
Real-Time Systems Security
Through Scheduler Constraints

Sibin Mohan∗, Man-Ki Yoon†, Rodolfo Pellizzoni‡ and Rakesh Bobba∗
∗Information Trust Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801
†Dept. of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801
‡Dept. of Electrical and Computer Engineering, University of Waterloo, Ontario Canada

Email: {∗sibin, †mkyoon, ∗rbobba}@illinois.edu, ‡rodolfo.pellizzoni@uwaterloo.ca

Abstract—

Real-time systems (RTS) were typically considered to be
invulnerable to external attacks, mainly due to their use of
proprietary hardware and protocols, as well as physical isolation.
As a result, RTS and security have traditionally been separate
domains. These assumptions are being challenged by a series of
recent events that highlight the vulnerabilities in RTS. In this
paper we focus on integrating security as a first class principle in
the design of RTS: we show that certain security requirements can
be specified as real-time scheduling constraints. Using information
leakage as a motivating problem, we illustrate our techniques with
fixed-priority (FP) real-time schedulers. We evaluate our approach
and discuss tradeoffs. Our evaluation shows that many real-time
task sets can be scheduled under the proposed constraints without
significant performance impact.

I. INTRODUCTION

Embedded real-time systems (RTS) are used for the moni-
toring and control of physical systems and processes in varied
domains such as aircraft, submarines, other vehicles (both au-
tonomous as well as manual), spacecraft, critical infrastructures
(e.g., power grid and water systems) and industrial plants
to name but a few. The next-generation of real-time control
systems will need to support multiple, interconnected, complex
functions including mission control, data acquisition as well
as processing and communication [24]. To reduce cost, power
consumption and weight embedded designers are progressively
moving towards integrated architectures where all such func-
tionalities are implemented as separate, yet inter-dependent,
real-time tasks on individual processing nodes, possibly using
commercial-off-the-shelf (COTS) technology.

Until recently, most RTS were considered to be invulnerable
against software security breaches because real-time systems
were (a) physically isolated from the outside world, (b) used
specialized protocols and (c) executed on dedicated hardware.
These systems are increasingly being connected together, some-
times through the use of unsecured networks such as the
Internet. Furthermore, malware developers and sophisticated
adversaries are able to overcome air-gaps. This is evident from
recent successful attacks on industrial control systems [6],

This work is supported in part by a grant from ONR (N00014-13-1-
0707 and N00014-12-1-0046). Any opinions, findings, and conclusions or
recommendations expressed here are those of the authors and do not necessarily
reflect the views of sponsors.

malicious code injection into the telematics units of modern
automobiles [3], [15], demonstration of potential vulnerabilities
in avionics systems [32] and attacks on UAVs [25].

Given the time and resource constraints under which RTS
operate, vulnerabilities in RTS differ considerably from those
of traditional enterprise systems. Threats faced by real-time
systems could vary in scope and effect; from the leakage of
critical data [27] to hostile actions due to lack of authentication
[3], [15], [32]. Arguably some of the aforementioned attacks
succeeded because such systems were not designed to be
secure against attacks. However, simply adding security mech-
anisms that provide confidentiality (e.g., encryption), integrity
protection (e.g., message authentication) and availability (e.g.,
replication) without considering the real-time and embedded
nature of such systems will not be effective. Recognizing this,
researchers have proposed adding security as a new dimension
to be considered during embedded system design [13]. There
has been some work on reconciling the addition of security
mechanisms with real-time properties [16], [30], [35]. Specifi-
cally, researchers proposed changes to EDF scheduling [16],
[35] to optimize the level of security achieved (measured
in terms of strength of security keys and primitives) while
ensuring that real-time deadlines are met.

In this paper, we consider the issue of information leakage
between real-time tasks with different security levels. It is
well understood that the use of shared resources can lead to
information leakage between tasks without the use of explicit
communication (e.g., [14], [21]). The issue of covert timing
channels between tasks of different security levels in the rate
monotonic (RM) scheduler was previously considered [27]. In
contrast, we focus on information leakage due to the sharing
of resources1 such as the cache, DRAMs, and I/O bus. In
particular, every time there is a switch between tasks belonging
to different security levels there is a possibility of information
leakage through shared resources.

We propose to reduce this potential for information leakage
via shared resources by integrating security at the design phase
of RTS in the form of intelligent scheduling constraints. We
discuss various methods of integrating such constraints into
scheduling policies for real-time systems (Sections III, IV and
V) and derive some analytical bounds for the same (Section IV).

1Other than the processor core.

Specifically, we focus on the Fixed Priority (FP) scheduling
algorithms [18] that cover a large class of real-time systems.

As part of the high-level contributions of this paper, we:

1) demonstrate the use of constraints on real-time scheduling
policies as a means of enforcing security properties (mit-
igating information leakage through storage channels over
implicitly shared resources2 in this case) as discussed in
Section III;

2) discuss enhancements to the FP scheduler for the integration
of such constraints (Sections III, IV and V) and provide
analysis bounds for an instance of the problem (non-
preemptive FP algorithm) as seen in Section IV; and

3) show additional ideas for the integration of such constraints
for other instances of the problem; they aim to improve
performance compared to non-preemptive FP (Section V).

We now present the adversary and system model in Section II.

II. ADVERSARY AND SYSTEM MODEL

The issue of information leakage arises in systems with
multiple levels of security where tasks at different security
levels share the computing platform. In complex real-time
systems this situation can arise in multiple scenarios such as
when modules sourced from different providers are integrated
together. For example, consider an avionics system designed as
per the DO-178B model [5]. The navigation system which is
less critical can be sourced from a less trustworthy vendor and
can be placed at a lower confidentiality level than the flight
control system to which it provides information. In such a case
even if the navigation system were to be compromised it will
not be privy to the critical data from the latter [32].

Another example is of unmanned aerial vehicles (UAVs)
where: (a) a set of real-time tasks/components, {R}, controls
the UAV and (b) another set of tasks, {I}, gathers, processes
and communicates information back to the base station. {R}
could include tasks to calculate the flight path and control
code to manage the engines. {I} includes software components
that control a camera to capture images, one or more tasks to
process the images and another component to communicate
the processed/raw images back to the command center. Now,
the components in {R} will have a higher criticality in terms
of the real-time requirements while those in {I} will have
higher security requirements in terms of confidentiality, i.e., the
information that the UAV captures should not leak out. Security
levels could also vary within each set of tasks. For instance,
the information being processed by the task that calculates the
flight path of the UAV must be more secure than the information
being processed by the control task (essentially the low level
sensory/actuation information).

Another scenario: legacy applications are moved over to
modern computing platforms due to the obsolescence of older
processor architectures, e.g., the “RePLACE” system from
Northrup Grumman [8], [9], [23]. Such solutions take legacy
applications and execute them on modern processors by provid-
ing emulation frameworks so that the application still believes
it executes on the original platform. However, due to lack
of physical isolation that they relied on before, leakage of
information across applications due to the underlying shared

2Sometimes referred to as “storage channels with timing exploitation”.

resources is a real possibility. This could be exacerbated if the
original applications belonged to different security levels.

A. Adversary Model

We assume that an adversary can either insert new tasks
(that respect the real-time guarantees of the system to avoid
immediate detection) or compromise one or more existing tasks.
The main objective of this attacker is to passively glean secure
information by observation of shared resource usage. Also,
while the adversary can observe the usage of shared resources
(like caches), it cannot snoop on the RAM contents of other
tasks (due to the existence of virtual memory and/or memory
controllers). Active adversaries that can tamper with the system
operation are out of scope for this work.

B. System Model

We consider a uniprocessor system following the Liu and
Layland task model [17] that contains a set of sporadic tasks,
{τ} where each task τi ∈ {τ} has the parameters: {pi, ci, di},
where pi is the period, ci is the worst-case execution time and
di is the deadline, with di ≤ pi. We also assume that (for the
FP scheduling policy), the set of real-time priorities, {Pri}
are fixed such that, ∀τi, τj ∈ {τ} and priτi , priτj ∈ {Pri}
then either priτi ≺ priτj if τi has a higher priority than τj or
priτi � priτj if τj has a higher priority than τi. Of course, it is
also possible that priτi and priτj share the same priority level.
For the sake of simplicity, we write priτi as prii. Let hepi be
the set of tasks with a higher or equal priority than a given
task τi (excluding τi itself) and lpi be the set of tasks with
lower priority than τi. We also assume that time is measured
in integral quantities and not as a continuous value.

