Parametric Timing Analysis and Its Application to
Dynamic Voltage Scaling

SIBIN MOHAN, FRANK MUELLER, North Carolina State University

MICHAEL ROOT, WILLIAM HAWKINS, CHRISTOPHER HEALY, Furman Univer-
sity

DAVID WHALLEY, Florida State University

and EMILIO VIVANCOS, Universidad Politecnica de Valencia

Embedded systems with real-time constraints depend onog-fgnowledge of worst-case execution times
(WCETS) to determine if tasks meet deadlines. Static tinginglysis derives bounds on WCETSs but requires
statically known loop bounds.

This work removes the constraint on known loop bounds thnqoayametric analysis expressing WCETSs as
functions. Tighter WCETSs are dynamically discovered toleitjslack by dynamic voltage scaling (DVS) saving
60%-82% energy over DVS-oblivious techniques and showagngs close to more costly dynamic-priority
DVS algorithms.

Overall, parametric analysis expands the class of rea-tipplications to programs with loop-invariant dy-
namic loop bounds while retaining tight WCET bounds.

Categories and Subject Descriptors: D.4pgrating Systems]: Process Managementseheduling D.4.7 [Op-
erating Systems]: Organization and Design+eal-time systems and embedded systems

General Terms: Algorithms, Experimentation
Additional Key Words and Phrases: Real-Time Systems, \Woase Execution Time, Timing Analysis, Dynamic
\oltage Scaling

This work was conducted at North Carolina State Universityg &lorida State University; it was supported in
part by NSF grants CCR-0208581, CCR-0310860, CCR-03126960072043, CCR-0208892, CCR-0312493
and CCR-0312531.

Author’s address: Sibin Mohan, Frank Mueller, Dept. of Camep Science, Center for Embedded Systems
Research, North Carolina State University, Raleigh, NCI9578534, mueller@cs.ncsu.edu, +1.919.515.7889
Christopher Healy, Michael Root, William Hawkins, Dept.@dmputer Science, Furman University, Greenville,
SC 29613, chris.healy@furman.edu

David Whalley, Dept. of Computer Science, Florida State/@rsity, Tallahassee, FL 32306, whalley@cs.fsu.edu
Emilio Vivancos, Department de Sistemas Informaticos y @otacion, Universidad Politecnica de Valencia,
46022-Valencia, Spain, vivancos@dsic.upv.es

Preliminary versions of this material appeared in LCTESiVancos et al. 2001] and RTSS'05 [Mohan et al.
2005].

Permission to make digital/hard copy of all or part of thisten@l without fee for personal or classroom use
provided that the copies are not made or distributed for poofiommercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appead motice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on seryersto redistribute to lists requires prior specific
permission and/or a fee.

© 20YY ACM 1539-9087/20YY/0200-0001 $5.00

ACM Transactions on Embedded Computing Systems, Vol. V\NNd&Jonth 20YY, Pages 1-31.

1. INTRODUCTION

Real-time and embedded systems are increasingly deploysdfety-critical environ-
ments. Examples include avionics, power plants, autorasfgtc. The software, in gen-
eral, must be validated, which traditionally amounts toaltieg the correctness of the
input/output relation. Many embedded systems also impasad constraints, which, if
violated, may not only render a system non-functional, bay miso result in fallouts dan-
gerous to the environment. Such systems are commonly egfféoras real-time systems,
and they impose timing constraints (termed as deadlinesporputational tasks to ensure
that results are provided on time. Often, approximate tesulpplied on time are preferred
to more precise results that may become availableilateafter the deadlines have passed.
One critical piece of information required by designersedlrtime systems to verify that
tasks meet their deadlines, is the worst-case executien({t’CET) of each task. Bounds
on WCETSs of tasks are automatically determined by statimgranalysis tools. The total
time in the schedule and each task’s WCET can subsequentigdibtto make scheduling
decisions.

