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Abstract—Despite the isolation mechanisms that are available
to cloud service providers, like virtual machines and contain-
ers, the problem of side-channel vulnerabilities due to shared
caches and multicore processors remains a threat. We present
a hardware-software mechanism that improves the isolation of
cloud processes in the presence of shared caches on multicore
chips. Our technique can enable cache-side-channel free com-
puting for Linux-based containers and virtual machines by com-
bining the Intel CAT architecture that enables cache partitioning
with novel scheduling techniques and state cleansing mechanisms.
We evaluate our system using a CPU-bound workload and
demonstrate cache-side-channel-free computation that is correct
by construction. Our system allows Simultaneous Multithreading
to remain enabled and does not require application level changes.

I. INTRODUCTION

Cache-based side-channel attacks (e.g., [1]–[3]) are a threat
when a diverse set of users share hardware resources. Attacks
focus on differences in timing while accessing processor
caches. Attacks on cloud computing environments, especially
Infrastructure-as-a-Service clouds (e.g., [4]–[7]), show that
secrets can be extracted across co-located Virtual Machines
(VMs) and containers. Container frameworks such as Docker
[8] that share the underlying kernel are even more susceptible
to such attacks [9].

Initial attacks focused on gaming schedulers at the OS and
Virtual Machine Monitor layers [2], [3], [5]. Such approaches
focused on resource sharing of L1 and L2 caches within a
single processor core via Simultaneous Multithreading (SMT)
[1]. Multicore processors introduce cache-based side-channels
via the Last-Level-Cache (LLC), thus making defenses much
harder [7], [9].

Many defenses against cache-side-channel attacks in cloud
environments have been proposed (e.g., [10]–[22]). Existing
solutions are insufficient in the following ways. Shannon’s
noisy-channel coding theorem states that information can be
transmitted regardless of the amount of noise on the channel
[23]. Hence, probabilistic defenses (e.g., [10]–[12]) may de-
crease the bit-rate of attacks, but cannot fully eliminate them.
Defenses that eliminate such attacks, rather than frustrate
techniques employed by the attacker, are more desirable. SMT
must be disabled for some solutions [12], impacting perfor-
mance and utilization. In addition to a guaranteed defense,
the solution must not severely impact (i) the performance of
the applications or (ii) utilization of the machine. Defenses
must minimize the performance cost of enforcing isolation
to remain practical. Disabling hyperthreading (e.g., SMT) can

have a high impact on machine utilization. To the best of
our knowledge, every cloud provider enables hyperthreading.
Costly rewrites may be required for other defenses [13]–[15].

Solutions must be easy to adopt. History has shown that
solutions requiring additional development time are less likely
to be adopted (as shown in the Return Oriented Programming
community [24]). Hardware based approaches are difficult to
deploy as they require vendor support and fabrication of new
chips [16]. Violating x86 semantics by modifying the reso-
lution, accuracy, or availability of timing instructions require
changes to all applications running on the machine [17]–[19].
Global compiler and page-coloring cache-partitioning [20]–
[22] transforms introduce high overhead. JIT techniques allow
local optimization, but performance remains problematic [25].

In this paper, we present a hardware-software framework
designed to eliminate side-channel attacks in cloud computing
systems that use multicore processors with a shared LLC. The
proposed framework uses a combination of Commodity-off-
the-Shelf (COTS) hardware features along with novel schedul-
ing techniques to defend against cache-based side-channel
attacks. In particular, we use Cache Allocation Technology
(CAT) [26] which allows us to partition last-level caches at
runtime. CAT, coupled with state cleansing between context
switches and selective sharing of common libraries, removes
the source of cache-timing-based side-channel attacks between
different security domains. We implement a novel scheduling
method as an extension to the Completely-Fair-Scheduler in
Linux to reduce the overheads inherent due to state cleans-
ing operations. Our solution provides a transparent way to
eliminate cache-side-channel attacks while still working with
hyperthreading enabled (SMT) systems. It works with con-
tainers and other schedulable entities that rely on the OS
scheduler. To the best of our knowledge, this work is the
first to provide transparent protection of applications without
disabling hyperthreading.

