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ABSTRACT

The recently discovered ‘W32.Stuxnet’ worm has drastically
changed the perception that systems managing critical infrastruc-
ture are invulnerable to software security attacks. Here we present
an architecture that enhances the security of safety-critical cyber-
physical systems despite the presence of such malware. Our ar-
chitecture uses the property that control systems have deterministic
(real-time) execution behavior to detect an intrusion within 0.6 s
while still guaranteeing the safety of the plant. We also show that
even if an attacker is successful (or gains access to the operating
system’s administrative privileges), the overall state of the physical
system still remains safe.

Categories and Subject Descriptors

D.4.7 [Operating Systems]: Organization and Design—Real-Time
Systems and Operating Systems; Cyber-Physical Systems; Safety-
Critical Systems; D.4.6 [Operating Systems]: Security and Pro-
tection—Intrusion Detection
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1. INTRODUCTION

Many systems that have safety-critical requirements such as
power plants, industry automation systems, automobiles, efc. can
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be classified as cyber-physical systems (CPS) — i.e. a tight com-
bination of, and co-ordination between, computational and physi-
cal components. These systems (or parts of them) have stringent
safety requirements and require deterministic operational guaran-
tees (including real-time properties). Such systems have also tra-
ditionally been considered to be extremely secure since they (a)
are typically not connected to the Internet; (b) use specialized pro-
tocols and proprietary interfaces (‘security through obscurity’) (c)
are physically inaccessible to the outside world and (d) typically
have their control code executing on custom hardware such as spe-
cialized processors or programmable logic controllers (PLCs). This
misconception of ironclad security, however, has recently been ex-
posed when the ‘W32.Stuxner’ worm ! targeted and successfully in-
filtrated a Siemens WinCC/PCS7 control system [7]. Not only did
it bypass all the security (digital/physical) techniques but it also re-
programmed the PLC that controlled the main system and caused
physical damage to the system.

In this paper, we specifically address the problem of security
for physical control systems with real-time requirements. Com-
pared to general-purpose techniques, our work is different in that
we focus on domain-specific characteristics of these systems and
in particular, their deterministic real-time nature. We introduce a
system architecture where an isolated and trusted hardware compo-
nent is leveraged to enhance the security of the complete system.
We present a novel intrusion detection mechanism that monitors
context-specific side channels on the main CPU and in our initial
prototype we use the deterministic execution profile of the system
for this purpose’.

Hence, we present the Secure System Simplex Architecture (S3A)
to improve the security of cyber-physical systems that uses a com-
bination of (i) knowledge of high-level control flow (ii) a secure
co-processor implemented on an FPGA? (iii) deterministic execu-
tion time profiles and (iv) System Simplex [2,21]. S3A detects
intrusions that modify execution times by as low a value as 0.6y
on our test control system. With S3A, we expand the definition of
‘correct system state’ to include not just the physical state of the
plant but also the cyber state, i.e. the state of the computer/PLC
that executes the controller code. This type of security is hard for

"henceforth referred to as just ‘Stuxnet’
>We elaborate on other potential side-channels in Sections 5.3 and
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an attacker to overcome by reverse engineering the code or the sys-
tem especially since it involves absolutely no changes to the source
code/binary. Even if an infection occurs and all of the security
mechanisms are side-stepped (such as gaining access to the admin-
istrative privileges or the replication of our benevolent side chan-
nels), the trusted hardware component (secure co-processor) and
the robust Simplex mechanism will still prevent the physical system
from coming to harm, even from threats such as Stuxnet. Sections
4 and 5 present the details about our solution.

It is important to note that S3A is a system-level solution that in-
tegrates multiple different solutions to achieve security and safety
in this domain. While we picked some mechanisms (execution
time, Simplex, etc.), other concepts (Section 8) can be integrated
to make the system that more secure and robust.

As the main contribution of this paper, we present the Secure
System Simplex Architecture (S3A) where,

1. A trusted hardware component provides oversight over an un-
trusted real-time embedded control platform. The design pro-
vides a guarantee of plant safety in the event of successful in-
fections. Even if an attacker gains administrative/root privileges
she cannot inflict much harm since S3A ensures that the overall
system (especially the physical plant) will not be damaged.

2. We investigate and use context-dependent side channels for
intrusion detection, monitored by the trusted hardware com-
ponent. They qualitatively increase the difficulty faced by po-
tential attackers. Typically side-channel communication is used
to break security techniques but we use them to our advantage
in S3A. In this paper, we focus on side-channels in the context
of CPU-controlled real-time embedded control systems as ex-
plained in Section 5.

3. We build and evaluate an S3A prototype for an inverted pendu-
lum plant and discuss implementation efforts and the construc-
tion of side channel detection mechanism for execution time-
based side channels using and FPGA in the role of the trusted
hardware component. The side channel approach is shown to
detect intrusions significantly faster than earlier plant-state-only
detection approaches. This is explained in Section 5.4.

Further information on background, threat models, efc. is provided
in Sections 2, 3 and Section 4

While intrusion detection is a broad area in computer security,
our approach takes advantage of the real-time properties specific to
embedded control systems. Also, most of the existing side-channel
techniques/information (timing, memory, efc.) have traditionally
been used to break the security of systems. This paper proposes
a method so that these pieces of information are now used for in-
creasing the security of the system. Also, such techniques have not
been used before with the perspective of safety-critical control sys-
tems — hence we believe that this paper’s contributions are novel.

We believe that our approach is generalizable to PLC and
microcontroller-based CPS. Our justification is twofold; such sys-
tems (i) have stringent requirements for correct operation, i.e. the
physical state of the plant must be kept safe under all conditions
and (i) often require the controller process to be deterministic.