We assume that the set of security levels for tasks, S, forms
a total order. Hence, any two tasks (τi, τj) in the system may
have one of the following two relationships when considering
their security levels, si, sj ∈ S: (i) si ≺ sj , meaning that τi
has higher security level than τj or (ii) sj ≺ si. We plan to
generalize our system model to consider a partial ordering [4]
among security levels in an extended version of this paper. Note
that, while it might be the case that the tasks with higher real-
time priorities may also have the higher security levels, we do
not limit ourselves to this assumption. While we do present
cases where there exists a relationship between the priority
levels and security levels, our techniques are more general than
these special cases imply.

III. SECURITY AND SCHEDULING

As stated in Section I, we propose to mitigate the problem
of information leakage via shared resources among tasks of
varying security levels, by placing constraints on scheduling
algorithms. While there may be multiple ways to mitigate infor-
mation leakage (e.g., hardware-supported cache partitions), the
approach of modifying or constraining scheduling algorithms
is appealing because, (a) it is a software based approach and
hence easier to deploy compared to hardware based approaches;
(b) it allows for reconciling the security requirements with
real-time or schedulability requirements; and (c) availability
of extensive analytical tools for real-time systems allows for
better evaluation and understanding of the trade-offs between
the security and schedulability requirements.

We now present a simple example that is used to il-
lustrate our ideas in this context. Consider the case of a
simple RTS with just two periodic tasks, a high priority task
H{pH , cH , dH} and a low priority task L{pL, cL, dL}. Let
us assume that the security levels for this system match the
real-time priorities, i.e., sH ≺ sL; hence, information from
H must not leak to L. Now, these tasks must be scheduled
on a single processor, P , so that both deadlines (dH , dL) are
satisfied. Let the tasks be scheduled according to a Fixed
Priority (FP) scheduling policy. If L (or any part thereof)
executes immediately after (any part) or all of H , then there is
the potential for information leakage (i.e., L could inspect the
shared resource contents that were recently used by H). Many
attacks only need information about which cache lines were
requested/evicted and the timing for such actions to be able to
gather information about the data that the higher security level
tasks used [21]. The main intuition is that a penalty must be
paid for each shared resource in the system, every time tasks
switch between security levels. In this case, the cache must be
flushed before a new task is scheduled3.

The solutions suggested in this paper are not specific to
shared caches; we believe that the similar concepts are appli-
cable to other shared resources as well. For instance, DRAMs
or even the I/O bus could be shared resources that attackers
may target to gather information (e.g., it has been shown that
the I/O bus can carry traffic related to a previously executing
task even after a new task has been scheduled [20]). Hence,
flushing mechanisms could be used for these other resources
as well; e.g., in the case of I/O buses, the “flushing mechanism”
could just introduce a delay so that outstanding requests have
time to complete before the new task starts up; in the case of
a disk, the flushing task could reset the seek heads to some
initial position. In general, there exist many resources in the
system that are ‘stateful’; hence, what one task does will have
a timing effect on the next task. There exist ways to use this
timing data to extract information about the previous executing
task(s). Our solution is to add an operation (that has a fixed
overhead) to “reset” the state of the device.

One point to note is that the flush task is not meant to
immediately clear out the contents of the cache; the easiest way
would have been to just supply a null voltage to the cache for
a short duration. In fact, the flush task needs to ensure that the
system is left in a consistent state. Any outstanding writebacks,
bus write requests, data transfer, etc. need to complete before
the contents of the cache are wiped. Hence, a finite amount of
time must be spent in performing all of these operations.

A. Scheduling Constraints

An initial analysis, then, yields the following constraints
that can be applied to the real-time scheduler:

C1 No instance of L can be scheduled right after any instance
of H

C2 If an instance of L is preempted by a job of H and then
resumes when H completes then there is still a potential
for information leakage – hence such a situation must be
avoided.

Constraint C2 is a special instance of C1. Further analysis
presents a few options for integrating these constraints into the

3We will discuss techniques to avoid an inordinate number of cache flushes
later on in the paper.

scheduler:
[A] Since the shared resource is the offending party, we can
ensure that it is always flushed/cleaned out whenever we see
transitions of the type H → L;
[B] Ensure that all jobs of one kind (H or L) complete before
transitioning to the other; or
[C] prevent L from being preempted by H once it has been
scheduled.

The first method, A, can be implemented by the use of a
synthetic ‘flush task’ (FT) that is always executed once L is
scheduled after a job of H – the job of the FT is to flush the
contents of the shared resource; this ensures that any following
task will not be able to access the contents of the resource. The
problem with this method, of course, is that the synthetic task
incurs an overhead (that may be small, yet still constant).

Fig. 1. Task Switches for a Two-Task System

Of course, the problem with the use of an additional task to
cleanse out the cache is that the overheads scale (often linearly)
with the number of switches of the type H → L (Figure 1
where the horizontal axis is time; upward pointing arrows are
new instances of tasks – also serve as deadlines for the previous
invocations). Hence, the number of FT instances, Nft = NH ,
i.e., the number of jobs for H . If we also assume that the FT is
invoked on L→ H switches (to prevent acknowledgements in
covert channels4) then the number of FT instances is: Nft =
NH +NL, i.e., the total number of jobs.

The second and third methods (B, C) will have to be used in
conjunction with the first (A), since it is impossible to avoid the
H → L transitions completely. These two techniques though,
could significantly reduce the number of calls to the FT. Method
(B) results in the least number of switches between tasks of H
and L – just one. The problem, though, is obvious – one of
the two tasks will very likely miss its deadline. Hence, for all
practical purposes, we cannot use this method.

The final technique (C) is an additional constraint that is
placed on the scheduling algorithm to handle constraint C2.
While this avoids situations where a preempted instance of
L resumes execution immediately after the completion of H
(thus reducing the number of preemptions and executions of
FT), it could suffer from the problem of priority inversion
where a high priority task is forced to wait for a low priority
task to complete [22]. This technique could also result in
lower utilization for some task sets (often resulting in task
sets becoming unschedulable) since we are often forcing higher
priority (critical) jobs to wait until an entire lower priority job
completes its execution.

For the rest of this paper, we will refer to technique (A) as
“PreFlush” (PF), i.e., the basic scheduling algorithm with
preemptions and FT, while technique (C) will be referred to
as “ConstrainedPreFlush” (CPF), i.e., the scheduling
algorithm with a limited set of non-preemptions and (where
necessary) FT invocations.

4We will relax this assumption later in the paper to obtain tighter bounds.

B. PF and CPF for a Partial Order of Security Levels

It is now easy to extrapolate PF and CPF to multiple tasks
and security levels, S. The rules for PF are:

1) for every pair of tasks, τi, τj | si ≺ sj , invoke the FT on
every transition of the type, τi → τj ;

2) also invoke the FT on every transition of the type, τj → τi,
i.e., either on completion of τj or if τi preempts τj .

The second rule ensures that the lower security task is not able
to ‘respond’ (with acknowledgements) in case a covert channel
is setup [4], [7], [27]. While this does cut down the efficiency
of any such channels (and significantly reduces the possibility
of information leakage), we can still get good protection and
increased utilization by not enforcing this rule on most systems.
If we prevent the flow of information between tasks by invoking
the flush task on τi → τj transitions (where si ≺ sj), then even
if a compromised τj is able to send back acknowledgements,
it will not be effective. Hence, we present a simpler version of
the PF mechanism called Half-PF i.e., for every pair of tasks,
τi, τj | si ≺ sj , invoke the FT on every transition of the type,
τi → τj only. For the remainder of this paper, we focus on
Half-PF rather than PF, unless explicitly mentioned.