We contribute the following through a framework that:
C1 Can eliminate cache-based side-channel attacks for schedu-
lable units (e.g., containers, vCPUs) C2 Allows providers
to exploit hyperthreading, C3 Requires no application level
changes, and C4 Imposes modest performance overheads

II. SYSTEM AND ATTACK MODEL

System Model: We consider Platform-as-a-Service (PaaS)
or Infrastructure-as-a-cloud (IaaS) environments. Such envi-
ronments allow for co-residency of multiple appliances (e.g.,



containers, VMs) belonging to different security domains.
We assume that the cloud computing infrastructure is using
commodity-off-the-shelf (COTS) components. In particular,
we assume that the servers have multi-core processors with
multiple levels of caches, some of which are shared and that
there is a runtime mechanism to partition the LLC.

In this paper, we use an Intel Haswell series processor
that has a three-level cache hierarchy: private level 1 (L1)
and level 2 (L2) caches for each core (64KB and 256KB
respectively) and a last level (L3) cache (20MB) that is shared
across cores. For cache partitioning, we rely on Intel Cache
Allocation Technology (CAT) [26] allowing us to partition the
L3 cache. The CAT mechanism is configured using model-
specific registers (MSRs) at runtime using software mecha-
nisms. On this specific processor model the maximum number
of partitions is limited to four but newer generations support
more [26]. Intel CAT technology has been available since 2014
and continues to be available on processor lines belonging to
the Haswell, Broadwell, and Skylake micro-architectures. Our
technique applies to any processor that supports partitioning
of the LLC.

Attack Background and Overview: While there exist many
security threats to public cloud environments (e.g., [27], [28]),
the focus of this paper is cache-based side-channel attacks
(e.g., [5]–[7], [9]). An attacker process first needs to co-
locate itself (i.e., get assigned to the same physical server)
with the victim in the infrastructure. Methods to both achieve
co-residency [4] and to thwart co-residency (e.g., [11], [29]–
[31]) have been discussed in the literature. We assume that
an attacker is able to co-locate with the victim; we focus
on thwarting the actual side-channel attacks. Our framework
complements approaches that frustrate co-residency attacks.

There are primarily two techniques to exploit cache based
side-channels discussed in the literature: “Prime+Probe” at-
tacks [1] and “Flush-Reload” attacks [3]. It is important to
note that while these techniques are popular, they are only
possible because of measurable interference. Our solution aims
to prevent these specific techniques and others that leverage
the cache as a side-channel by targeting the ability to measure
interference across security domains.

Osvik et al. [1] provide an overview of Prime+Probe and
Gullasch et al. provide an overview of Flush-Reload [3].
Zhang et al. summarizes the similarities in attack methods
[5]. The key functionality that enables these attacks are the
allocation of cache lines for Prime+Probe and the ability to
flush a specific shared line for Flush-Reload attacks. Address-
ing these key components removes the side-channel.

Threat Model : We consider both cross-core (i.e., attacker
and victim running on different cores on the same proces-
sor) and same-core (i.e., attacker and victim running on the
same core) side-channel attacks. We assume the attacker is
capable of achieving co-residency with a victim, can allocate
an arbitrary number of resources, and game both the cloud
level scheduler (placement) and the operating system level
scheduler (preemption). However, we assume that the cloud
infrastructure provider is trusted. That is, while the cloud

scheduler may be gamed, we assume that both the attacker
and victim are authenticated with the cloud provider (e.g.,
for billing purposes). Additionally, we assume that the host
kernel is trusted. We limit the scope of this work to addressing
cache-based side-channel attacks since they can be launched
by any tenant without having to exploit any vulnerabilities and
without compromising the underlying software or hardware.

III. SYSTEM ARCHITECTURE

Our framework logically partitions a host server into an
isolated region and a shared region as illustrated in Figure 1.
Tenants must indicate to the cloud provider whether or not
their containers need isolated execution. Containers requiring
isolated execution will be executed with a separate cache
partition on the host server; all other containers will be ex-
ecuted with a shared cache partition. The ‘isolated execution’
designation guarantees that processes within the designated
containers will not share cache resources with (i) processes
from any container belonging to another tenant (or security
domain) or with (ii) processes in any container not designated
for isolated execution irrespective of their ownership. Consider
the deployment of a web service using a micro-service archi-
tecture. We envision a system where the tenant indicates the
load-balancer (usually an HTTP reverse proxy running with
OpenSSL) should run in the isolated region.