Assumptions:

Important assumptions for the work presented in this paper are: (a)
the system consists of a set of periodic, real-time tasks with strin-
gent timing and deadline constraints managed by a real-time sched-
uler; such systems typically do not exhibit complex control flow, do
not use dynamically allocated data structures, do not contain loops
with unknown upper bounds, don’t use function pointers, efc. — in

fact, they are often designed/developed with simplicity and deter-
minism in mind (b) the hardware component must be trusted and
can only be accessed by authorized personnel/engineers — this is
not unlike the RSA encryption mechanism where the person hold-
ing the private key must be trusted (c) while we use an FPGA for
a prototype implementation, the final hardware component could
be implemented on an ASIC or custom processor or even an FPGA
with its programmability turned off to prevent further tampering (d)
the systems we describe are rarely updated and definitely not in a
remote fashion (unlike, say, mobile embedded devices)*.

Note: Our techniques are not specific to attacks mentioned in
this paper (especially those in Section 2) and tackles the broader
class of security breaches of controllers in safety-critical CPS.

2. MOTIVATION

Many control systems attached to critical infrastructure have tra-
ditionally been assumed to be extremely secure. The chief con-
cern in such systems is safety, i.e. to ensure that the plant’s oper-
ations remain within a predefined safety envelope. “Security” was
attained by restricting access to such systems — no connection to
the Internet and only a few people could access the computers that
controlled these systems. Also, parts (or even all) of the control
code executed on dedicated hardware (PLCs for instance).

2.1 Stuxnet

The W32.Stuxnet worm attack [7] overturned all of the above as-
sumptions. It showed that industrial control systems could now be
targeted by malicious code and that not even hardware-based con-
trollers were safe. Stuxnet employed a really sophisticated attack
mechanism that took control of the industrial automation system
executing on a PLC. It took control of the system and operated it
according to the attacker’s design. It was also able to hide these
changes from the designers/engineers who operate the system. To
achieve these results, Stuxnet utilized a large number of complex
methods the most notable of which was the first known PLC rootkit.
In fact, Stuxnet was present on the infected systems for a long time
before it was detected — perhaps even a few months. In this section
we will focus on the real target of Stuxnet — the control code that
manages the plants and the implications of such an attack.

Stuxnet had the ability to (a) monitor blocks that were exchanged
between the PLC and computer, () infect the PLC by replacing le-
gitimate blocks with infected ones and (c) hide the infection from
designers. The PLCs are used to communicate with and control
‘frequency converter drives’ that manage the frequency of a variety
of motors. The malicious code in the infected PLC affects the oper-
ational frequency of these motors so that they now operate outside
their safety ranges. E.g., in one instance, the frequency of a motor
was set to 1410 Hz, then 2 Hz and then to 1604 Hz and the se-
quence is repeated — the normal operating frequency for this motor
is between 807 Hz and 1210 Hz. Hence, in this instance, Stuxnet’s
actions can result in real physical harm to the system.

Note: Our focus is not on preventing the original intrusion or
providing mechanisms to safeguard the Windows machines that are
infected. We intend to detect the infection of the control code (on
a PLC in this example, but could be any computer that runs it) and
mainly safeguard the physical system from coming to harm.

2.2 Automotive Attack Surfaces and Other
Examples

Researchers from the University of Washington demonstrated
how a modern automobile’s safety can be compromised by ma-

4See Section 4 for details.



licious attackers [4, 13]. They show how an attacker is able to
circumvent the rudimentary security protections in modern auto-
mobiles and infiltrate virtually any electronic control unit (ECU) in
the vehicle and compromise safety-critical systems (that have strin-
gent real-time properties) such as disabling the brakes, stopping the
engine, selectively braking individual wheels on demand, ezc. —all
of this, while ignoring the driver’s inputs/actions. They were able
to achieve this due to the vulnerabilities in the CAN bus protocols
used in many modern vehicles. The attackers also show how ma-
licious code can be embedded within the car’s telematics unit that
will completely erase itself after causing the crash.

There have been numerous other attacks that infiltrated criti-
cal systems e.g. wastewater treatment plants [1], NRG generation
plants [17], medical devices [14], etc.

2.3 Discussion

As these examples show, safety-critical systems can no longer be
considered to be safe from security breaches. While the develop-
ment of cyber security techniques can help alleviate such problems,
the real concern is for the control systems and physical plants that
can be seriously damaged — often resulting in the crippling of crit-
ical infrastructure. Hence, we propose non-traditional intrusion
detection and recovery mechanisms to tackle such problems. We
use to our advantage the fact that the control codes running in a
real-time system tend to be deterministic in behavior, simple to im-
plement and exhibit strict timing properties. In fact, our techniques,
if used on the above systems, could have gone a long way in miti-
gating (or at least quickly detecting) the attacks.

For the rest of this paper, we will show how such intrusions can
be detected and the harmful effects mitigated by use of our Secure
System Simplex Architecture (S3A). Hence, our aim is to identify,
as quickly as possible, that an infection has taken place and then
ensure that the system (and its physical components) are always
safe. Note: as stated in the introduction, our work does not aim
to prevent the original infections since that is a large problem that
requires the development and implementation of multiple levels of
cyber security techniques/research. We focus on the aftermath of
the infection of control codes.

3. THREAT MODEL

We deliberately will not delve too deeply into specific threat
models, since we believe that our techniques will work well for
a broad class of attacks that modify the execution behavior of em-
bedded code in safety-critical systems. Attacks similar to those in
Section 2 can be caught by the mechanisms presented in this paper.
Hence, code could be injected by any of the mechanisms described
in that section — as long as the malicious entity tries to execute any
new code on the control side, we will be able to detect it. Hence,
our threat model [12] is quite broad and can detect attacks such
as: (a) physical attacks, 1.e. code injected via infected/malicious
hardware; (b) memory attacks where attackers try to inject mali-
cious code into the system and/or take over existing code; (c¢) in-
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Figure 1: Simplex Architecture

sider attacks where the attackers try to gain control of the applica-
tion/system by altering all or part of the program at runtime.

We will, instead, focus on what happens after attackers perform
any of the above actions in order to execute their code. Hence, we
intend to show how our architecture is able to quickly detect this
and keep the system(s) safe particularly the physical systems. Since
we don’t care much about what executes and are more concerned
with how long something executes, our “malicious entity” is a little
more abstract as explained later in Sections 5.4.4 and 6.2.