The rules, then, for CPF are as follows:

1) for every pair of tasks, τi, τj | prii ≺ prij & si ≺ sj , prevent
τi from preempting τj ; τi executes on the completion of τj
if it is the highest priority task that is ready to execute at
that point in time

2) for every pair of tasks, τi, τj | prii ≺ prij & si � sj ,
allow τi to preempt τj ; this preemption is fine since the FT
would have been invoked once anyways when τj completes
execution

For the first rule, if there exist one or more tasks, τk, such
that prii ≺ prik & si ≺ sk then τi is still allowed to execute
after τj (even though we could further reduce FT invocations
by not allowing it to). The reason is to avoid the situation where
τi faces an inordinate priority inversion scenario. Hence, we are
only concerned with direct preemptions and not indirect ones.

IV. FP AND SECURITY

Fixed Priority (FP) schedulers [18] form a well known class
of static scheduling algorithms. In this section we discuss how
to combine the non-preemptive FP scheduler with our security-
related constraint, Half-PF. We start with the non-preemptive FP
scheduler because it is one of the easier algorithms to analyze
and implement. We believe that the techniques in this paper
will not only (a) provide insights into how such security-related
constraints can be integrated into real-time schedulers but also
(b) demonstrate how a worst-case response-time analysis can
be carried out for such situations. We discuss CPF and other
variations of FP later on.

For the remainder of this section, let τi be the task under
analysis and cft be the execution time of one FT. We assume
that each FT is executed together with the task that requires
it: i.e., if a job of task τj follows the execution of a job
of task τi, with si ≺ sj , a FT is invoked when the job of
task τj is scheduled for execution, effectively increasing its
execution time to cj+cft. In other words, FT are also executed
non-preemptively. Our analysis strategy is: we use standard
response time analysis for non-preemptive FP to compute, at

each iteration, the number of higher or equal priority jobs that
interfere with τi. Then we determine the maximum number of
FT invocations required by such jobs and we correspondingly
increase the computed response times. As usual, we iterate until
convergence is achieved.

Hence, the worst-case response time Ri(k + 1) of task τi
at iteration k can be computed [2] as:

Ri(k+1) = Bi+Nft(S, {Ij |τj ∈ hepi})cft+
∑

∀j∈hepi

(Ijcj)+ci,

(1)
where Bi represents the maximum blocking time induced by
lower priority tasks and their FT, Nft is the worst-case number
of FT required by either interfering higher or equal priority
tasks or by the task under analysis and Ij is the number of
instances of a higher or equal priority task τj that interfere
with τi, which for non-preemptive FP is:

Ij =
⌊Ri(k)− ci

pj
+ 1
⌋
. (2)

The maximum blocking time Bi can be computed as:

Bi = max
∀τj∈lpi

c̄j − 1, (3)

where c̄j = cj + cft if there exists a task τk ∈ S such that
sk ≺ sj and c̄j = cj otherwise; i.e., if there is any task that
can cause a lower priority job of τj to suffer a FT then we
need to add cft to the blocking time generated by τj . The −1
term accounts for the fact that the lower priority blocking task
must arrive at least one time unit before the activation of τi.

Note that we derive Nft(S, {Ij |τj ∈ hepi}) based only on
the ordering of security levels and the number of interfering
jobs of each task in hepi; in other words, we make no
assumption on the arrival time or other timing parameters of
higher or equal priority jobs within the busy interval. In the
remaining of this section, we will show how to compute a
bound to Nft in polynomial time in

∑
τj∈hepi Ij . We begin

with some definitions. Intuitively, the concept of a valid job
sequence captures all valid schedules based on the available
information S, {Ij |τj ∈ hepi}, i.e., all sequences of jobs that
can invoke a FT during the busy interval for τi.

Definition 1 (Valid Job Sequence). A valid job sequence ψ for
S, {Ij |τj ∈ hepi} is a sequence of

∑
τj∈hepi Ij + 2 jobs in S

such that: (a) the first job is a job of any task of S; (b) the last
job is a job of τi; (c) the sequence of

∑
τj∈hepi Ij intermediate

jobs is any permutation of the union of Ij jobs for each task
τj in hepi. Let Ψ(S, {Ij |τj ∈ hepi}) be the set of all valid job
sequences for S, {Ij |τj ∈ hepi}.
Definition 2 (Number of FT for ψ). N(ψ) is the number of FT
required by jobs of valid job sequence ψ, with the exclusion of
the first job of the sequence; i.e., for any two successive jobs
of any tasks τj , τk in the sequence, a FT is required for τk if
and only if sj ≺ sk in S.

Let t0 be the time at which a job of task τi arrives. Then
a job of a task in lpi could be executing at t0, but after this
job completes, only higher or equal priority tasks can possibly
execute before τi. Furthermore, the processor could also be idle
at t0, in which case a job of any task (either higher priority,
lower priority or τi itself) could have finished executing last
before t0. Hence, when considering the job sequence, we need

to consider a job of any task as the first job in the sequence.
Since we make no assumption on the arrival time of tasks
in the busy interval, we then need to consider any possible
permutation of the {Ij |τj ∈ hepi} higher or equal priority
jobs; finally, the job of τi must execute.

Since valid job sequences corresponds to valid schedules5

for S, {Ij |τj ∈ hepi}, we can obtain the desired FT value as:

Nft(S, {Ij |τj ∈ hepi}) = max
ψ∈Ψ(S,{Ij |τj∈hepi})

N(ψ). (4)

Unfortunately, enumerating all possible permutations of higher
or equal priority jobs would take factorial time. Hence, we now
show how to transform the problem of computing the maximum
N(ψ) over all valid job sequences into a max flow problem on
a graph derived from S and {Ij |τj ∈ hepi}. Intuitively, we
construct the graph by using “sender” and “receiver” nodes
corresponding to jobs in any valid sequence. We add an edge
with capacity 1 between a sender and a receiver corresponding
to tasks τj , τk respectively to represent the fact that an FT is
required if a job of τj is followed by a job of τk in the sequence.

Definition 3 (FT Graph). The FT Graph for S, {Ij |τj ∈ hepi}
is a flow graph (V,E) with the following set of vertexes V :

1) a source vertex and a sink vertex;
2) a sender vertex SendF and a receiver vertex RecvL;
3) for each τj ∈ hepi, Ij sender vertexes
{Sendj,1, . . . , Sendj,Ij} and Ij receiver vertexes
{Recvj,1, . . . , Recvj,Ij};

and the following set of directed edges E, where all edges have
a capacity of 1:

1) an edge from the source to every sender vertex (including
SendF);

2) an edge from every receiver vertex (including RecvL) to the
sink;

3) if there exists a task τk ∈ S, sk ≺ si, an edge from SendF
to RecvL;

4) for every task τj ∈ hepi, if there exists a task τk ∈ S, sk ≺
sj , an edge from SendF to every receiver Recvj,q, 1 ≤ q ≤
Ij;

5) for every task τj ∈ hepi such that sj ≺ si, an edge from
every sender Sendj,q, 1 ≤ q ≤ Ij , to RecvL;

6) for every pair of tasks τj , τk ∈ hepi such that sj ≺ sk,
an edge from every sender Sendj,q, 1 ≤ q ≤ Ij , to every
receiver Recvk,l, 1 ≤ l ≤ Ik.

In the following, let f(e) denote the flow assigned to an
edge e ∈ E in a given flow assignment and F =

∑
e∈E f(e)

be the total flow value for that assignment. A flow assignment
is valid if each flow f(e) is between 0 and the edge capacity
(always 1 for the FT graph) and the flow conservation constraint
is obeyed at all vertices except the source and sink. Hence, the
sum of the flows on incoming edges to a vertex must be equal
to the sum of flows on outgoing edges from that vertex. We
use the notation v → v′ to denote an edge from vertex v to v′.

An an example, consider the security ordering in Figure
2(a). Let τ3 be the task under analysis and I1 = 1, I2 = 2. The

5Note that when considering the timing constraints of the jobs in hepi,
there are valid job sequences that are not valid schedules; however, we still
compute a safe upper bound on the number of FT since every possible schedule
is captured by a sequence ψ.

1!

2!

3!

Send2,1

Send1,1 Send2,2 Recv2,2Recv2,1

Recv1,1

RecvL
SendF

(a) S

1!

2!

3!