Our design leverages (i) Intel CAT, processor affinities (e.g.,
CPU pinning), and selective page sharing to provide spatial
isolation and (ii) co-scheduling with state cleansing to provide
temporal isolation for designated containers.

Scheduler

Cache	Management	
Mechanism

Isolated	Region

Shared	Cache	Partition

Shared	Region

CORES Core	3

Isolated	Cache	
Partition

Core	4 Core	nCore	1 Core	2

Fig. 1: System Overview

Hardware Enforced Spatial Isolation: Intel’s CAT [26],
currently available in COTS processors, is designed to improve
the performance of latency sensitive workloads by allowing the
LLC to be partitioned into distinct regions. A processor can
only evict cache lines within its own assigned LLC partition,
thus reducing the impact of processes running on other cache
regions. In particular, note that the ability to allocate cache
lines (priming in Prime+Probe attacks) in a cache shared with
the victim and the ability to evict cache lines being used by the
victim process (flushing in Flush-Reload attacks) are key steps
in cache-based side-channel attacks. Ensuring potential victim
and attacker processes run on cores associated with different
LLC cache partitions eliminates cross-core Prime+Probe at-
tacks. We discuss our mitigation for the shared-memory attack
vector below.

Cores in the system are associated with partitions such that
each core is assigned to one and only one LLC partition.



We refer to these partition-core combinations as isolated
and shared regions. The maximum number of cache parti-
tions available with Intel CAT is fixed for a given micro-
architecture. The machine used for our testing allows for up
to 4 distinct partitions. The configuration of size, number of
active partitions, and core to partition assignment occurs in
software and can be adjusted on demand. In this paper, we
evaluate a single isolated region and a single shared region,
though the technique applies to multiple isolated regions.

Intel CAT, primarily designed to improve fairness of cache
sharing and performance of latency sensitive workloads, al-
lows cache hits across partition boundaries to maximize the
benefits of shared memory. If the victim and the attacker
processes share memory (e.g., because of layered file systems
used in container frameworks), an attacker can carry out a
Flush-Reload attack. Since the attacker previously flushed the
cache lines, a cache hit indicates that the victim executing
in a different core (and LLC partition) has used or is using
the library. While CAT limits the granularity of information
an attacker can glean across partition boundaries, timing
observations are still possible thus the side-channel is not
entirely eliminated. Furthermore, attacks within an isolated
partition continue to be viable. These will be addressed in
the following subsections.

The partial protection against cache-side-channel attacks
obtained through spatial partitioning comes at the cost of
reduced LLC cache size. Fortunately, reduction in cache size
has been shown to have relatively little impact on modern
cloud workloads [32]. Minimal performance sensitivity to LLC
size has been reported for cache sizes above 4 − 6MB with
modern scale-out and server workloads that are typical in
cloud environments [32].

Selective Page Sharing: Hardware-assisted spatial par-
titioning does not eliminate cross-core Flush-Reload style
attacks when the attacker and the victim share memory pages.
Modern container deployments have one primary source of
shared memory. We limit our discussion to Docker as it is
one of the most popular choices for building container images
and running them on Linux platforms, but these concepts
also extend to other container frameworks. Many different
containers may use the same libraries and base components,
thus a way was needed to reduce disk and memory usage of
the common building blocks. Docker uses Union File Systems
(UFS) so processes inside of a container can access a file
system composed of a stack of layers each uniquely identified
by a cryptograph hash. Common layers can be shared using a
given layer hash.

Often there are multiple containers running the same image
which causes them to share every layer except for the upper-
most writable layer. For example, two Apache Tomcat servers
running on the same Docker host using the same image would
share all binaries including the Java Virtual Machine (JVM),
Apache Tomcat, GnuPG, and OpenSSL among others. Only
the top most layer, containing writable elements such as the
Tomcat log file, differ between containers.