Static timing analysis [Puschner and Koza 1989; Harmon.€t%82; Park 1993; Lim
etal. 1994; Healy et al. 1995; Chapman et al. 1996; Li et &61Malik et al. 1997; Healy
et al. 1998; White et al. 1999; Mueller 2000; Hergenhan anseRstiel 2000; Bernat and
Burns 2000; Wegener and Mueller 2001; Chen et al. 2001; Emglelt al. 2001; Engblom
2002; Bernat et al. 2002; Thesing et al. 2003; Mohan et al5Ppfbvides bounds on the
WCET. Thetighterthese bounds relative to the true worst-case times, théayrbee value
of the analysis. Of course, even a tight bound has to baf@ boundn that it must not
underestimate the true WCET; it may only match it or exceddigeneral, timing analysis
is by no means an easy or trivial task. Bounds on executioegiraquire constraints to
be imposed on the tasks (timed code), the most striking othvis the requirement to
statically bound the number of iterations of loops withire task. These loop bounds
address the halting probleme., without these loop bounds, WCET bounds cannot be
derived. The programmer must provide these upper boundsamiterations when they
cannot be inferred by program analysis. Hence, these aligtiixed loop bounds may
present an inconvenience. They also restrict the classagframs that can be used in
real-time systems. This type of timing analysis is refet@@dsnumerictiming analysis
[Harmon et al. 1992; Healy et al. 1995; White et al. 1997; Medlal. 1998; White et al.
1999; Mueller 2000] since it results in a single numeric ealor WCET given the upper
bounds on loop iterations.

The constraint on the known maximum number of loop iteratisnremoved byara-
metrictiming analysis (PTA) [Vivancos et al. 2001]. PTA permitgiahle length loops.
Loops may be bounded by iterations as long aa is known prior to loop entry during
execution. Such a relaxation widens the scope of analyzablgrams considerably and
facilitates code reuse for embedded/real-time applioatio

This paper derives (a) parametric expressions to bound WHiTes of dynamically
bounded loops as polynomial functions. The variables #iffgexecution time, such as a
loop boundn, constitute the formal parameters of such functions, wthieeactual value
of n at execution time is used to evaluate such a function. Thiepturther describes
(b) the application of static timing analysis techniqueslymamic scheduling problems
and (c) assesses the benefits of PTA for dynamic voltagengcdlVS). This work con-
tributes a novel technique that allows PTA to interact witklysnamic scheduler while

ACM Transactions on Embedded Computing Systems, Vol. V,N\NdJonth 20YY.

discovering actual loop bounds, during execution, priotomp entry. At loop entry, a
tighter bound on WCET can be calculated on-the-fly, which gy trigger scheduling
decisions synchronous with the execution of the task. Tinefits of PTA resulting from
this dynamically discovered slack are analyzed. This staekd be utilized in two ways
— (a) execution of additional tasks as a result of admissionsdidhmg, and(b) power
management.

Recently, numerous approaches have been presented tizat D¥'S for both, general-
purpose systems [Weiser et al. 1994; Govil et al. 1995; Begtral. 1995; Grunwald et al.
2000] and for real-time systems [Gruian 2001; Shin et al®@0dlai and Shin 2001; Aydin
et al. 2001; Shin et al. 2001; Aydin et al. 2001; Kang et al.2@hang and Chanson
2002; Saewong and Rajkumar 2003; Lee and Krishna 2003; LduMwok 2003]. Core
voltages of contemporary processors can be reduced whikgrieg execution frequencies.
At these lower execution rates, power is significantly restlj@s power is proportional to
the frequency and to the square of the voltaBex V?2 x f.

In the past, real-time scheduling algorithms have shown $iatic and dynamic slack
may be exploited in inter-task DVS approaches [Gruian 2@bin et al. 2000; Pillai and
Shin 2001; Aydin et al. 2001; Kang et al. 2002; Zhang and Cha2002; Saewong and
Rajkumar 2003; Lee and Krishna 2003; Liu and Mok 2003; Lee @imid 2004; Zhu and
Mueller 2004; 2005; Jejurikar and Gupta 2005; Zhong and X@52@s well as intra-task
DVS algorithms [Mosse et al. 2000; Shin et al. 2001; Aydinle2801; AbouGhazaleh
et al. 2001]. Early task completion and techniques to askegsogress of execution based
on past executions of a task lead to dynamic slack discovery.

We use a novel approach towards dynamic slack discovergk Siia our method, can
be safely predicted for future executidny exploiting early knowledge of parametric loop
bounds. This allows us to tightly bound the remainder of aekea of a task. The po-
tential for dynamic power conservation RaraScale a novel intra-task DVS algorithm,
is assessed. ParaScale allows tasks tsld®sed dowras and when more slack becomes
available. This is in sharp contrast to past real-time D\M&stes, where tasks are sped up
in later stages as they approach their deadline [Gruian ;2084 and Shin 2004; Zhu and
Mueller 2004; 2005; Jejurikar and Gupta 2005; Zhong and X2520

We also implemented a novel enhancement to the static DV&setand incorporated
it with our intra-task slack determination scheme resgliiim significant energy savings.
The energy savings approach those obtained by one of theaggstssive dynamic DVS
algorithms [Pillai and Shin 2001].