4. SYSTEM SIMPLEX OVERVIEW

The Simplex Architecture [21] utilizes the idea of using simplic-
ity to control complexity in order to safely use an untrusted subsys-
tem in a safety-critical control system. A Simplex system, shown
in Figure 1, consists of three main components: (a) under nor-
mal operating conditions the Complex Controller actuates
the plant; this controller has high performance characteristics and
is typically unverifiable due to its complexity; (b) if, during this
process, the system state becomes in danger of violating a safety
condition, the Safety Controller takes over; (c¢) the exact
switching behavior is implemented withinaDecision Module.
The Simplex architecture has been used to improve the safety of
remote-controlled cars [5], pacemakers [2] and advanced avionics
systems [19]. Early Simplex designs had all three subsystems lo-
cated in software — at the application-level. This was updated in
System-Level Simplex [2] by performing hardware/software parti-
tioning on the system where the safety controller and the decision
module are moved to a dedicated processing unit (an FPGA) that
is different from the the microprocessor running the complex con-
troller. We leverage this partitioning technique in S3A.

Untrusted Controllers: It is not that designers wish to use un-
verified (or untrusted) controllers in such systems. Most controllers
that are intended to manage anything but the simplest of systems are
typically complex and hard to verify. This is especially true if they
must also achieve high levels of performance. Hence, there could
be bugs and/or potential vulnerabilities in the system that attackers
could exploit. Even if we assume that the controller is completely
trusted, it can still be compromised (case in point — Stuxnet re-
programmed the controller in the PLC). Our technique can protect
against any such intrusion, be it in trusted or untrusted controllers.

System Upgrades: Another issue is what happens if the sys-
tem must be updated and that process either (a) breaks the safety
and timing properties of the system or (b) introduces malicious
code. This is particularly important if such updates were to hap-
pen in a remote fashion. While these would be serious issues in
most general-purpose or even mobile embedded systems (e.g. cell
phones), it is not a problem for safety-critical systems since the
Simplex architecture has been shown to support upgrades to the
complex controllers [20] in a safe manner. Also such systems are
rarely updated, if at all. Any potential updates will have the follow-
ing properties: (/) they are never performed remotely and carried
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out by trusted engineers; (2) most updates are minor in that they
only tune certain parameters and rarely, if at all, modify the con-
trol/timing structure of the code — hence they will not even modify
the safety properties of the system and (3) major changes, if any,
will require extensive redesign, testing, efc. — hence the real-time
properties of the system must then be re-analyzed anyways.
Discussion: Our application of Simplex in S3A, in this pa-
per, has several significant differences compared with earlier ap-
proaches. In the past, the primary motivation to use Simplex was
to aid in the verification of complex systems. In this work, we in-
stead apply Simplex to protect against malware that has infected
the complex controller. Another key difference is that previously
the decision module’s behavior was determined completely by the
physical state of the plant. In this work, we widen the scope of
the “correct state” by using side channels from the computational
part of the system, such as the timing properties of executing real-
time tasks, in order to determine when to perform the switching.
The Simplex decision module is now monitoring both, the physical
system as well as the cyber state of the computational system.

5. INTEGRATED FRAMEWORK FOR SE-
CURITY: SECURE SYSTEM SIMPLEX
ARCHITECTURE (S3A)

We now present the Secure System Simplex Architecture (S3A)
that prevents damage to safety-critical systems and also aids in
rapid detection of malicious intrusions through side-channel moni-
toring. We first elaborate on the high-level logical framework of the
architecture. We then discuss aspects of the execution time-based
side channels that we have implemented in our S3A prototype and
then follow it up with details on how to implement such a system
— from the hardware aspects to the OS modifications; from the tim-
ing measurements to the control system that we use to show the
effectiveness of our approach.

5.1 High Level Architecture

Figure 2 provides a high level overview of the system architec-
ture. There is a Complex Controller that computes the con-
trol logic under normal operations. The computed actuation com-
mand is sent to the plant and sensor readings are produced and
given to the controller to enable feedback control. There is also
a Decision Module and Safety Controller in this ar-
chitecture that are used not only to prevent damage to the plant in
case of controller code bugs (as with the traditional Simplex ap-
plications) but also to prevent plant damage in the case of mali-
cious actuation from attackers. We also have a Side Channel
Monitor that examines the execution of the complex controller
for changes in ‘expected’ behavior (in this paper it monitors the
execution time of the complex controller to see if there is any de-
viation from what is expected). If the information obtained via the
side channels differs from the expected model(s) of the system, the
decision module is informed and control is switched to the safety
controller (and an alarm can be raised). The types of side channels
we can consider in a CPU-based embedded system include the ex-
ecution time profiles of tasks, the number of instructions executed,
the memory footprint and usage pattern or even the external com-
munication pattern of the task. We will discuss timing side chan-
nels in more detail in the Section 5.2 and elaborate on the viability
of the others in Sections 5.3 and 9.

This approach is qualitatively more difficult to attack than a typ-
ical control system. An attacker not only has to compromise the
main system, but she also has to replicate all side channels that are
currently being monitored. If the execution time is being monitored

then the attacker must replicate the timing profile of a correctly-
functioning system. If the cycle count is being observed, her code
must also execute for a believable number of instructions. Even if
all the side channels match the expected models, the Decision Mod-
ule will still monitor the plant state and, when malicious actuation
occurs, prevent system damage.

The effectiveness of the side channel early-detection methodol-
ogy depends on two factors. First, the constructed model of each
side channel should restrict valid system behavior (not easily repli-
cable). Second, the side channel itself must be secure (not easily
forgeable). These factors are implementation specific and will be
discussed later in Section 5.4.

5.2 Timing Side Channels

In this paper, we intend to secure a real-time embedded system.
Therefore, we assume that the system has typical real-time char-
acteristics, i.e. the system is divided into a set of periodic tasks
managed by a real-time scheduler. Each task has a known execu-
tion time and each task periodically activates a job.