Send2,1

Send1,1

Send2,2 Recv2,2Recv2,1

Recv1,1

RecvLSendF

(b) Corresponding FT Graph

Fig. 2. Example: FT graph creation and max flow. τ3 is the task under
analysis, with I1 = 1 and I2 = 2. Red arrows represent a valid max flow
assignment.

equivalent FT Graph is shown in Figure 2(b). Note that for the
sake of clarity we do not represent the source and sink vertices;
all dotted lines directed towards a sender vertex represent edges
originating from the source (edges of Type 1 in Definition 3)
and all dotted lines going out of a receiver vertex represent
edges ending in the sink (Type 2). Each higher or equal priority
job is represented by two vertices, a sender and a receiver. An
edge is added between Sendj,q and Recvk,l if executing τj
followed by τk would result in a FT (Type 6). SendF represents
the first job in a valid job sequence; it only has a sender vertex
since it is not preceded by another job in the sequence, and
based on Definition 1, it can represent any task in the system.
Similarly, RecvL represents the last job in a valid job sequence,
i.e., the job of the task under analysis. Edges of Types 3-5
represent FT required by RecvL or by the job following SendF
(possibly RecvL itself, Type 3). Note that each sender vertex
can receive at most one unit of flow from the source and the
sender can provide at most one unit of flow to other receivers;
intuitively, this is because the job represented by the sender
vertex is followed by one other job in a valid job sequence.
Similarly, each receiver vertex can receive at most one unit of
flow from sender vertexes.

A valid max flow assignment is shown by the bolded, red
arrows in Figure 2(b). One unit of flow is sent on the following
edges (and zero everywhere else): source → SendF →
Recv2,1 → sink, source → Send1,1 → Recv2,2 → sink,
source→ Send2,2 → RecvL→ sink, for a flow value F = 3.
This flow assignment corresponds to the valid job sequence
ψ = {τ1, (τ2, τ1, τ2), τ3}, which similarly results in N(ψ) = 3,
since FT are required in the transitions from τ1 to τ2 and τ2
to τ3. Note that the sequence can be constructed by following
the sequence of sender and receiver nodes with non-zero flow,
starting from SendF and ending with RecvL. Finally, note that
the max flow is strictly dependent on the number Ij of jobs of
each higher priority task τj .

The following theorem formally proves that the maximum
flow on the FT graph represents an upper bound to the number
of FT for any valid job sequence. Furthermore, while the
bound is not always tight, it is at most one higher than the
maximum number of FT. Intuitively, the bound is one FT higher
because there exist some integer flow assignments that do not
correspond to a valid job sequence. In particular, an assignment
might have flow both on the edge between SendF and RecvL
and on other edges. This cannot result in a valid sequence,
since it requires that the first job in the sequence is immediately
followed by the job of task under analysis τi, but at the same
time, there must be other FT caused by intermediate higher

priority jobs. However, we can show that we can always obtain
a valid sequence by removing the flow on at most one edge.

Theorem 1. Let F̄ be the max flow value for the FT graph
(V,E) for S, {Ij |τj ∈ hepi}. Then:

F̄ − 1 ≤ max
ψ∈Ψ(S,{Ij |τj∈hepi})

N(ψ) ≤ F̄ (5)

Proof: Since all capacities in the FT graph are integers,
there must exist an integer flow assignment with max flow
value F̄ . We first show (Part A of the proof) that for any
valid job sequence ψ ∈ Ψ(S, {Ij |τj ∈ hepi}), there exists
a valid flow assignment with flow value of F = N(ψ); thus
maxψ∈Ψ(S,{Ij |τj∈hepi})N(ψ) ≤ F̄ . We then show (Part B of
the proof) that for any valid integer flow assignment with flow
value F , there exists a valid job sequence with N(ψ) ≥ F −1;
thus maxψ∈Ψ(S,{Ij |τj∈hepi})N(ψ) ≥ F̄ − 1. This concludes
the proof.

Part A: Given job sequence ψ and for ease of notation,
let us number the jobs in ψ of higher or equal priority task τj
(with the possible exception of the first job in the sequence,
if it is a job of a task in hepi) as τj,1, . . . , τj,Ij , based on the
order in which they appear in ψ. As in Definition 1, we refer
to such jobs as intermediate jobs in the sequence. Also assume
that the first job in ψ is a job of task τk (based on Definition
1, τk can be any job in S). We show how to construct a flow
f such that F = N(ψ). We consider two cases.

Case A.1: there are no tasks in hepi. Then ψ is composed
of only two jobs, of τk and τi respectively. If sk ≺ si, we set of
flow of 1 on edges source → SendF → RecvL → sink, for
a flow value F = 1 equal to N(ψ); note that the flow is valid
since there must be an edge SendF → RecvL in the FT Graph
according to Definition 3. If instead it does not hold sk ≺ si,
then we can simply set all flows to zero since N(ψ) = 0.

Case A.2: there is at least at task in hepi. In this case, there
must be at least one intermediate job of the task in hepi in ψ.
We thus construct the flow in the following manner: A.2.1)
Let τj,1 be the first intermediate job in the sequence. Then if
sk ≺ sj , we set of flow of 1 on edges source → SendF →
Recvj,1 → sink. A.2.2) For any two successive intermediate
jobs τj,q and τl,v, if sj ≺ sl we set of flow of 1 on edges
source→ Sendj,q → Recvl,v → sink. A.2.3) Let τl,Il be the
last intermediate job in the sequence. Then if sl ≺ si, we set of
flow of 1 on edges source → Sendl,Il → RecvL → sink. It
is easy to see that the flow is valid, since we only send flow on
edges that exist in the FT Graph according to Definition 3, and
furthermore incoming/outgoing flow is added at most once to
each node with the exception of source and sink. Furthermore,
an outgoing flow of 1 from the source (and incoming flow of 1
to the sink) is added every time for two successive jobs of τj , τl
in the sequence it holds sj ≺ sl; hence, F = N(ψ) concluding
this part of the proof.

Part B: We need to show that given an integer flow f , we
can construct a sequence ψ such that N(ψ) ≥ F −1. If F = 0,
the proof is trivial, so assume F > 0. Since the flow is integer,
either f(e) = 0 or f(e) = 1 for any edge in the FT Graph. We
say that a sender node is activated if the incoming/outgoing
flow through the node is 1 (note it cannot be greater than one);
similarly for a receiver node. We now define the concept of
a vertex sequence for f as follows: B.1) a vertex sequence is
an alternation of activated sender and receiver vertexes; B.2)

the sequence starts with a sender and ends with a receiver;
B.3) if a sender is followed by a receiver, there must be a
flow of 1 on the edge between that sender and receiver; B.4)
if a receiver is followed by a sender, both vertexes must be
generated from the same task (i.e., Recvj,q and Sendj,l for
some task τj and q, l ∈ [1, Ij]). A maximal vertex sequence
is a vertex sequence that cannot be extended by adding other
vertexes to either the beginning or end of the sequence. Since
each sender node can only have one outgoing edge with a flow
of 1 and each receiver can only have one incoming edge with a
flow of 1, it is easy to see that each vertex can appear only once
in each vertex sequence; furthermore, a vertex cannot appear
in two maximal sequences. Finally, there must exist at least
one maximal sequence since F > 0, and the total value of F
must be equal to half the sum of the number of vertexes in all
maximal vertex sequences (for each flow of 1 from source to
sink in the graph, we have a pair of sender and receiver in a
sequence).

We can then construct ψ as follows: B.5) if there is any
maximal vertex sequence that starts with SendF , pick any task
τk such that sk ≺ sj , assuming that Recvj,q is the second
vertex in the sequence, and start ψ with a job of τk; note that
there must be at least one such task τk, otherwise according
to Definition 3 there would be no edge between SendF and
Recvj,q . Then add intermediate jobs to ψ based on the vertex
sequence (i.e., for each successive receiver and sender vertexes
Recvj,q and Sendj,l, add one job of τj , plus one job for the
final receiver in the sequence). If there is no maximal vertex
sequence that starts with SendF , start ψ with a job of any task
in S. B.6) for any maximal vertex sequence that does not start
with SendF or ends with RecvL, add intermediate jobs to ψ
based on the vertex sequence as in the previous point. B.7) Add
to ψ any intermediate jobs that is needed to complete the job
sequence and have not been already added or will be added in
the next point. B.8) If there is any maximal vertex sequence
that ends with RecvL, add intermediate jobs to ψ based on the
vertex sequence. Otherwise, simply add a job of τi as the last
job in the sequence. Since each vertex appears in either one
maximal vertex sequence or none at all, it is easy to see that ψ
is a valid job sequence. Furthermore, for each maximal vertex
sequence with 2K vertexes, by construction we have added
K job transitions of the form sj ≺ sl in ψ. Hence, N(ψ)
must be at least equal to F , satisfying the N(ψ) ≥ F − 1.
However, we need to cover one final case: B.9) the FT graph
might have at least two maximal vertex sequences, including
one that starts with SendF and ends with RecvL. In this case,
we cannot construct a full sequence ψ based on both maximal
vertex sequences. However, we can still construct a sequence
ψ based on B.5 - B.8 by removing SendF and Recvj,q from
the vertex sequence, where Recvj,q is the second vertex in the
sequence started with SendF . Using the same reasoning as
above, this results in N(ψ) ≥ F − 1, concluding the proof.

