)

 parameterLength: 4

 Protocol version: 2.1

 PID_VENDOR_ID

 parameterId: PID_VENDOR_ID (0x0016)

 parameterLength: 4

 vendorId: 01.01 (Real-Time Innovations, Inc. - Connext DDS)

 PID_PRODUCT_VERSION

 parameterId: PID_PRODUCT_VERSION (0x8000)

 parameterLength: 4

 Product version: 5.3.0.0

 PID_DISABLE_POSITIVE_ACKS

 parameterId: PID_DISABLE_POSITIVE_ACKS (0x8005)

 parameterLength: 4

 disablePositiveAcks: False

 PID_EXPECTS_VIRTUAL_HB

 parameterId: PID_EXPECTS_VIRTUAL_HB (0x8009)

 parameterLength: 4

 expectsVirtualHB: False

 PID_ENTITY_NAME

 parameterId: PID_ENTITY_NAME (0x0062)

 parameterLength: 28

 entityName: Battery Event Reader

 PID_TYPE_CONSISTENCY

 parameterId: PID_TYPE_CONSISTENCY (0x0074)

 parameterLength: 4

 Type Consistency Kind: ALLOW_TYPE_COERCION (0x0001)

 PID_ENDPOINT_PROPERTY_CHANGE_EPOCH

 parameterId: PID_ENDPOINT_PROPERTY_CHANGE_EPOCH (0x8015)

 parameterLength: 8

 Endpoint Property Change Epoch: 1

 PID_TYPE_OBJECT

 parameterId: PID_TYPE_OBJECT (0x0072)

 parameterLength: 2788

 Type Object

 PID_ENDPOINT_SECURITY_ATTRIBUTES

 parameterId: PID_ENDPOINT_SECURITY_ATTRIBUTES (0x8018)

 parameterLength: 4

 Flags: 0x00000000

 PID_SENTINEL

 parameterId: PID_SENTINEL (0x0001)