The monitoring module maintains a precise timing model of the
system. Violations of this model occur when a job’s, (i) execution
time is too large; (ii) execution time is too small; (iii) activation
period is too large or (iv) activation period is too small.

The monitoring module also needs to examine the execution of
the idle task. This prevents a malicious attacker from allowing the
real-time task to execute normally and perform malicious activity
during idle time. Finally, the monitoring module should monitor
the system activities that may result in timing perturbations.

In our prototype, we monitor the control task and the idle task.
For rapid prototype development, we eliminate system noise (dis-
able interrupts) while our control task is running to obtain a pre-
dictable timing environment” rather than patching system interrupts
in order to receive their timing information. In an actual real-time
system interrupts would be predictable and scheduled determinis-
tically — hence we would be able to monitor them as well as the
tasks. This addition could be made to our prototype in the future.

Execution times of the various real-time tasks in such systems
are anyways obtained as part of system design by a variety of meth-
ods [22]. There is no extra effort that we have to perform to obtain
this information. The worst-case, best-case and average-case be-
havior for most real-time systems is calculated ahead of time to en-
sure that all resource and schedulability requirements will be met
during system operation. We use this knowledge of execution pro-
files to our advantage in S3A.

5.3 Otlher Potential Time-based Side Chan-
nels

In the assumed context of predictable real-time embedded con-
trol systems, several other side channels are available as part of the
cyber state such as fask activation periodicity, memory footprint,
bus access times and durations, scheduler events, etc.. Each of
these is a candidate for benevolent side-channels that can be mon-
itored to detect infections and would have to be individually repli-
cated by an attacker to maintain control in an infected system, thus
qualitatively increasing the difficulty for such actions.

Additionally, the specific side channels used may vary depending
on the type of system. Here, we focus on CPU-based real-time
control systems. Other systems, e.g. PLC-based ones, would likely
need to either monitor the side channels using different methods or
utilize a completely different (or additional) sets of side channels.

Details in Section 5.4.5.



5.4 Implementation

We now describe a prototype implementation of S3A that we
have created. The technical details of the prototype are listed in
Table 1. We elaborate on key aspects of our implementation in de-
tail: first, a hardware component overview is provided in Section
5.4.1. Then, the inverted pendulum hardware (our example ‘safety-
critical control system’) setup is described in Section 5.4.2. The
methodology for timing measurements of the control code is de-
scribed in Section 5.4.3 and the methodology for timing-variability
(‘malicious code’) tests is presented in Section 5.4.4. Section 5.4.5
gives essential details about the operating system setup during the
measurements. Finally, Section 5.4.6 describes the specific design
of the Decision Module and the timing Side Channel Monitor.

| Component | Details |
Inverted Pendulum Quanser IPO1
FPGA Xilinx ML505
Computer with Controller | Intel Quad core 2.6 GHz
Operating System Linux kernel ver. 2.6.36
Timing Profile Intel Timestamp
Counter (rdtsc)

Table 1: S3A Prototype Implementation Details

5.4.1 Hardware Components

A high-level hardware design of our prototype is shown in Figure
3. The prototype hardware instantiates the logical Secure System
Simplex architecture previously described in Section 5 and shown
in Figure 2. In our implementation, we run the complex controller
on the main CPU. The Complex Controller communicates with a
trusted hardware component, an FPGA in this case, to perform con-
trol of an inverted pendulum. Sensor readings are obtained by the
FPGA over the PCle bus using memory mapped I/O. The actua-
tion command, in turn, is written to the memory-mapped region on
the FPGA. Additionally, timing messages in the form of memory-
mapped writes are periodically sent to the FPGA based on the state
of execution (at the start/end of the control task and periodically
during the Idle Task). This creates a timing side channel that can
be observed by a timing channel monitor running on the FPGA. On
the FPGA side, the timing channel monitor will measure the time
elapsed between timing messages from the complex controller to
ensure that the execution conforms to an expected timing model.
The decision module will periodically examine the output of the
Timing Channel Monitor, the actuation command from sent by the
Complex Controller from shared memory on the FPGA, the actu-
ation command from the locally-running safety controller and the
state of the plant from a ‘sensor and actuator interface’ and decide
which controller’s actuation command should be used — the com-
plex one on the CPU or the safe one on the FPGA. The actuation
command is then output back to the Sensor and Actuator Interface.

Main CPU Decision Safety FPGA\
Module Controller
< SoC Bus >
‘ Complex Idle ‘ Shared ghimi"gl S:n:ortand
Controller Task anne ctuator
\ Mmoo Monitor Interface

;':_:"- Actuator Volts ._‘:A"‘.’:'
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Figure 3: S3A Implementation Overview

The interface then, through a digital-to-analog converter, actuates
the plant — in our case, an inverted pendulum. The Sensor and Ac-
tuator Interface also periodically acquires sensor readings through
analog-to-digital converters and write their values to both shared
memory accessible by the Complex Controller and to memory ac-
cessible by the trusted Decision Module and Safety Controller.

5.4.2 Inverted Pendulum

We used an inverted pendulum (IP) as the plant that was being
controlled. An IP (e.g. Figure 4) is a classic real-time control
challenge where a rod must be maintained in an upright position
by moving a cart attached to the bottom of the IP along a one-
dimensional track. It has two sensors (to measure the current pen-
dulum angle and the cart position on the track) and one actuator
(the motor near the base of the pendulum) used to move the cart.
Two safety invariants must be met: (/) the pendulum must remain
upright (can not fall over) and (2) the cart must remain near the
center of the track. The specific inverted pendulum we used in our
testbed was based on the Quanser IPO1 linear control challenge [9].