The max flow value can be computed by any max-flow algo-
rithm. For instance the original Ford-Fulkerson algorithm has
a complexity of O

(
|E|F̄). Since the number of edges in the

FT graph is O(|V |2) and the max flow value is O(V) (given
that all capacities are 1), it follows that Nft can be derived in
O
(
(
∑
τj∈hepi Ij)

3) time.

Note: whether it is possible to derive exact bounds on the
number of FT in polynomial time in the number of higher
priority jobs is left as an open question. We plan to extend

our analysis to preemptive FP as part of future work. While
we believe that a similar graph theoretical approach could be
used to bound the number of FT, the analysis is likely to be
significantly more complex since each preempted job would
appear multiple times in a valid job sequence.

V. FURTHER CONSIDERATIONS FOR SCHEDULING

Designers of real-time systems must work towards optimiz-
ing a large number of parameters to ensure the (functional &
temporal) correctness of the system. Security constraints are
additional parameters that they must now be considered as part
of this process. This begets the following questions:

1) What is the best ordering of security levels?
2) In fact, is there such a thing as the “best ordering” for

security levels in RTS?
3) Is this “best ordering” related, in any way, to the real-time

priorities of the task sets?

The most obvious answer, of course is depends – this is entirely
up to the particulars of the system (what tasks are in the
system, their properties, functionality, etc.). But perhaps we can
provide some hints to designers so that if they have a choice,
then they could tune their system to improve not just real-
time performance but also security. We present two examples
to highlight some of these issues. While our analysis (Section
IV) has focused on non-preemptive scheduling algorithms, in
the examples and discussion presented in this section, we will
also talk about issues related to preemptive scheduling methods.

Example 1: Consider a security ordering for three tasks, s1 ≺
s2 ≺ s3 where the real-time priorities are: pri1 ≺ pri2 ≺ pri3;
we also assume that all tasks are released at the same time (at
least for this example). Now, consider the Half-PF and CPF
constraints:

Half-PF: Under this constraint, every time there is a change
of the type prii → prij (where prii ≺ prij) there will
a FT invocation. Hence, for the current set of ready jobs,
every time a task completes and a new one is scheduled, it
will result in a FT invocation. The only time that a FT will
not execute is when a new instance of a higher priority task
preempts a lower priority task. Also, it is often the case that
higher priority tasks have shorter periods (e.g., in RM [17]
scheduling) – hence, the jobs of the higher priority tasks will
often preempt the lower priority jobs and every time the latter
resume their executions, a FT invocation will take place. It is
also typical that lower priority jobs, while having the longer
periods, also have longer execution times. Hence, the chances
of such preemptions, followed by FT invocations, will be high.

CPF: even though tasks cannot be preempted by higher priority
tasks for this example (see the definition of CPF in Section
III-B), it still suffers from the overheads of many FT invoca-
tions. Every time a higher priority task is scheduled and then
is followed by a lower priority task the FT must execute. This
seems to result in the most number of FT executions for a set
of ready tasks at any point in time as we see in Section VI.
We refer to this ordering (where priorities and security levels
are ordered along the same direction) as forward ordering:

Definition 4. For any two tasks, τi, τj with priority ordering
prii � prij , a forward ordering states that the security levels
will be si ≺ sj .

Example 2: Now, let us change the security ordering of tasks
from Example 1 to be s1 � s2 � s3 while still preserving the
real-time priorities as before, i.e., pri1 ≺ pri2 ≺ pri3; we also
assume, as before, that all tasks are released at the same time.
Now, consider Half-PF and CPF for this updated example:

Half-PF: In this case, since all the tasks are released at the same
time, the highest priority task τ1 will execute first, followed by
τ2 and then τ3 will execute; during this sequence of executions,
the FT was never invoked. The reason is simple – though the
higher priority tasks have a lower security level, the number
of transitions of the type si → sj where si ≺ sj is reduced
(reduced to zero for these invocations in Example 2). The only
instances when we need to execute the FT is when a preemption
takes place or if a high priority task follows a low priority task.
As mentioned above, most of the time (in a typical RTS) low
priority tasks execute and though preemptions can occur, they
only result in one additional FT.

CPF: the CPF constraint is able to do better than Half-PF at
reducing the number of FT executions (for this example), since
lower priority tasks cannot be preempted once they start. Hence,
higher priority job can cause only one FT invocation (and that
too only if it immediately follows a task with lower priority).
Hence, this particular ordering of tasks seems to bring out the
best behavior in the scheduling algorithms when the constraints
Half-PF and CPF are applied (more in Section VI). We call this
a backward ordering, where priorities and security levels are
in the seemingly opposite directions; it is defined as:

Definition 5. For any two tasks, τi, τj with priority ordering
prii � prij , a backward ordering states that the security
levels will be si � sj .

We also introduce the notion of “random ordering” where
two tasks, τi, τj with priority ordering prii � prij could exhibit
any one of the following two behaviors regarding security level
ordering: si ≺ sj , or si � sj . Considering the varied nature of
RTS and security constraints, it may often be the case that task
sets will fall into this particular ordering.

Definition 6. Random ordering: Given a set of tasks {τ}, it
not possible to establish an exact relationship between their
priority ordering and their security ordering.

Note: By “random ordering” we do not mean that the ordering
is random. It is a convenient phrase to describe the fact that
we do not assign a specific order, ahead of time, to the tasks.

Definitions 4, 5 and 6 provide insights into the what could
possible be the worst, best and average case situations for real-
time systems with security constraints.

VI. EVALUATION

We now evaluate the constraint-driven FP schedulers in-
troduced in the previous sections. We first present our experi-
mental setup, discuss the evaluation of the response time-based
analyses (from Section IV) and present a set of simulations for
other combinations of FP schedulers and security constraints.
We also discuss some limitations for our work.

A. Experimental Setup

Part of the process of integrating the Half-PF and CPF
into FP is to gain an understanding of the behavior of the

modified algorithm(s). For this purpose, we set up simulation
and analysis engines and analyzed thousands of task sets.
Table I summarizes the parameters used for the generation of
task sets used in our evaluation. We generated 2000 random,
synthetic, task sets evenly from ten base utilization groups,
[0.02 + 0.1 · i, 0.08 + 0.1 · i] for i = 0, . . . , 9, i.e., 200
instances per group. The base utilization of an instance is
defined as the total sum of the task utilizations. Each input
instance consists of [3, 10] tasks, each τi of which has a
period pi ∈ [50, 100, . . . , 950, 1000] and an execution time
ci ∈ [3, 30]. The deadline of each task is set to be equal to
its period, i.e., di = pi. Since deadlines are equal to periods,
we decided to assign task priorities according to the Rate
Monotonic (RM) algorithm [17]. While we acknowledge that
RM is not an optimal priority assignment algorithm for our task
model, we point out that optimizing the priority assignment is
outside the scope of this work.

TABLE I. EXPERIMENTAL PARAMETERS.