To thwart Flush-Reload style attacks across cache partitions,

we eliminate cross-domain page sharing through selective
layer duplication. That is, for containers requiring isolated
execution, our system allows sharing of layers only among
containers belonging to the same tenant (or security domain)
but not otherwise. This is a reasonable trade-off as it enables
isolation between different security domains while limiting the
increase in memory usage. The increase in memory usage
will be a function of the number of tenants running on the
server rather than the number of containers. We do not prevent
traditional sharing of layers for containers running within a
single security domain.

For VMs, the kernel same-page merging (KSM) module in
Linux, used for memory deduplication, is the main source of
shared pages. However, KSM and memory de-duplication in
general come with their own security risks (e.g., [33]–[35]).
Given the serious security concerns surrounding the use of
KSM, we leave it disabled. Disabling memory deduplication
is the default for commerical applications [36].

Note that selective page sharing, combined with hardware-
assisted spatial partitioning, eliminates cross-core cache-side-
channel attacks across partitions. Selective page sharing re-
moves the ability for an attacker to measure interference
after flushing a given address and CAT partitioning removes
the ability for an attacker to prime a victim’s cache across
partition boundaries. Cache-side-channel attacks from within
an isolated partition due to multi-core and SMT continue to
be a threat and will be discussed next.

State Cleansing: Even with containers running in isolated
partitions, an attacker allocated to the same isolated partition
as the victim might be able to (i) observe the victim’s LLC
usage if scheduled to run on a different core than the victim
but associated with the same partition and (ii) even observe
the victim’s L1 and L2 usage if running on the same physical
core as the victim [5].

To thwart these attacks we propose to cleanse the cache
state when context switching between processes (containers)
belonging to different security domains. That is, if a process
from one security domain, SD1, runs on a core, then processes
belonging to another domain, SD2, must either run on a
core assigned to a separate partition or state-cleansing of the
shared resources (the shared caches) must be performed on the
partition during the transition between processes from SD1

to processes from SD2. There currently exists no hardware
instruction for per-partition cache invalidation. More details
on how state cleansing can be achieved are in Section IV.
However, state cleansing alone does not prevent attacks from
an attacker process that is running in parallel with the victim
either on the same-core through SMT, or running on a different
core but in the same partition.

A naı̈ve solution would be to assign just one core to the
isolated partition, disable hyper-threading and perform state-
cleansing on every context-switch. The performance cost of
such an approach is unattractive. A mitigation would be to
create multiple isolated partitions with a single-core assigned
to each. However, the number of cache partitions is finite (4
in our case) and such an approach would further fragment



the LLC and hamper performance for the shared partition.
Furthermore, many cloud workloads are multi-threaded and
leverage additional cores when available. Thus, a mechanism is
needed to mitigate the attack while assigning multiple logical-
cores to an isolated region.

Co-scheduling for Temporal Isolation: To address this
threat, we use a novel scheduling technique for temporal
separation of security domains sharing a single cache par-
tition. Co-scheduling container processes belonging to a given
security domain across multiple processors amortizes the cost
of state cleansing, but introduces additional complexity.

Scale-out workloads with many threads, those commonly
deployed on cloud infrastructure, motivate this approach. As
thread counts for a security domain increase, the number of
threads able to run per domain at any given time will be
high. This allows us to drive up utilization of cores assigned
to a partition and only flush the partition when changing
to the next domain. The complexities stem from needing to
synchronize all isolated cores during domain changes, thus any
implementation of co-scheduling has to guarantee an exclusion
property. No task belonging to security domain SDX can run
on an isolated processor while a task from another domain,
SDY , is running on a processor associated with the same
isolated partition. Before a task from SDX can run, a state
cleansing event must occur. Multiple cores can be utilized
at once within a security domain, but then state-cleansing
must be performed as every core assigned to a given partition
context switches to another security domain. The next security
domain cannot run on any isolated processor until this process
is complete.