Our setup varies slightly from an off-the-shelf Quanser IPO1 as
follows: we need to directly connect the sensors and actuators to
the FPGA; the prebuilt setup requires a computer to do the data
acquisition. We modified the system to redirect the sensor values
and motor commands through an Arduino Uno microcontroller that
communicates directly with the S3A FPGA through a serial cable.
Although this may introduce latency into the system, we did not
observe any issues with safely actuating the pendulum due to this
small delay. The control code that manages the IP executes on a
computer (Section 5.4.5 and Table 1) at a frequency of 50 Hz.

Note: The IP has been used quite extensively in literature as an
appropriate example of a real-time control system [2,21]. Hence we
believe it demonstrates an early prototype (and proof-of-concept)
of our solutions. We are currently working on applying these tech-
niques to other real control systems in conjunction with industry.

5.4.3 Timing

The implementation of the complex controller for the inverted
pendulum is fairly simple with very few branches and most loops
being statically decidable®. Hence it is fairly easy to calculate the
execution time and number of instructions taken for such code. In
our framework, we utilized simple dynamic timing analysis [22]
methods to obtain an execution profile of the code. We used the
Intel time stamp counter (rdtsc) [10] to obtain high resolution
execution time measurements for the control code.

The control code was placed in a separate function and called
in a loop. As part of our experiments, the loop was executed
1, 10,100, 1, 000, 10, 000, 100, 000 and 1,000,000 times on the
actual computer where it would execute and measuring each set of
executions. During each of these scenarios, the total time of the
loop as well as the times taken up during each individual iteration

®This is typical of most control code in safety-critical and real-time
control systems — hence our implementation of the controller for
the inverted pendulum is also similar.

Figure 4: An inverted pendulum control system



was measured. From these traces we were able to determine the
maximum (worst-case), minimum (best-case) and steady-case val-
ues for the execution time of the controller code. ‘Steady-case’
refers to the values obtained when the execution time has stabilized
over multiple, repeated executions — i.e. when the initial cold cache
related timing dilation at the start of the experiments no longer oc-
cur. To reduce the noise from instrumentation and overheads of the
loops, function calls, etc. we used the ‘dual-loop timing’ method:
i.e., empty loops with only the measurement instrumentation were
timed as a ‘control’ experiment. The execution times obtained for
these instrumentation-only loops were subtracted from the execu-
tion times for the loops with the control code. While we used sim-
ple measurement-based schemes for obtaining the execution pro-
file in this paper, it does not preclude the use of more sophisticated
techniques [16, 22] to obtain better (and safer) timing estimates.
This is especially true if the code is more complex than the one for
the inverted pendulum. In fact, the better the estimation methods,
the better S3A will be able to detect anomalies and intrusions.

Interrupts (all interrupts including inter-processor ones) were
disabled during timing measurements. To reduce the effects of the
operating system and other system issues we isolated our controller
as best as we could as we will describe in Section 5.4.5.

5.4.4 Execution Time Variation

To mimic the effect of code modification on timing, we insert
extra code into the execution of the control loop function described
above. Specifically, the extra code is a loop with a varying upper
bound (i.e. 1,10, 100) that performs multiple arithmetic operations
(floating point and integer). The idea is that the extra instructions
that execute will make it look like an intrusion has taken place. Our
S3A system will then detect the additional execution, raise an alarm
and transfer control to the simple controller on the FPGA.

Note: As mentioned before, we are less interested in what kind
of code executes “maliciously” because our detection does not de-
pend on this detail. We only need to check whether whatever is
executing has modified the timing profile of the system.

5.4.5 System and OS Setup

We used an off-the-shelf multi-core platform running Linux ker-
nel 2.6.36 for our experiments (Table 1). Since we use a COTS
system, there are many potential sources of timing noise such as
cache interference, interrupts, kernel threads and other processes
that must be removed for our measurements to be meaningful. In
this section we describe the configuration we used to best emulate
a typical uni-processor embedded real-time platform.

The CPU we used is an Intel Q6700 chip that has four cores and
each pair of cores shares a common level two (last level) cache. We
divided the four cores into two partitions: 1. the system partition
running on the first pair of cores (sharing one of the two L2 caches)
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Figure 5: FSM for Detecting Timing Model Violations

handles all interrupts for non-critical devices (e.g., the keyboard)
and runs all the operating system activities and non real-time pro-
cesses (e.g., the shell we use to run the experiments); 2. the real-
time partition runs on the second pair of cores (sharing the second
L2 cache). One core in the real-time partition runs our real-time
tasks together with the driver for the trusted FPGA component;
the other core is turned off so that we avoid L2 cache interference
among these two cores.

5.4.6 Detection

In our system, detection of malicious code can occur in one of
two ways. The decision module observes both (i) the physical state
of the plant (by traditional Simplex) as well as (ii) the computation
state of the system (based on timing messages; S3A). A violation
of the physical model or the computational model can trigger the
decision module to transfer control to the safety controller on the
FPGA. Based on a function of the track position and pendulum an-
gle (the physical model), the decision module may choose to switch
over to the safety controller [2,21].

The computational system is monitored for violations of ex-
pected timing model of the system. Both, the control task as well
as the idle task, are monitored in order to periodically send timing
messages to the FPGA that contains an expected timing model of
the system as a finite state machine (FSM) running in hardware.
When timing messages arrive (or timers expire) the FSM advances.
If malicious code were to execute, it would have a limited window
of time to replicate the timing side channel before it was detected
by the decision module.

Generally speaking, monitoring the timing progress of a real-
time system can be performed by maintaining state about each task
in the system. A task has two timers associated with it: (I) the first
would enforce the execution time of the task and (II) the second
will monitor periodic activation of the task. A stack is used to track
task preemptions. Since typical real-time systems use priority-
based execution, all task switches are directly observable by the
FPGA through task start/task end messages.