Parameter Value
Number of tasks, N [3, 10]
Task period, pi [50, 100, . . . , 950, 1000]
Task execution time, ei [3, 30]
FT overhead {1, 5, 10}

The overheads for the FT instances would depend on the
actual resources, e.g., in the case of a cache6, it will be:

sizeof(cache)
cache refill bandwidth ; hence we use the values in the table
([1, 5, 10]) as placeholders. The values of cft (relative to the
task execution times) might seem a little high but it depends
on the system under consideration. Sure, if the highest value
for execution time (30) is equated to say, 10 ms, then cft
ranges from 0.3–3.3ms. This value does seem inordinately high
considering that, for many architectures, the values lie in the
100’s of microseconds range for cache flushes7. Of course
things change if we were to assume that say, 30 = 1ms for the
task execution times. Then the values of cft range from 33µs
to 333.33µs; admittedly the latter is a little high (relative to the
task execution times), but the purpose of choosing this value is
to show what happens if we end up using shared resources that
have high associated costs for cleaning out their state. Typically
we would see cft values closer to the lower end of the spectrum
(i.e., between 33 − 167µs). The techniques presented in this
paper would still be valid with other values for FT overheads.

For each task set instance, an ordering of security levels (S)
is constructed: for each task τi, a task τj |si ≺ sj , where i < j,
is added to S with a probability of 0.5. Thus, in the resulting
set, any τi can never have a lower security level than τj . This
prevents the formation of cyclical security relationships.

We use the same generated task sets for both, (a) the
evaluation of the analysis bounds from Section IV and (b) the
simulation-based evaluation of the other techniques (in Section
V). All tasks are released at time t = 0 and each simulation
executes for the duration of the hyper-period HP of the given

6Essentially to flush and refill the cache.
7For instance, in the core i7 we have an 8 MB Level 3 cache and up to

21 GB/s memory bandwidth (more or less, since it is always hard to have an
exact number). Hence, cft = 380µs. For a Tegra 3 device (quad core AFP
A9) we have a 1 MB L2 and 6.4 GB/s memory bandwidth – that puts the cft
at 156µs; this is assuming you have to load from memory to flush (rather than
having a flush instructions).

task set. The system keeps track of the response time of each
job, denoted by rki , that is calculated by the time duration that
the kth job of τi took to complete its execution ei. The analysis
engine, on the other hand, computes the worst-case response
time based on the iteration from Section IV. Upon completion
of a job, the simulation/analysis engine checks whether the
response time exceeds its deadline. A task set is said to be
unschedulable if there exists any τi such that rki > di for
k = 1, . . . , HPpi .

B. Evaluation of Response-Time Based Analysis

Fig. 3. Analysis-based Results [Random Ordering] [FT=5]

We first evaluate the Non-Preemptive FP+Half-PF combi-
nation (analyzed in general for FP in Section IV). We focus
on the random ordering of security levels (Definition 6) since
it represents the general case. Consider Figure 3 that shows
results for an FT execution time of 5. The X-axis plots the
utilization “bins” (or ranges) for the experiments while the Y-
axis represents the total percentage of schedulable task sets for
each bin. The various plots represent the FP variants: (a) the
(vanilla) FP (thick green line); (b) FP with the obvious bounds
(blue solid line) and two versions of the Non-Preemptive FP
algorithm, (c) one based on the obvious/worst-case bound (red
dotted line) and (d) one based on the worst-case response time
analysis from Section IV and Equations 1 and 2 (thick black
line). In the case of the “obvious bound” for both vanilla
FP and non-preemptive FP, we refer to time taken by the
worst-case number of FT invocations, Nft. For the former,
Nft = 2∗Nhepi +1 and for the latter, Nft = Nhepi +1 (Nhepi
is the number of higher or equal priority jobs for each task τi8).
Note: vanilla FP does not suffer from any FT overheads – it
does not implement the security constraints.

The random ordering of security levels provides insights
into the typical performance for the scheduling algorithms. As
expected, FP (the vanilla version) performs the best, simply
because it does not implement any of the constraints from
Section III-B. This is evident from the graphs where the bar
for FP is at the top and schedules most task sets. Of course,
the ability to schedule task sets drops as we reach the higher

8We get these bounds based on the upper bounds on the number of
preemptions for basic and non-preemptive FP algorithms.

utilization values (above 90%9).

Fig. 4. Analysis-based Results [Random] [FT=1]

From this graph we observe that our analysis (black line) is
able to obtain tighter bounds than the naive (obvious) bounds.
Hence, following the max-flow based graph algorithm presented
in Section IV, we are able to schedule more task instances.
While the performance may not be as good as vanilla FP,
designers of such systems can now choose to increase the
security, albeit at reduced schedulability levels (for task sets
with higher utilizations), of real-time systems.

Fig. 5. Analysis-based Results [Random] [FT=10]

We also analyzed the effects of variability in the execution
time of FTs on the schedulability of task sets (Figures 4 and
5). As expected, the overall performance (relative to basic FP)
drops as the FT execution time increases. When FT overheads
are low, the naive analysis (obvious bounds) comes close to
the response-time-based analysis while the relative differences
increase as the FT overheads go up. The exception is shown in
Figure 4 where the naive method performs much better (getting
much closer to vanilla FP in fact). The reason is that the FT
overhead (cft = 1) is much lower than the execution times
of the tasks; the scheduling algorithm is not hindered all that
much by these low overheads and hence seems to perform much

9While the typical schedulability tests for FP put the theoretical upper
bound at 69% [17], it is possible for FP to schedule task sets with higher
utilizations – e.g., if they are harmonic in nature.

better when compared to the analysis-based results. When the
FT overheads are closer to the typical values (cft = 5 in Figure
3) we see that performance of the naive analysis-based results
drops (in comparison with the calculated worst-case bounds;
i.e., the black line). The relative performance drops further
when cft increases further (Figure 5).

Hence, our techniques perform better when the overheads
for flushing shared resources increase. This is quite important,
since different shared resources (caches, DRAMs or even
I/O buses) will demonstrate varying degrees of overheads for
flushing their state and our methods are never worse (and
usually better) than the typical conservative estimates.

One important observation is that the modified algorithms
(i.e., the ones with the security constraints integrated) are still
able to schedule a large number of task sets. The algorithms
without these constraints start differentiating themselves only
for the higher utilization values when the FT overheads become
a factor for the modified algorithms. Hence, we can still im-
plement many real-time systems that meet both the timeliness
guarantees as well as the security requirements.

C. Simulation Results for Other Schemes

While section IV presented the analysis for one instance of
an FP algorithm (non-preemptive) and a scheduling constraint
(Half-PF), other combinations are possible as well (enumerated
below). We believe that performing similar analyses for all of
these combinations, while laborious, is still feasible and builds
upon the intuition(s) provided in this paper. We omit these
extensive analyses here due to space limitations and intend to
work on them as part of future work. In the meantime, we
carried out a variety of simulations for these other combinations
so that designers of secure real-time systems can gain a better
understanding of the effect of the various parameters. In this
section we enumerate the results from these simulations.

Given the set of generated tasks from Section VI-A, we use
a simulator that schedules task sets using scheduling policies
obtained by combinations of basic FP and Non-Preemptive FP
with the constraints from Section III-B:

• Preemptive (or vanilla) FP (FP): tasks are scheduled by the
basic FP scheduling policy. Preemptions are allowed with no
FT invocations.

• NonPreemptive FP (FP Fully Non-Preemptive): It is
the same as FP mentioned above, except that no preemptions
are allowed but we do allow FT invocations when changing
from high to low security levels.

• Preemptive FP with FT (FP PF but actually FP Half-PF):
same as FP, however a resource flush task (FT) is executed
whenever a higher security level task is being preempted by
a task having a lower security but higher priority level.

• Preemptive FP with Resource Flush under certain conditions
(FP CPF): Preemptions are not allowed when the preempt-
ing task has a higher security level than the one currently
running; otherwise preemptions are allowed.

Figure 6 presents results for the performance analysis of the
“random ordering” method (Definition 6) for the above algo-
rithms. For the following discussion, the execution overhead for
each FT invocation, unless otherwise stated, is 5 time units10.

10We also saw similar trends for other values of cft but omit them due to
space considerations.

Fig. 6. Simulation-based Results [Random Ordering]

As before, the vanilla FP performs the best. At the other
extreme, we have the FP Fully Non-Preemptive algo-
rithm that doesn’t allow any preemptions. As expected, it has
a tougher time in keeping up with FP, especially when the
utilization values increase. These are the endpoints that we will
use for comparing the remaining constraint-based algorithms.