The approach is evaluated by implementing PTA in a gcc envilent with a MIPS-like
instruction set. Execution is simulated on a customizedp®&®calar [Burger et al. 1996]
framework that supports multi-tasking. We bound the effgfdnstruction cache misses
but not data cache misses in our experiments. The framevwastbben modified to sup-
port customized schedulers with and without DVS policied an enhanced Wattch power
model [Brooks et al. 2000], which aids in assessing powesgomption. We also imple-
mented a more accurate leakage power model similar to [Rajuet al. 2004] to estimate
the amount of leakage and static power consumed by the mmceshis framework is
used to study the benefits of PTA in the context of ParaScadenasans to exploit DVS.

Our results indicate that ParaScale, applied on a modifiesioreof a static DVS algo-
rithm, provides significant savings by utilizing our pardriteapproach to timing analysis.
These savings are observed for generated dynamic slackoaeitial reduction in overall

ACM Transactions on Embedded Computing Systems, Vol. V,N\NdJonth 20YY.

energy. In fact, the amount of energy saved is very closedbdhtained by the lookahead
EDF-DVS scheme [Pillai and Shin 2001] — a popular, aggressmamicDVS algorithm.
Thus, ParaScale makes it possible for static inter-task B\g8rithms to be used on em-
bedded systems. This helps avoid more cumbersome (anduttiticimplement) DVS
schemes while still achieving similar energy savings. Qapraach utilizes online intra-
task DVS to exploit parametric execution times resultingniach lower power consump-
tions,i.e.,, even without any scheduler-assisted DVS savings. Hewea,ir the absence of
dynamic priority scheduling, significant power savings nb@yachievede.g, in the case
of cyclic executives or fixed-priority policies such as ratenotonic schedulers [Liu and
Layland 1973]. Overall, parametric timing analysis expatite class of applications for
real-time systems to include programs with dynamic loopriasuthat are loop invariant
while retaining tight WCET bounds and uncovering additicstack in the schedule.

The paper is structured as follows. Sections 2 and 3 provifternation on numeric
as well as parametric timing analysis. Section 4 explainsatgon of the parametric
formulae and their integration into the code of tasks. Tleistisn also shows the steps
involved in obtaining accurate WCET analysis for the newhasted code. Section 5
discusses the context in which parametric timing resuksusmed. Section 6 introduces
the simulation framework. Section 7 elaborates on the éxyts and results. Section 8
discusses related work, and Section 9 summarizes the work.

2. NUMERIC TIMING ANALYSIS

Knowledge of worst-case execution times (WCETS) is necg$eamost hard real-time
systems. The WCET must be known or safely bouraediori, so that the feasibility of
scheduling task sets in the system may be determined, gigehealuling policy, such as
rate-monotonic or earliest-deadline-first schedulingifand Layland 1973]. Timing anal-
ysis methods typically fall into two categoriestaticanddynamic It has been shown that
dynamic timing analysis methods, based on trace-drivexpefmental methods, cannot
guarantee the safety of WCET values obtained [Wegener arglldt2001]. Architec-
tural complexities, difficulties in determining worst-eagput sets and the exponential
complexity of performing exhaustive testing over all pb$sinputs are also reasons why
dynamic timing analysis methods are infeasible in general.

In contrast, static timing analysis methods guarantee uppends on WCET of tasks.
In this work, we constrain ourselves to a toolset developeaur previous work [Healy
et al. 1999; Mueller 2000; White et al. 1999; Mohan et al. J0@&atic timing analysis
models the traversal of all possible execution paths in tlteec Execution timing is deter-
mined independent of program traces or input data to progrimbles. The behavior of
architectural components is captured as execution paghtsaarersed. Paths are composed
to form functions, loops, etc. until finally the entire amglfion is covered. Hence, we
obtain a bound on the WCET and the worst-case executionT(IEECS).

The organization of this timing analysis framework is praed in Figure 1. An opti-
mizing compiler is modified to produce control-flow and brareonstraint information,
as a side-effect of the compilation process. Control-floapéus and instruction and data
references are obtained from assembly code. One of thequisites of traditional static
timing analysis is that an upper bound on the number of loeqaiitons be provided to the
system.

The control-flow information is used by a static instructicsche simulator to con-

ACM Transactions on Embedded Computing Systems, Vol. V,N\NdJonth 20YY.