For our specific prototype, we implemented the finite state ma-
chine (Figure 5), in hardware, on an FPGA. Our system contains
two tasks: (i) the idle task and (ii) the controller task. Since only
one task may be preempted (the idle task), we maintain a single
variable as the call stack, state;. Three timers are used: clk¢
and clkp maintain the execution time and period of the control
task while clk; maintains the execution of the idle task. In Fig-
ure 5, clkc ticks while the control task is running (states C; and
Cz) and clk; ticks while the idle task is executing (states I; and
I2). Clkp always ticks. The FSM is parameterized with six val-
ues: MustWaitc, CanWaitc, MustWait;, CanWait;, MustWaitp,
and CanWaitp. These values are determined by the minimum and
maximum time permitted between timing messages. The Must-
Wait time indicates the minimum time that must elapse, whereas
the CanTime indicates the jitter permitted between different itera-
tions of the loop. Hence, MustWait is the minimum execution time
of the task/idle loop/period whereas (MustWait + CanTime) is the
maximum execution time.

In the FSM, initially the control task is running. State C; is en-
tered and continued in until clk¢ ticks from MustWaitc to 0. Then
state Cy is entered. If clkc ticks from CanWaitc to O without the
end task message then the control task has executed for too long and
a timing violation occurs (indicated by dotted arrow in state Cz).
Once the end control task message is received, the idle task begins
to execute. Under normal operation, the state changes between I;
and I several times, until the control task is reactivated and state
C; is again entered. Any messages that arrive without explicit tran-
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Figure 6: Summary of the Timing Results

sitions in the FSM are interpreted as errors in the prototype and
trigger the decision module to switch to the safety controller. Ad-
ditionally, dotted transitions in the FSM are timing violations that
also trigger the decision module to take corrective action.

The FSM can also be used to tightly track the execution behav-
ior of the code for more sophisticated controllers, e.g. if the code
has many branches, function calls, efc. For instance, when the con-
trol code reaches a branch that affects the overall execution time, a
message can be sent to the FSM about which side of the branch was
taken. The FSM can now use this information to accurately track
the execution of the program for all control constructs in the code.

6. EVALUATION

We now present an evaluation of S3A — Sections 6.1 and 6.2
present timing results obtained by analysis of the controller code —
these values form the profile of the execution behavior used in the
intrusion detection mechanism on the FPGA. Section 6.3 presents
the details of the intrusion detection.

6.1 Timing Results and Execution Profile

Figure 6 presents a high level summary of the timing results used
to obtain the execution profile of the complex controller code (Fig-
ure 2). We used dynamic/run-time timing analysis techniques to
obtain the worst, best and steady state execution times for this code.
The x-axis represents the number of times the controller code was
repeatedly executed: from 1 to 1,000, 000 in steps of 10. The y-
axis represents the execution time in cycles. Each grouping of verti-
cal lines represents the ‘worst-case’, ‘steady-state’ and ‘best-case’
execution times for that experiment. ‘Steady-state’ refers to the
execution time when successive executions of the controller code
resulted in the same execution time — i.e. the situation when the
execution reached a steady state. The ‘worst-case’ numbers in the
graph are usually different from the first few iterations before the
svstem effects (in narticular the cache) have settled down. This is
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Figure 7: Execution Profile (100,000) with FPGA

the reason why there exists a slightly larger difference between the
worst-case and best-case numbers.

Each vertical bar is split into two parts — the lower part shows the
instrumentation overhead for that experiment’, while the top part
represents the timing for the control code only. We also see that the
instrumentation overhead is almost the same across all experiments
— oscillating between 260 and 270 cycles for all experiments.

As seen in the graph, the steady state and best-case values are
very close, not just within the same experiment, but across experi-
ments. The largest difference between the two is 360 cycles for the
n = 100, 000 experiment. This just shows that our assumption that
controller codes in safety-critical systems are simple and have little
variability is valid. This lack of variability is also evident from the
fact that the worst-case execution cycles, across experiments, do
not show much variance. The worst-case values for the last exper-
iment (1, 000, 000) has a slightly higher value of 16, 560 and this
could be due to the initial cold cache and other system effects.

Figure 7 shows the execution profile for one timing experiment
in particular — that of 100, 000 iterations. The x-axis is the itera-
tion number while the y-axis is the number of cycles for each itera-
tion. As this figure shows, the first few iterations take a little longer
(around 17K cycles) and then most of the execution stabilizes to
within a narrow band of:

1,590 cycles = 14,660 — 13,070
i.e. ~0.6 us at 2.67GHz

This band defines the ‘accepted range’ of values that the FPGA
uses to check for intrusions. Any execution that changes the steady
state execution time by more than this narrow range will be caught
by the FPGA. In fact, the FPGA will catch variance in either direc-
tion — i.e. increase/decrease in execution time.

The graph also shows that while the majority of execution times
fall within a small band at the lower end of the above mentioned
range, some values also fall into a narrow band at the top of the
range (i.e. around the 14K value). This narrow band of increased
execution times is due to latent system effects that we were not
able to remove. The main culprit is the last level cache that, in
this architecture, uses a random replacement policy. Hence, every
once in a while a few of our controller’s cache lines are evicted
by periodic kernel threads that we could not disable (since we are
running a COTS operating system) and these iterations take a few
hundred cycles extra (anywhere from 500 — 900) to execute. With
a more predictable cache replacement policy, like the ones used
in hard real-time systems, we would not see this behavior. To
prove this theory we ran the same experiments on a PowerPC with
pseudo-LRU (Last Recently Used) cache replacement policy in its
last level and all the points are clustered into a single band. In fact,

"As explained in Section 5.4.3, we used dual-loop timing tech-
niaues to obtain the overheads due to the instrumentation.
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with LRU, tasks would not evict each other cache’s lines unless the
cache is not big enough to fit them at the same time®

Figure 7 also shows a few sporadic experiments exhibiting much
higher execution times. Again, this is due to system effects and
in particular, contention on the bus when communicating with the
FPGA. The complex controller reads and writes messages to and
from the FPGA to control the pendulum and to send the timing
messages (Section 5.4.1). Many times, when the complex con-
troller is waiting for data from the inverted pendulum that arrives on
the common bus, the incoming messages experience unpredictable
delays. These delays are due to bus contention among the FPGA
and other peripherals sharing the same bus. To prove that the com-
munication with the FPGA was the cause of these effects, we con-
ducted timing experiments where the FPGA was switched off and
all calls to communicate with it (read/write) resulted in null func-
tion calls. Figure 8 shows the results of these experiments for the
100, 000 iterations point. This experiment highlights two important
points: (/) the random spikes at higher values no longer exist, thus
showing that the bus contention due to communication with the
FPGA was the main cause of the spikes; and (2) the same ‘double-
band’ of execution results appears here; interestingly, the gap be-
tween the bands is almost identical to that of Figure 7, thus provid-
ing more evidence to the fact that the cache (and its replacement
policy) is the culprit.