Figure 6 shows that while FP Half-PF performs fairly
well at scheduling most task sets, FP CPF is also able to
match its performance, for the most part. Half-PF drops
more task sets (as compared to FP) – its performance starts
to degrade around the 75% utilization mark. It is interesting
to note that this algorithm and FP CPF are still able to
schedule some task sets as the utilization grows, at which
point, interestingly, FP CPF catches up with FP Half-PF.
Of course, both of these still perform much better than the FP
Fully Non-Preemptive algorithm. The chief benefit of
all three of these modified FP algorithms is that the overall
security is increased. Now RTS designers can make choices
based on quantifiable information – increased security versus a
little drop in real-time utilization.

We conducted similar experiments for the Forward and
Backward ordering of security levels (see Figures 7 and 8). As
expected, the forward ordering performs worse than the random
ordering. The FP Half-PF and FP CPF algorithms are sim-
ilar in performance for the forward ordering – they both start
dropping out earlier than random (around 65% and 55% respec-
tively) and are closer to the FP Fully Non-Preemptive
version. Hence, our conjecture that the forward ordering results
in bad (potentially worst) behavior is confirmed.

The backward ordering (Figure 8), on the other hand, seems
to be the best performer of the lot. In fact, its performance
matches that of FP for the most part, dropping down (albeit
a little) only for the really high utilization values. Again, this
seems to underscore our claim that a backward ordering of
security levels will be the best way to obtain the highest
performance, while still guaranteeing the security properties.
One interesting observation: for the backward ordering of se-
curity levels, FP CPF is transformed into FP Half-PF. The
reasoning is simple: remember that CPF disallows preemptions
when the higher priority task has a higher security level but
allows preemptions in the opposite case. In the backward order-
ing, a higher priority task always has a lower (or equal) security

Fig. 7. Simulation-based Results [Forward Ordering]

level as the currently executing task – hence, preemption are
always allowed. In Figure 8 the two lines are indistinguishable.

Fig. 8. Simulation-based Results [Backward Ordering]

An important point to note though: for the lower utilization
levels (typically below 50%), all of the modified algorithms
perform just as well as FP in scheduling the task sets. Hence,
for many real-time systems, these algorithms are able to not
just improve the security properties of the systems, but do so
without any observable drop in performance.

We can definitely think of ways to reduce the number of FT
invocations based on the following insights: (1) Consider the
PF/Half-PF constraints; in any given task set τ and security
ordering S, a particular task τi will cause a FT invocation
iff it is preempted by a task, τj | prij ≺ prii & sj � si;
hence all other preemptions will not result in FT executions –
depending on the task set characteristics, this could potentially
reduce a large number of preemptions; (2) CPF reduces many
preemptions (and FT invocations) by definition; it also ensures
that a lower priority job will experience a FT execution only
once due to higher priority, higher security level tasks, thus
reducing the total number of FT invocations; (3) All lower
priority jobs, with higher security levels than the current job
will only increase the number of FT executions for that job by
one – essentially before it is scheduled to run. Once the job
starts executing, it cannot be preempted by lower priority jobs

(even with higher security levels); the latter cannot be scheduled
as long as the current job has leftover execution.

The above rules show that the actual number of FT invo-
cations due to these scheduling constraints could be reduced,
perhaps even more aggressively than the bounds presented in
Section IV. Results in Figure 9 also validate this observation.

Fig. 9. Avg. #FT per Job for Analysis & Simulations [FP + Half-PF]

For each task set, on the Y-axis, the graph measures the
number of FT invocations normalized to the total number of
jobs, i.e., the average number of FT executions per job. The X-
axis represents the various utilization ranges/bins. This graph
shows the results for the FP Half-PF algorithm for a random
security ordering. The red dots (on the lower part of the graph)
show the results we obtained from the simulations while the
blue dots (on the upper parts of the graph) show the results
for average number of FT invocations per job from the worst-
case response time analysis. From this graph, we observe that:
(i) the total number of FT invocations is typically much less
than the number of jobs; (ii) this is also true as we reach the
higher utilization task sets; (iii) the graph also shows that, for
most tasks sets, the number of simulated FT executions is lower
than the values calculated from our worst-case response time
analysis. Hence, there is significant scope for reduction in these
overheads and for corresponding increases in the schedulability
of task sets. Other combinations of FP scheduling algorithms
and security constraints also show similar behavior; they are
omitted here due to space considerations.

D. Limitations

While we are able to show the value of, and methodology
for, transforming security requirements (in this case prevent
information leakage) into constraints for real-time scheduling,
this is obviously not a silver bullet for solving all security
problems. Many security requirements may not be amenable
to being cast as scheduling constraints, e.g., communication
vulnerabilities. Also performance overheads due to such con-
straints could inhibit their adoption in many high utilization
RTS, though with careful design processes this could be miti-
gated. The exact constraints depend on the system parameters.

VII. RELATED WORK

There is a large body of work on identification, analysis
and mitigation of covert side channels (e.g., [10]–[12], [14],

[21]). In particular, Hu [11] assumes a similar security model
and mitigation strategy (cache flushing) and discusses how
scheduling algorithms can be modified to minimize the number
of flushes. However, tasks have no real-time requirements and
the scheduler does not support any service guarantee. Hence,
in the following we only focus on those works that are relevant
to real-time systems. For example, it has been shown that
scheduling of (real-time) tasks can be a source of information
leakage; Son et al. [27] showed that a covert timing channel
can be established in the rate-monotonic scheduler. Völp et al.
[34] discuss unauthorized information flows obtained through
altered scheduling behavior (e.g., delayed preemption). They
also showed how to modify a fixed-priority scheduler to reduce
the effect of such malicious alterations. They also studied
the effect of timing channels introduced by real-time resource
locking protocols and addressed them by transforming the
relevant protocols [33]. In contrast, we do not focus exclusively
on timing channels but rather on the approach of transforming
security properties into real-time scheduling constraints; we use
information leakage as an example to illustrate our techniques.
The above techniques are orthogonal to ours (we intend to
combine them in the future).

There has been some work on reconciling the addition
of security mechanisms into real-time systems: Xie et al.,
[35] and Lin et al. [16] considered periodic task scheduling
where each task requires a security service whose overhead
varies according to the (quantifiable) level of the service. They
propose new schedulers [35] and enhancements to existing
schedulers (viz., EDF [16]) to meet real-time requirements
while maximizing the level of security achieved. In contrast,
we study enhancements to FP to reduce information leakage
through shared resources while meeting real-time requirements.

The issue of information leakage in real-time database
systems with multi-level security constraints has been con-
sidered [1], [28], [29]. Son et al. [28] focus on transaction
scheduling and concurrency control algorithms to meet both
security and real-time requirements. This includes metrics to
measure fulfillment of security requirements and a concurrency
control algorithm that can trade-off of security and real-time
requirements [1]. Son et al. [29] resolve the conflict between
real-time and security requirements by defining a notion of
partial security and trading-off between the two.

There also exists recent work on developing architectural
frameworks for solving security problems such as intrusion
detection [19], [26], [31], [37], [38], among others. They
aim to create hardware/software mechanisms to protect against
security vulnerabilities while our work aims at the scheduler
level. It is not inconceivable that the two sets of approaches
could be combined to make the system more resilient to attacks.

Finally, in the case of our PF and CPF algorithms, the
issue of computing the number of FT invocations is related
to computing the number of preemptions suffered by a task or
group of tasks. Existing work [36] discusses how to compute
the exact cost of preemptions for a task under fixed-priority
scheduling by accounting for the exact number of times that
the task is preempted by higher priority tasks. The fundamental
difference compared to this work is: according to our Half-PF
constraint we only invoke a FT on a transition from a higher
security to a lower security task, not on every preemption.
Furthermore, a FT must be invoked even if a higher security
task is simply followed by a lower security task, i.e., without

a need for preemption (as discussed in Section IV, which
details the analysis for non-preemptive FP). Hence, the strategy
detailed in [36] is not directly applicable. Having said that, that
work [36] does present some interesting ideas for extending our
analysis and we intend to use it as part of future work.

VIII. CONCLUSION

In this paper we presented methods for integrating security
requirements into real-time scheduling algorithms. We consid-
ered the problem of information leakage via shared resources
in real-time systems to illustrate our techniques. We proposed
the modification of scheduling algorithms to include security-
related constraints to mitigate such problems. In particular, we
modified fixed priority scheduling algorithms and showed that
the proposed modification can mitigate information leakage via
shared resources with acceptable performance overheads or/and
impact on schedulability. Designers of real-time systems can
now perform a proper assessment of the tradeoffs between
security requirements and real-time guarantees.