WCET
Estimate

C Control Flow
Source f—— and Constrairy
Files Information

Cache Static Instruction Machine
) . Cache Caching Dependent
Configuration Simulator Categorizationg | Information

Fig. 1. Static Timing Analysis Framework

struct a control-flow graph of the program and caching caiegtions for each instruc-
tion [Mueller 2000]. This control-flow graph consists of thall graph and the control
flow for each function. The control-flow graph of the prograsranalyzed, and a caching
categorization for each instruction and data referenclénprogram is produced using a
data-flow equation framework. Each loop level containingitistruction and data refer-
ences is analyzed to obtain separate categorizationse Taésgorizations for instruction
references are described in Table I. Notice that refereac=sonservatively categorized
as always-misses if static cache analysis cannot safeyliits on one or more references
of a program line.

[Cache Category Definition |

always miss |Instruction may not be in cache when referenged.
always hit | Instruction will be in cache when referenced.

firstmiss |Instruction may not be in cache on 1st reference
for each loop execution, but is in cache on subse-
quent references.
first hit Instruction is in cache on 1st reference for egch
loop execution, but may not be in cache on supse-
quent references.

Table I. Instruction Categories for WCET

The control-flow, the constraint information, the architee-specific information and
caching categorizations are used by the timing analyzeetvel WCET bounds. Effects
of data hazards (load-dependent instruction stalls if aimseediately follows a load in-
struction), structural hazards (instruction dependendiee to constraints on functional
units), and cache misses (obtained from the caching categions) are considered by a
pipeline simulator for each execution path through a fuorctir loop. We can accommo-
date static branch prediction in the WCET analysis by adthiegnisprediction penalty to
the non-predicted path.

Path analysis is then performed to select the longest eévacpath, and once timing
results for alternate paths are available, a fixed-poirdrittgm quickly converges to safely
bound the time for all iterations of a loop. Figure 2 illuségan abstraction of the fix-point
algorithm used to perform loop analysis. The algorithm egpdly selects the longest path
through the loop until a fixed point is reached (i.e., the dagiehavior does not change
and the cycles for the worst-case path remains constanufisesjuent loop iterations).
WCETSs for inner loops are predicted before those for outep$p an inner loop is treated
as a single node for outer loop calculations, and the cofitrelis partitioned if the number
of paths within a loop exceeds a specified limit [Al-Yagou®®Z]. The correctness of this
fixed-point algorithm has been studied in detail [Arnoldletl&94].

ACM Transactions on Embedded Computing Systems, Vol. V,N\NdJonth 20YY.

cycles =iter = 0;
do{
iter = iter + 1,
wcpath = find the longest path;
cycles = cycles + wcpath-cycles;
} while (caching behavior of wecpath changes
&& iter < maxiter);
cycles += (wcpath-cycles * (maxiter - iter));

Fig. 2. Numeric Loop Analysis Algorithm

By composing the WCET bounds for adjacent paths, the WCE®ayd, functions and
the entire task is then derived by the timing analyzer byiestrsal of a timing tree, which
is processed in a bottom up manner. WCETSs for outer loop cadlgf functions are not
evaluated until the times for inner loop nests/callees ateutated.

3. PARAMETRIC TIMING ANALYSIS

In the static timing analysis method presented above, upmands on loop iterations must
be known. They can be provided by the user or may be inferreanayysis of the code.
This severely restricts the class of applications that eaaralyzed by the timing analyzer.
We refer to this class of timing analyzersrasmeric timing analyzersince they provide a
single, numeric cycle value provided that upper loop bowardsknown.

Parametric timing analysis (PTA) [Vivancos et al. 2001]contrast, makes it possible
to support timing predictions when the number of iteratifarsa loop is not known until
run-time.

Consider the example in Figure 3. The for loop denotes agipdin code traditionally
subject to numerical timing analysis for an annotated ujpgEy bound of 1000 iterations.
PTA requires that the value afbe known prior to loop entry. The bold-face code denotes
additional code generated by PTA.

call IntraTaskScheduler (eval _loop_k(n));
for (i=0;i<n;i++)// max n = 1000
loop body ;

/I Parametric Evaluation Function

int eval _loop_k(int loop_bound) {
return (102 * loop_bound);

}

Fig. 3. Use of Parametric Timing Analysis

The concept is to calculate a formula (or closed form) forWW€ET of a loop, such
that the formula depends an the number of iterations of the loop. The calculation of
this formula, [102*n in Figure 3], needs to be relativelyxpensive since it will be used
at run-time to make scheduling decisions. These decisi@ysantail selection/admission
of additional tasks or modulation of the processor freqyémitage to conserve power.
Hence, instead of passing a numeric value representingkdeugon cycles for loops or
functions up the timing tree, a symbolic formula is providiithe number of iterations of
a loop is not known.