Such issues could be avoided when using actual hard real-time
systems instead of the COTS-based experimental setup that we use
here. In fact, a hard real-time system would use a more predictable
bus, or other techniques [3], that allows designers to bound 1I/O
contention and avoid random spikes.

6.2 Malicious code Execution Results

We introduce “malicious code” by inserting extra instructions
(Section 5.4.4) — i.e. a loop of variable size within the complex
controller code. The upper bounds for the malicious loop are one
of 1,10, 100 — we stopped at the upper limit of 100 since anything
over this value would put the execution of the “infected” control
code over the real-time period of the task. Also, as we will see
soon, even these small additional increases in execution times are
caught by S3A.

Figure 9 shows the execution time (in cycles, on the y-axis) taken
by the code for value of the malicious loop values (x-axis). The
final bar in the graph represents the “base,” i.e. the number of exe-
cution cycles taken up by the controller code without any malicious
loop. As expected, the values for the malicious code increases sig-
nificantly with each increase in the loop bound. Even the smallest
sign of the presence of the malicious loop puts it outside of the
narrow range (0.6ps) explained in Section 6.1. Hence, even this
will be caught by S3A and control will be transferred over to the
simple controller executing on the FPGA. Note: Since we don’t re-

81f this is the case, we just have to account for it, when we compute
the execution time for each task.
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Figure 9: Execution Cycles for Malicious Code execution

ally care what executes as part of malicious code and intend to only
catch variations in execution time, we only mimic the increased
execution time effects by the methods discussed in this section.

6.3 Intrusion Detection

We now describe the evaluation of our timing side channel intru-
sion detection technique. First we describe timing measurements
for obtaining key aspects of our architecture. Then, we demon-
strate the early detection of malicious code execution using the tim-
ing side channel approach (S3A) and compare it with monitoring
the plant state only (vanilla Simplex). The results for the inverted
pendulum are summarized in Table 2.

Our first timing measurement was to obtain the overheads for
sending timing messages to the FPGA. Although the message itself
takes time to propagate through the PCle bus to the FPGA, the CPU
is not stalled during this time. By using the time stamp counter
we measured the overhead on the CPU for sending a single timing
message to be 130 cycles (50 nanoseconds). This time is extremely
small and therefore each process could realistically send multiple
messages during a single iteration of each control loop to reduce
the time an attacker has to replicate the timing side channel. An-
other advantage of having multiple timing messages per iteration
is that if the program contains branches, we could communicate to
the FPGA timing monitor (at run-time) information about which
branch was taken thus allowing for tighter monitoring of the timing
requirements in the timing model FSM.

The second timing measurement was to quantify the jitter of the
timing messages going to the FPGA(through the interconnect). We
recorded the difference between the arrival of the start and end con-
trol iteration timing messages, in the FPGA, over several thousand
iterations of the control loop. The reason for this jitter is twofold:
(a) jitter of the execution time itself (the difference between the
minimum and maximum execution time (Figure 5) and (b) varying
time of message propagation through the PCle bus.

Since our testbed is an off-the-shelf multicore system (with
Linux), processes running concurrently on other cores as well as
other independent bus masters (e.g. peripherals) may cause inter-
ference on the shared interconnect. In a deployed real-time con-
trol system, such noise would not be present or would at least be
bounded. Nonetheless, we measured the typical timing variation

caused by the interconnect to be about 0.6 microseconds, or less
than %th of the iteration time of a single control iteration. The
FPGA timing can now detect an intrusion using the timing-based
side channel within 5.7us and anything that changes the timing by
0.641s would be caught (Table 2). We could add multiple timing
messages in each control iteration (asthe CPU message overhead is
so low) to further reduce the maximum intrusion detection delay.

The control task execution time (Table 2) was obtained from the
execution time measurements in Section 6.1. The values are in
absolute times that were converted from our cycle count measure-
ments. Hence, the 4.6 — —5.7 s value for the ‘Control Task Execu-
tion Time’ is obtained from the (approx.) 13,000 — 14, 000 cycles
that we discussed in Section 6.1 and Figure 7.

Due to the extra jitter caused by the interconnect, the enforced it-
eration time is expectedly larger than the measured control task ex-

| Measured Quantity | Time (us) |
Control Task Exec. Time (single iter) 48-54
Interconnect Extra Jitter ~ 0.6
Enforced Iteration Time 4.6-5.7
Timing Anomaly Detection Time (for IP) 5.7
Vanilla Simplex Anomaly Detection Time 10,000
Timing Message CPU Overhead 0.05

Table 2: Measured Timings during Intrusion Detection



ecution time. The maximum enforced iteration time, 5.7us, is the
maximum time the experimental framework can proceed without
receiving a timing message before the safety controller takes over.
Hence, in the FSM (Figure 5), the runtime value of MustW aitc
is 4.6us, and the runtime value of CanWaitc is about 1.1us
(mustWait; and canW ait; are much lower). Given these num-
bers, the side-channel monitor FSM will detect a missed timing
message within 5.7us, i.e. the detection time reported.