IV. IMPLEMENTATION

Partitioning the LLC and associating cores with each par-
tition can be done by a system administrator as part of the
machine configuration and does not require kernel changes.
Here we focus on the implementation of our co-scheduling
and selective-sharing mechanisms.

Co-Scheduling: Co-scheduling can enforce isolation be-
tween security domains if the implementation is precise. By
precise, we mean that any form of “loose” or “lazy” co-
scheduling is unacceptable. For example, consider a naı̈ve
implementation of co-scheduling as outlined in Figure 2.

Figure 2 is a schedule instance in which ORG1 has 2
threads and ORG2 and 3. The example is a situation in
which 2 cores are associated with an isolated partition and are
running containers belonging to two security domains. These
cores are two physical cores or one physical core presented
as two to the operating system as is the case with SMT. The
defining characteristic is the shared cache.

Consider a situation in which Core1 initiates a domain
transfer upon scheduling a thread from a conflicting domain,
ORG2:THREAD1 in this example. Even if the scheduler
invokes a flushing event, f1, there remains a ∆t1 during which
cross-core, cross-domain attacks could be carried out. This
is seen again after Core1 schedules ORG1:THREAD1 and

ORG2:THREAD3 leading to durations ∆t2 and ∆t3 during
which attacks remain feasible.

Cache Partition

Protected Region

CORES

Core 1

Core 2

ORG1: Thread1 ORG2: Thread1 ORG1: Thread1 ORG2: Thread3

t

f3f2f1

Scheduling Policy

Δt1 Δt2 Δt3

ORG1: Thread2 ORG2: Thread2 ORG1: Thread2 ORG2: Thread1

Fig. 2: Limitations of Naı̈ve Co-Scheduling

To ensure that schedulable units belonging to different secu-
rity domains run on an isolated cache partition simultaneously,
we implement the core synchronization protocol shown in
Figure 3. The protocol works by making the first core in an
isolated partition a leader core. The leader core is responsible
for initiating domain changes, synchronizing cores, and state
cleansing. All isolated cores only schedule tasks belonging
to the active security domain. Note that while only 2 cores
are shown in Figure 3, the approach works with any number
of cores. In Section V we evaluate the protocol with 4 cores
assigned to an isolated partition.

ORG1: Thread1

Initiate SD Change

AckFlush Cache

Force Reschedule

Change SD

ORG2: Thread1

Leader

ROUND_OVER = True

ROUND_OVER  = False

ORG1: Thread2

TRUSTED PROC

TRUSTED PROC

ORG2: Thread2

Follower

Fig. 3: Strict Co-Scheduling Protocol

Isolated cores rely on two pieces of shared state to achieve
strict synchronization. The leader core is the only core that
can modify the state. The ROUND_OVER variable indicates to
follower cores that a domain change is about to occur. A timer
on the leader core initiates a domain change by modifying
this variable and invoking the __schedule function on
the leader core. The change domain event fires every
sysctl_sched_min_granularity, a configurable pa-
rameter exposed to administrators on Linux based systems to
control system responsiveness. After setting the ROUND_OVER
variable to true, the leader core issues a reschedule command
via an Inter-Processor Interrupt to follower cores and waits for
them to send back an acknowledgment. The acknowledgment
is performed within the __schedule function on follower
cores. When the ROUND_OVER variable is set, partitioned
cores can only run trusted processes. These are only kernel
tasks, including: ksoftirq, watchdog, and the idle task.
Ensuring such processes can run prevents deadlocks due to
watchdog timeouts.

After receiving an acknowledgment back from all follower
cores, indicating they are no longer running tasks belonging
to any security domain, the leader then flushes the cache and
changes the active security domain to next domain. We iterate
through a kernel linked-list for round robin style switching of
security domains on the leader core. Run-queue checking is
performed to ensure a domain with runnable tasks is chosen.



Having chosen the next domain, the leader core sets
ROUND_OVER to false and again issues a reschedule com-
mand to follower cores. The __schedule function will
eventually be invoked on the follower cores, but we use
the reschedule command to reduce the idle time of follower
cores. This protocol corrects the problem presented in Figure
2 resulting in “strict” co-scheduling as seen in Figure 4.
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Fig. 4: Synchronized Co-Scheduling

State Cleansing: The isolated cache partition must be
cleaned or flushed before switching context to a different secu-
rity domain. For a processor cache, state cleansing or flushing
equates to invalidating the cache lines or evicting them, but no
hardware mechanism exists to flush the cache lines assigned
to a single CAT partition. The WBINVD instruction invalidates
the entire shared cache disrupting processes in all partitions.