The algorithm in Figure 4 is an abstraction of the reviselaoalysis algorithm for
PTA. This algorithm iterates to a fixed poirite., until the caching behavior does not
change. The number of base cycles obtained from this algoris then saved. The

ACM Transactions on Embedded Computing Systems, Vol. V,N\NdJonth 20YY.

cycles =iter = 0;
do{
iter = iter + 1,
wcpath = find the longest path;
cycles = cycles + wcpath-cycles;
} while (caching behavior of wecpath changes);
basecycles = cycles - (wcpath-cycles * iter);
Fig. 4. Parametric Loop Analysis Algorithm

base_cycles denote the extra cycles cumulatively inflicted by initiabjoiterations be-
fore the cycles of the worst-case path reach a fixed painpgth — cycles). The
base cycles are subsequently used to calculate the numbgele$ in a loop as follows:

WCET)oop = wepath — cycles * n + base_cycles (1)

The correctness of this approach follows from the correxgroé numeric timing analysis
[Healy et al. 1999]. When instruction caches are preserfténsiystem, the approach as-
sumes monotonically decreasing WCETS as the cache belwd\ddferent paths through
the loop is considered. This integrates well with our pashtéques on bounding the
worst-case behavior of instruction and data caches [Mu2060; White et al. 1999].

Equation 1 illustrates that the WCET of the loop depends enbidise cycles and the
WCET path time (both constants) as well as on the number @f ii@oations, which will
only be known at run-time for variable-length loops. Theguuially significant savings
from such parametric analysis over the numeric approactillastrated and discussed
later in Figure 7. The algorithm in Figure 4 is an enhancerméitie algorithm presented
in Figure 2. Since the cycles for the worst-case path for tgerdhm in Figure 2 has
been shown to be monotonically decreasing, the worst-caibeqycles for the algorithm
in Figure 4 also monotonically decreases.

If the actual number of iterations (say: 100) exceeds thebmirrof iterations required
to reach the fixed point for calculating the base cycles (5aythen the parametric result
closely approximates that calculated by the numeric tinainglyzer. If, on the other hand,
the actual number of iterations (say: 3) is lower than thedfigeint (say: 5), then there
could be an overestimation due to considering cycles on tapeoWCET path cost (for
iterations 4 and 5). The formulae could be modified to deahwie special case that has
fewer iterationse.g, by early termination of our algorithm if actual bounds ayeér than
the fixed point (future work).

The general constraints on loops that can be analyzed byasametric timing analyzer
are:

(1) Loops must be structured. A structured loop is a loop wiingle entry pointd.k.a
reducible loop) [Aho et al. 1986; Unger and Mueller 2002].

(2) The compiler must be able to generate a symbolic expmessirepresent the number
of loop iterations.

(3) Rectangular loop nests can be handled, as long as thetiodwariables of these
loops are independent of one other.

(4) The value of thectualloop bound must be known prior to entry into the loop

1Other cache modeling techniques or consideration of timimgmalies due to caches [Berg 2006] may require
exhaustive enumeration of all paths and cache effectsmiitte loop or an entirely different algorithm.

ACM Transactions on Embedded Computing Systems, Vol. V,N\Nddonth 20YY.

// induction_variable . strictly monotonically increasing/decreasing value;
/ /loop-invariant_variable : loop invariant relative to all nested loops up to

// outermost parametric loop

induction_operation_value : < constant > || < loop_invariant_variable >
initialization : induction_variable = < induction_operation_value >;

loop : < for,while,do > < termination_condition >
#pragma max(100)
< body >

body : < statement >;

< induction_variable > < op > < induction_operation_value >;
o +=|l-=
condition : < induction_variable >< comparison_op >

< induction_operation_value >

Fig. 5. Syntactic and Semantic specifications for condain analyzable loops.

Syntactic and semantic specifications that suffice to mesethonstraints are presented
in Figure 5. The pragma value is the pessimistic worst-casmt for the number of loop
iterations. Figure 5 is only informative. Actual analysisgerformed on the intermedi-
ate code representation. Hence, we are able to handle draretfons due to compiler
optimizationsg.g, loop unrolling.