We now compare the early detection of malicious code through
timing side channels with the situation when only the plant state
is being monitored (vanilla Simplex). In the timing side channel
version, as discussed above, the maximum time that can proceed
before without valid timing messages is 5.7us. For vanilla Sim-
plex, we experimentally measured the amount of time needed to
detect an intrusion. After taking control of the system, we tried to
destabilize the pendulum by sending a maximum voltage value in
the direction that would most quickly collapse the pendulum (in or-
der to obtain a lower bound on the detection time when plant state
is monitored alone). For vanilla Simplex, we were able to detect an
intrusion after 5 control iterations, or 100 milliseconds. Hence, the
use of timing side channels enables significantly faster detection
of security vulnerabilities in real-time control systems: over four
orders of magnitude faster than with traditional Simplex.

This test shows that if a smart attacker is able to override all of
our checking mechanisms (say, by gaining root access) then the
physical system will still remain safe if she tries to destabilize it,
since the base Simplex mechanism will kick in and take control.

7. LIMITATIONS

S3A is not meant to be a silver bullet for intrusion detection in
embedded control systems and does have some practical restric-
tions that may limit its applicability. First, to use S3A in a real sys-
tem, the latter needs to be designed with the architecture in mind.
While this is a limitation for some existing systems, we think that
future architectures could provision for such techniques since it is
never a bad idea to consider security while designing a new system.

One concern is making sure that an attacker cannot easily repli-
cate our side channels. This could be overcome with minor modifi-
cations to the processor architecture or, in our prototype, allowing
the FPGA to directly access the instruction count without explicit
communication from the CPU.

Additionally, for each side channel, a model of the correct be-
havior must be created that restricts a malicious program. For the
timing side channel, one problem could be that the execution times
may have too much variability. While this is possible in general
purpose systems, it is not very likely in real-time systems. Even so,
this could be overcome at runtime by having each timing-behavior-
modifying branch point send information to the FPGA indicating
what path was taken, resulting in tight bounds on execution time.
The construction and tuning of the timing parameters of the state
machine is currently a manual process. We believe this could even-
tually become an automated step by performing a compile-time
analysis of the control flow graph of the code combined with run-
time analysis to perform precise timing measurements.

The implementation of the FPGA hardware in our framework
must be correct for the system to be secure. This may seem like
we have just moved the problem over to securing the FPGA sys-
tem but this is not the case since: the FPGA and Safety Controller
only need to maintain the safety of the plant. The Complex Con-
troller, on the other hand, can perform useful work with the plant
so any upgrades will be made to the Complex Controller and not
to the FPGA’s safety logic. Of course, we should not permit FPGA
reconfiguration at runtime. One other issue related to the use of

FPGAs floating-point computation units are typically not present
since they use up significant area. The FPGA in our architecture is
used as a rapid prototype of the trusted simplex component. A de-
ployment implementation could use a trusted microcontroller along
with any capabilities (e.g. floating point units) that are needed for
the various components. Also, the FPGA will only host the safety
controller that maintains bare functionality. Hence, it is unlikely
that it will need to perform fancy floating point calculations.

The original Simplex only protects systems from properties that
are known to result in unsafe states. E.g. in Stuxnet, the malicious
controller would actuate the plant motor for periods at very high
frequencies and then for periods at very low frequencies in order to
damage the motors. If the Decision Module was not monitoring this
property, such unsafe actuation would still proceed to the plant.

8. RELATED WORK

Zimmer et. al. [24] use worst-case execution time (WCET) in-
formation to detect intrusions by instrumenting the tasks and sched-
ulers with periodic checks on whether the execution has gone past
expected WCET values. We focus on detecting intrusions in real-
time control systems and ensuring that the plant remains safe even
if the intruder is able to bypass all detection/security mechanisms.
As compared to them, we ensure that the system remains safe even
if an intruder gains root privileges to the system. Our monitoring
is performed by a trusted hardware component, separate from the
main system, thus increasing the robustness of the architecture.

The trusted computing engine (TCE) [11] and the reliability and
security engine (RSE) [12] also use secure co-processors to execute
security-critical code/monitor the access of critical data. We don’t
require the information about what data is critical or even touch the
source code. We detect intrusions by observing the innate charac-
teristics of the program at runtime.

The IBM 4758 secure co-processor could be used to perform
intrusion detection [23]. This work contains a CPU, separate mem-
ory (volatile and non-volatile) along with cryptographic accelera-
tors and comes wrapped in a tamper-responding secure boundary.
While we could adapt this processor for use with our architecture,
the main difference from S3A lies in the fact that we employ the
inherent characteristics of the program to detect intrusions, espe-
cially in the CPS domain; also coupling with the System Simplex
mechanism increases the robustness of the overall system. Flex-
Core [6] uses a reconfigurable fabric to implement monitoring and
book-keeping functions. Compared to FlexCore, we (a) don’t need
to know what types of attacks are taking place (as long as it modi-
fied the execution time behavior of our code) and (b) don’t need to
analyze the program structure/data.

Other related work includes Pioneer [18] (sophisticated check-
sum code and execution time information to establish safe remote
execution on an untrusted computer), TVA [8] (provides guaran-
tees that the software running on a general purpose computer is
intrusion-free in conjunction with a hardware trusted component,
TPM), and PRET [15] (‘precision timed machines’ to detect and
protect against side-channel attacks). Our work is different from
all of these in significant ways, since we don’t touch actual code,
try to protect local control systems with real-time properties and
use side-channels to our benefit.

9. CONCLUSIONS

We presented a new framework, Secure System Simplex Archi-
tecture (S3A), that enhances the security and safety of a real-time
control system. We use a combination of trusted hardware, benevo-
lent side-channels, OS techniques and the intrinsic real-time nature



(and domain-specific characteristics) of such systems to detect in-
trusions and prevent the physical plant from being damaged. We
were able to detect intrusions in the system in less than 6 ps and
changes of less than 0.6 ps — time scales that are extremely hard for
intruders to defeat. We show that even if an attacker is able to by-
pass all security/intrusion detection techniques, the actual plant will
remain safe. Another important characteristic of these techniques
is that there are no modifications required in the source code. We
believe that the novel techniques and architecture presented here
will significantly increase the difficulty faced by would-be attack-
ers thus improving the security and overall safety of such systems.
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