One way to implement state cleansing is for the user process
to invoke the CLFLUSH instruction, which can evict cache
lines corresponding to a linear virtual address and can be
invoked from user space. The kernel can invoke CLFLUSH
on the entire virtual address space. While this is guaranteed to
work across processor generations, this approach is too costly,
taking up to 10x the kernel timeslice on applications we tested.
An optimization is to do it only on valid virtual addresses for
the task being switched out as was done in [37]. However,
this can still be a large range compared to the size of a cache
partition (4− 6MB).

Another approach is to create an eviction set – a set of
addresses which when loaded are guaranteed to evict the entire
cache partition. However, the memory address to cache line
mapping is proprietary and subject to change across proces-
sor generations. Cache-side-channel attacks have to contend
with this challenge and address it by reverse-engineering the
memory address to cache line mapping for a given micro-
architecture (e.g., [7]). Apart from the one-time cost of reverse
engineering, the cost of this approach is equal to loading
memory the size of the cache partition from a linear address
space. To evaluate the performance of such an approach, we
use the memory load method.

We perform state cleansing anytime the security domain is
changed, as shown by the protocol in Figure 3. To reduce
performance impact in the case of other domains lacking
runnable threads (due to blocking on I/O, etc. ), flushing is
only performed when the active security domain changes. If
only a single security domain has runnable tasks, no flushing
will occur.

Selective Page Sharing: Docker uses a UFS to present a
unified view of the several different layers. We modify the
AUFS storage driver. AUFS is mature and supports all of
Docker’s storage feature set. In a UFS, multiple directories on

the host are unified in a single directory called a union mount,
without replicating the actual contents of individual layers.
Contents of all layers become visible at the union mount.
Docker keeps a single copy of each layer on the host filesystem
and AUFS mounts all layers to a single union mount point,
which becomes the container’s root file system. We modified
the AUFS driver to have separate copies of each layer for each
security domain. In this way, no two containers belonging to
different security domains share any common layers.

V. PERFORMANCE EVALUATION

Impact of Scheduler Changes: Our prototype implemen-
tation is evaluated using a CPU bound workload to determine
the impact on applications in a worst case scenario. Consider
a batch workload such as Hadoop or a web serving workload.
The case in which all threads have work and are not waiting
for input is evaluated here.

The machine is configured as outlined in Section II. We
allocate 2 physical cores and 4 logical processors to an isolated
cache region. The cache region is 4MB (4 cache ways out
of 20 available on the system). Each security domain is
assigned 4 threads, and the number of domains is varied
from 2 to 8. Each domain consists of 4 CPU bound tasks,
1 for each logical processor. Measurements are taken at an
interval of once per second for 100 seconds. Figure 5 shows
the overhead of our system running while running 8 security
domains in an isolated region. System utilization when our
system is disabled is very near 100% in each case, thus is not
shown in Figure 5. Similar numbers are seen when running
2 and 4 security domains. The result indicates overhead for
a single logical processor are a function of the system and
not of the number of security domains assigned to a partition.
Follower cores can be seen idling during domain changes with
overhead around 20%. From our tests, we know that flushing
significantly increases the performance penalties. The leader
core spends the most time executing in system space due to
its responsibility to change domains and synchronize cores,
so this was to be expected. In the future, we will investigate
mechanisms to reduce system time on the leader core and
idle time on follower cores. Hardware based per-partition
flushing mechanisms, such as an enhanced WBINVD, would
significantly reduce these overheads, though our approach
would still be needed to enable multiple logical processors
in an isolated region. Because the isolated region suffers ≈
20% reduction in utilization as visible to the provider, the
impact to tenants within the isolated region will be strictly less.
Cloud computing benefits from over-subscription making these
gains possible. Impacts to utilization are amortized across the
security domains assigned to a given isolated region. The
reduction in time spent in userspace per domain as measurable
by the tenant is small. There is a reduction of 9.82%, 2.97%,
and 1.68% for 2, 4, and 8 security domains in a single
isolated regions respectively. The only performance impact
to schedulable units in the non-isolated region is due to the
reduction in cache sized from 20MB to 16MB. Reduced cache
sizes have little impact on cloud workloads [32].
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Fig. 6: Full Sharing vs. Selective Sharing