The timing analyzer processes inner loops before outersoapd nested inner loops
are represented as single blocks when processing a patk woutler loop. We represent
loops with symbolic formulae (rather than a constant nunalbeycles) when the number
of iterations is not statically known. The WCET for the outmwp is simply the symbolic
sum of the cycles associated with a formula representingtier loop as well as the cycles
associated with the rest of the path.

The analysis becomes more complicated when paths in a lodpin;mested loops with
parametric WCET calculations of their own. Consider theneple depicted in Figure 6,
which contains two loops, where an inner loop (block 4) igee&# the outer loop (blocks
2, 3, 4, 5). Assume that the inner loop is also parametric &ittymbolic number of

©,
()
ONRO
&)
)

(? 6. Example of an outer loop with multiple paths
ACM Transactions on Embedded Computing Systems Vol. V,N\Ndonth 20YY.

iterations. The loop analysis algorithm requires that thrértg analysis finds the longest
path in the outer loop. This obviously depends on the humbéertions of the inner
loop. The minimum number of iterations for a loop is one, asigy that the number of
loop iterations is the number of times that the loop headmp(lentry block) is executed.
If the WCET for path A (2-3—5) is less than the WCET for path B{24—5), for a
single iteration, then path B is chosen, elsmax() function must be used to represent
the parametric WCET of the outer loop. Equation 2 illustsatds idea of calculating the
maximum of the two paths. Note though, that the WCET of thegbgis obtained after
the caching behavior reaches a steady state, and the bédsg agethe extra cycles before
either of these paths reach that steady state. The first paksed to thenax()function in
this example would be numeric, while the second value woaldymbolic.

WCET00p = max(WCETpath_a_time, WCETpath_B_time) * 1 + base_cycles (2)

Similar to numeric timing analysis, certain restrictiortdl @pply. Indirect calls and
unstructured loops (loops with more than one entry pointheé be handled. Recursive
functions can, in theory, be handled if the recursion depthkniown statically or if the
depth can be inferred dynamically prior to the first functuall (via parametric analy-
sig). Upper bounds on the loop iterations, parametric or ndt,rsted not be known but
the bounds can be pessimistic as the actual bounds are nowaveéisd during runtime.
In addition, the timing analysis framework has to be enhdrioeautomatically generate
symbolic expressions reflecting the parametric overhedalopfs, which will be evaluated
at runtime.

Table Il shows the results of predicting execution time gsire two types of techniques.
For these programs we predicted pipeline and instructiche@erformancelormulais

Progranh Formula IterqObserved Cy¢Numeric AnalysisParam. Analysig
| Est. Cyc.|Ratio| Est. Cyc.]|Ratio

Matcnt 160n” + 267n + 857 100, 1,622,034 |1,627,5331.003 1,627,5571.003
Matmul[33n® 4 310n” + 530n + 851|100| 33,725,782 |36,153,8371.07236,153,85[1.072
Stats 1049n + 1959 100 106,340 106,859 |1.005 106,859 [1.005

Table Il. Examples of Parametric Timing Analysis

the formula returned by the parametric timing analyzer aytesents the parametrized
predicted execution time of the program. In order to evatiad¢ accuracy of the parametric
timing analysis approach, we ensure that each loop in tlest@tograms iterates the same
number of times. Thus, n Iters represents the number of keoations for each loop in the
program and n also represents that value in the formulae.pdher of n represents the
loop nesting level and the factor represents the cyclest sppeimat level. Note that most of
the programs had multiple loops at each nesting level. Famge,160n? indicates that
160 cycles is the sum of the cycles that would occur in a siitgtation of all the loops
at nesting level 2 in the program. If the number of iteratiofswo different loops in a
loop nest differ, then the formula would reflect this as a iplittation of these factors. For
instance, if the matrix in Matcnt had m rows and n columns,neme#n, then the formula
would be(160n + 267)m + 857. Parametric timing analysis supports any rectangular
loop nest of independent bounds known prior to loop entryaioing bounds for each
loop in an inner-most-out fashion using the algorithm inUfeg4. An extension could

ACM Transactions on Embedded Computing Systems, Vol. V,N\NdJonth 20YY.