There is scope to extend this work in multiple directions.
We intend to continue the rigorous mathematical analysis to
include other variants of FP. We will then extend our analysis
to other scheduling algorithms such as EDF. Finally, we hope
to consider multiple shared resources, instead of just one. We
expect that applying constraint based approaches to the case of
multiple shared resources will be considerably interesting and
more challenging. We will also generalize our system model to
include partial ordering among security levels.

REFERENCES

[1] Q. Ahmed and S. Vrbsky. Maintaining security in firm real-time
database systems. In Computer Security Applications Conference, 1998.
Proceedings. 14th Annual, pages 83–90, 1998.

[2] A. N. Audsley, A. Burns, M. Richardson, and K. Tindell. Applying new
scheduling theory to static priority pre-emptive scheduling. Software
Engineering Journal, pages 284–292, 1993.

[3] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno. Compre-
hensive experimental analyses of automotive attack surfaces. In USENIX
Security, Aug 2011.

[4] D. E. Denning. A lattice model of secure information flow. Commun.
ACM, 19(5):236–243, May 1976.

[5] European Organisation for Civil Aviation Electronics. DO-178B: Soft-
ware Considerations in Airborne Systems and Equipment Certification,
Dec 1992.

[6] N. Falliere, L. Murchu, and E. C. (Symantec). W32.stuxnet dossier.
http://www.symantec.com/content/en/us/enterprise/media/security
response/whitepapers/w32 stuxnet dossier.pdf, 2011.

[7] J. Goguen and J. Meseguer. Security policies and security models. In
IEEE Symposium on Security and Privacy, pages 11–20. IEEE, 1982.

[8] N. Grumman. RePLACE. http://www.northropgrumman.com/
Capabilities/RePLACE/Pages/default.aspx.

[9] N. Grumman. Reverse Engineering for Large Applications. http://www.
northropgrumman.com/Capabilities/RELA/Pages/default.aspx.

[10] W.-M. Hu. Reducing timing channels with fuzzy time. In Research in
Security and Privacy, 1991. Proceedings., 1991 IEEE Computer Society
Symposium on, pages 8–20, 1991.

[11] W.-M. Hu. Lattice scheduling and covert channels. In Proceedings of
the IEEE Symposium on Security and Privacy, 1992.

[12] T. Kim, M. Peinado, and G. Mainar-Ruiz. Stealthmem: system-level
protection against cache-based side channel attacks in the cloud. In
Proceedings of the 21st USENIX conference on Security symposium,
Security’12, pages 11–11, Berkeley, CA, USA, 2012. USENIX Associ-
ation.

[13] P. Kocher, R. Lee, G. McGraw, A. Raghunathan, and S. Ravi. Security
as a new dimension in embedded system design, 2004.

[14] P. C. Kocher. Timing attacks on implementations of diffie-hellman, RSA,
DSS, and other systems. In Advances in Cryptology - CRYPTO ’96, 16th
Annual International Cryptology Conference, Santa Barbara, California,
USA, August 18-22, 1996, Proceedings, volume 1109 of Lecture Notes
in Computer Science, pages 104–113. Springer, 1996.

[15] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage.
Experimental security analysis of a modern automobile. In Security and
Privacy (SP), 2010 IEEE Symposium on, pages 447 –462, may 2010.

[16] M. Lin, L. Xu, L. Yang, X. Qin, N. Zheng, Z. Wu, and M. Qiu.
Static security optimization for real-time systems. IEEE Transactions
on Industrial Informatics, 5(1), Feb. 2009.

[17] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. J. ACM, 20(1):46–61, Jan. 1973.

[18] J. Liu. Real-Time Systems. Prentice Hall, 2000.
[19] S. Mohan, S. Bak, E. Betti, H. Yun, L. Sha, and M. Caccamo. S3A:

Secure system simplex architecture for enhanced security and robustness
of cyber-physical systems. In ACM Conference on High Confidence
Networked Systems, 2013.

[20] M.-Y. Nam, R. Pellizzoni, L. Sha, and R. Bradford. Asiist: Application
specific i/o integration support tool for real-time bus architecture de-
signs. In Engineering of Complex Computer Systems, 2009 14th IEEE
International Conference on, pages 11 –22, june 2009.

[21] C. Percival. Cache missing for fun and profit. In Proceedings of BSDCan,
2005.

[22] R. Rajkumar, L. Sha, and J. Lehoczky. Real-time synchronization
protocols for multiprocessors. In IEEE Real-Time Systems Symposium,
pages 259–269, Dec. 1988.

[23] D. Reinhardt. Certification criteria for emulation technology in the
australian defence force military avionics context. In Proceedings of the
Eleventh Australian Workshop on Safety Critical Systems and Software
- Volume 69, SCS ’06, pages 79–92, Darlinghurst, Australia, Australia,
2006. Australian Computer Society, Inc.

[24] K. Sampigethaya, R. Poovendran, and L. Bushnell. Secure Operation,
Control, and Maintenance of Future E-Enabled Airplanes. Proceedings
of the IEEE, 96(12):1992–2007, Dec. 2008.

[25] D. Shepard, J. Bhatti, and T. Humphreys. Drone hack: Spoofing attack
demonstration on a civilian unmanned aerial vehicle. GPS World, August
2012.

[26] W. Shi, H.-H. S. Lee, L. ‘Falk, and M. Ghosh. An integrated framework
for dependable and revivable architectures using multicore processors. In
Proceedings of the 33rd annual international symposium on Computer
Architecture, ISCA ’06, pages 102–113, 2006.

[27] J. Son and J. Alves-Foss. Covert timing channel analysis of rate
monotonic real-time scheduling algorithm in mls systems. In Information
Assurance Workshop, 2006 IEEE, pages 361–368, 2006.

[28] S. Son. Supporting timeliness and security in real-time database systems.
In Real-Time Systems, 1997. Proceedings., Ninth Euromicro Workshop
on, pages 266–273, 1997.

[29] S. Son, C. Chaney, and N. Thomlinson. Partial security policies to
support timeliness in secure real-time databases. In Security and Privacy,
1998. Proceedings. 1998 IEEE Symposium on, pages 136–147, 1998.

[30] S. Son, R. Mukkamala, and R. David. Integrating security and real-
time requirements using covert channel capacity. Knowledge and Data
Engineering, IEEE Transactions on, 12(6):865 –879, nov/dec 2000.

[31] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program
execution via dynamic information flow tracking. In Proceedings of the
11th international conference on Architectural support for programming
languages and operating systems, ASPLOS-XI, pages 85–96, 2004.

[32] H. Teso. Aicraft hacking. In Fourth Annual HITB Security Conference
in Europe, 2013.

[33] M. Völp, B. Engel, C.-J. Hamann, and H. Härtig. On confidentiality
preserving real-time locking protocols. In IEEE Real-Time Embedded
Technology and Applications Symposium, 2013.

[34] M. Völp, C.-J. Hamann, and H. Härtig. Avoiding timing channels in
fixed-priority schedulers. In ACM Symposium on Information, Computer
and Communication Security, pages 44–55, New York, NY, USA, 2008.
ACM.

[35] T. Xie and X. Qin. Improving security for periodic tasks in embedded
systems through scheduling. ACM Trans. Embed. Comput. Syst., 6(3),
July 2007.

[36] P. M. Yomsi and Y. Sorel. Extending rate monotonic analysis with exact
cost of preemptions for hard real-time systems. In Euromicro Conference
on Real-Time Systems (ECRTS), 2007 19th IEEE, pages 280–290, 2007.

[37] M.-K. Yoon, S. Mohan, J. Choi, J.-E. Kim, and L. Sha. SecureCore: A
multicore based intrusion detection architecture for real-time embedded
systems. In IEEE Real-Time Embedded Technology and Applications
Symposium, 2013.

[38] C. Zimmer, B. Bhatt, F. Mueller, and S. Mohan. Time-based intrusion
detection in cyber-physical systems. In International Conference on
Cyber-Physical Systems, 2010.