Impact of Shared Memory Reduction: By enabling selec-
tive sharing of base layers in Docker, we expect an increase in
the memory footprint of containers as there are multiple copies
of certain pages that would otherwise be shared. To understand
the memory growth vs. the number of security domains, we ran
2 experiments each with a web server (Apache Tomcat) and
an in-memory database (Redis). We measure the amount of
memory being used on a per container basis. To make sure that
the code is resident in memory before we take measurements,
we send 100 requests to the Apache Tomcat servers and added
1000 random key-value pairs to each Redis server.

We measure the average memory increase as we raise the
number of security domains from 1 to 4 across 50 runs.
Each security domain has 5 containers. The result is com-
pared against the same number of containers running without
modifications on the same host. These measurements are also
compared against a naı̈ve solution in which sharing is disabled
all together. Figures 6a and 6b show that memory usage for
Redis increases ≈ 0.45 MB per container in the worst case
(4 security domains with 5 containers each) and for Apache
Tomcat only ≈ 1.71 MB per container in the worst case.
From the overall memory consumption of these processes (≈ 7
and ≈ 230 respectively) it is clear that the added memory
cost per container is marginal. Selective sharing that enables
layer sharing within a security domain provides substantial
improvements over disabling sharing entirely.

VI. RELATED WORKS

Probabilistic [10]–[12] solutions are insufficient as they
cannot fully eliminate the source of cache-based side-channel

attacks. Existing approaches achieve single core isolation by
disabling hyperthreading [12], [38]. Disabling hyperthreading
reduces the throughput of not only the “secure” workload,
but the entire machine. Cutting whole-machine utilization by
even 20% (the impact of hyperthreading in 2005 [39]) is
too high for cloud computing. StealthMem is able to enable
hyperthreading, but the authors do not sufficiently address
cross thread scheduling issues [14] and require application
developers to make code changes. CATalyst [15] uses Intel’s
CAT technology to assign virtual pages to sensitive variables
instead of software-based page coloring. Application rewrites
are necessary for these approaches [13]–[15], increasing the
cost of adoption. Costly hardware changes [16] face similar
adoption challenges. Hardware approaches changing timing
instruction behavior change the semantics of the architecture
[17]–[19], forcing application changes. Cache coloring [20]–
[22] approaches have impractically high overheads.

CACHEBAR [12] defends against Flush-Reload attacks by
duplicating memory pages on access from separate processes.
CACHEBAR provides only probabilistic guarantees for de-
fense against a Prime+Probe attack and disables hyperthread-
ing. Solutions like Nomad [11], while probabilistic, comple-
ment our approach. Nomad works in the cloud scheduler to
reduce the co-residency of different security domains. Our
solution could be used in conjunction with Nomad to provide
hard isolation when co-residency restrictions are not possible.

VII. CONCLUSIONS

We have presented a hardware-software technique that
can eliminate cache-based side-channels for schedulable units
belonging to separate security domains (C1). Unlike many
existing solutions, our solution allows SMT to remain enabled
(C2) and does not require application level changes (C3). We
implemented our system on top of the Linux CFS scheduler
and present an evaluation of the system under a CPU bound
workload. In our evaluations, we observed a worst case
reduction in tenant observable utilization in the case of 2
security domains of 9.8% and only 2.97% and 1.68% decrease
in utilization for the 4 and 8 security domain configurations
respectively (C4). A user simply notifies the provider that a
given workload should be run in isolation. Our technique can
eliminate an attacker’s ability to use the cache as a noisy
communication channel and does not rely on probabilistic
methods to decrease the granularity of information available
on the channel (C1).
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