10

handle triangular loops with bounds dependent on outeatibes as well [Healy et al.
2000]. TheObserved Cyclewere obtained by using an integrated pipeline and instracti
cache simulator, and represents the cycles of executi@ngiworst-case input data. The
Numeric Analysisepresents the results using the previous version of thagimnalyzer,
where the number of iterations of each loop is bounded by axeuknown to the timing
analyzer. Parametric Analysisepresents cycles calculated at run-time when the number
of iterations is known and, in this case, equal to the stadigniol. Estimated Cycleand
Ratiorepresent the predicted number of cycles by the timing aealgnd its ratio to the
Observed Cycles. The estimated parametric cycles wer@nelothy evaluating the number
of iterations with the formula returned by the parametmuitig analyzer. These results
indicate that the parametric timing analyzer is almost @sigte as the numeric analyzer.

PTA enhances this code with a call to the intra-task scheduld provides a dynam-
ically calculated, tighter bound on the WCET of the loop. Tighter WCET bound is
calculated by an evaluation function generated by the Paméwork. It performs the
bounds calculation based on the dynamically discovered mmundn. The scheduler
has access to the WCET bound of the loop derived from the atethtstatic loop bound
by static timing analysis. It can now anticipate dynamicklas the difference between
the static and the parametric WCET bounds provided by thiiatian function. Without
parametric timing analysis, the value @fwould have been assumed to be the maximum
value,i.e., 100 in this case.

\9)(\\ . ------------------------
W |
I\
?/)(
| O L
= N
£V
2 @
£ A
S
oW
YN\
% N> | - B -Numeric Cycles_Matmul
5: \QQ“Q V —— Parametric cycles Matmul
\QQQ b = © =Numeric Cycles_Matent
== Parametric cycles_Matcent
N .
\0 A - Numeric Cycles_Stats
W0] A— Parametric cycles_Stats
\ : : :
1 10 100 1000
Iterations

Fig. 7. WCET Bounds as a Function of the Number of Iterations

Figure 7 shows the effect of changing the number of iteratimmloop bounds for para-
metric and numerical WCET analysis. Parametric analysibie to adapt bounds to the
number of loop iterations, thereby more tightly bounding #rtctual number of required
cycles for a task (Table 1l). Hence, it can save a significamiper of cycles compared to
numerical analysis (which must always assume the worst-€asel000 iterations in Fig-
ure 7). This effect becomes more pronounced as the numbetwdlaterations becomes
much smaller than the static bound. In such situations,mpaitéc timing analysis is able
to provide significantly tighter bounds.

ACM Transactions on Embedded Computing Systems, Vol. V,N\NdJonth 20YY.

11

4. CREATION AND TIMING ANALYSIS OF FUNCTIONS THAT EVALUATE
PARAMETRIC EXPRESSIONS

In the previous section, the methodology for deriving WCBLihds from parametric for-
mulae was introduced. In this section, problems in embeagklich formulae in application
code are discussed. An iterative reevaluation of WCETsasiged as a solution.

The challenge of embedding evaluation functions for patdo@rmulae is as follows.
When the code within a task is changed to include paramet@&Wcalculations, previous
timing estimates and the caching behavior of the task migldffected. One may either
inline the code of the formula or invoke a function that ewés the symbolic formula.
Since both approaches affect caching, another pass of eaeihgsis has to be performed
on the modified code. We made an arbitrary design decisionitsue the latter approach.
Using this modular approach, the cache analysis can reagbdydpint in fewer iterations
as changes are constrained to functional boundaries tatreembedded within a function
affecting the caching of any instructions below if the ielthcode changes in size. The cost
of calling an evaluation function is minimal compared to tfemefit, and a subsequent call
to the scheduler is required in any case to benefit from loweanids.

Once a task has been enhanced with these parametric funetimhtheir calls prior to
loops, the timing analyzer must be reinvoked to analyze #welynenhanced code. This
allows us to capture the WCET of generated functions and tacations in the context
of a task. Notice that any re-invocation of the timing analypotentially changes the
parametric formulae and their corresponding functionfighat we have to iterate through
the timing analysis process. This is illustrated in Figusgt&re the process of generating
formulae is presented. The iterative process convergedit@d point when parametric

C Source Fil%

p—
Parametric
Timing Analyzer

C Source File

Annotated with Send Annotated C Source

Parametric Evaluatio File to the Parametric Timing Analyser
Functions

Use Annotated C Source File
for execution on Simulator

Fig. 8. Flow of Parametric Timing Analysis

formulae reach stable states. Typically, the parametmintj analysis and calculation of
the parametric formulae take less than a second to com@gtee this is an offline process,
it does not add to the overhead of the execution of the paraedisystem.

An example is presented in Figure 9, where timing analysescmplished in stages,
as parametric formulae are generated and evaluated latiie Example shown, a function

ACM Transactions on Embedded Computing Systems, Vol. V,N\NdJonth 20YY.

12

Function

Not Yet
Agalyged

Function
Not Yet
Analyzed

Loop 1
Numerically
Analyzed

Function

Not Yet !
Generated |

LDOf 2
Parametrically

Loop 1
Analyzed

Numerically
Analyzed

en Functjon
L°°€ 2 ource c%rie
Not Yet generate

Analyzed

(a) Loop 2 contains a Symbolic number of iterations g;;tlég‘)p 2is analyzed and WCET Function is gen-

unction
Parametrically
nalyze

FNunthion
PR

3
2

Loop 1 Loo]; 2 Gen Function
Loop 1 Loop 2 Gen Function Numerically Parametrically| Numerically
Numerically Parametrically Numerically Analysed Analyzed Analysed

Analyzed

Analyzed Analyze,

A (d) Function containing code calling Generated
(c) Generated Function in Analyzed Function is analvzed

Fig. 9. Example of using Parametric Timing Predictions

is generated by the timing analyzer to calculate the WCETdop 2, whose number of
iterations is only known at run-time.
The following sequence of operations takes place:

(1) A callto a function is inserted that returns the WCET fapeecified loop or function
based on a parameter indicating the number of loop iteratibat is available at run
time. The instructions that are associated with the callthadnes that use the return
value after the call are generated during the initial coatfwh. For instance, in Figure
9(a) a function calls the yet-to-be generated function tmiolkthe WCET of loop 2,
which contains a symbolic number of iterations.

(2) Thetiming analyzer generates the source code for thedctinction in a separate file
when processing the specified loop or function whose timelsiée be calculated at
run time. For instance, Figure 9(c) shows that after loop & Ibeen parametrically
analyzed, the code for the calculating function has beermgéed. Note that the
timing analysis tree representing the loops and functiarthé program is processed
in a bottom-up fashion. The code in the function invokinggkeaerated function is not
evaluated until after the generated function is producée. Static cache simulator can
initially assume that a call to an unknown function invatekathe entire cache. Figure
3 shows an example of the source code for such a generatedibfunc

(3) The generated function is compiled and placed at the éttteaexecutable. The for-
mula representing the symbolic WCET need not be simplifiethkytiming analyzer.
Most optimizing compilers perform constant folding, sigémreduction, and other
optimizations that will automatically simplify the symli@MWCET produced by the
timing analyzer. By placing the generated function after st of the program, in-
struction addresses of the program remain unaffected. a\thé caching behavior
may have changed, loops are unaffected since timing tre@tepsed in a bottom-up
order.

(4) The timing analyzer is invoked again to complete the ysislof the program, which
now includes calculating the WCET of the generated funcéiod the code invoking

ACM Transactions on Embedded Computing Systems, Vol. V,N\NdJonth 20YY.

13

this function. For instance, Figure 9(c) shows that the gged function has been
numerically analyzed and Figure 9(d) shows that the oridinaction has been para-
metrically analyzed, which now includes the numeric WCEGuieed for executing
the new function.

In short, this approach allows for timing analysis to prateestages. Parametric formu-
lae are produced when needed and source code functionseatirg these formulae are
produced, which are also subsequently compiled, insentedhe task code and analyzed.
This process continues until a formula is obtained for theg@program or task.

5. USING PARAMETRIC EXPRESSIONS

In this section, potential benefits of parametric formulaé their evaluation functions are
discussed. A more accurate knowledge of the remaining ¢éxectime provides a sched-
uler with information about additional slack in the schedurhis slack can be utilized in
multiple ways:

—A dynamic admission scheduler can accept additionaltiesd-tasks due to parametric
bounds of the WCET of a task, which become tighter as exatptiogresses.

—Dynamic slack can also be used for dynamic voltage (andiaqy) scaling (DVS) in
order to reduce power.

In the remainder of the paper, the latter case will be detaiRecall that parametric tim-
ing analysis involves the integration of symbolic WCET falae as functions and their
respective evaluation calls into a task’s code. Apart froese inserted function calls, we
also insert calls to transfer control to the DVS componerdarobptional dynamic sched-
ulerbeforeentering parametric loops, as shown in Figure 3. The pamoeedpressions are
evaluated at run-time (using evaluation functions sinibethe one in the figure) as knowl-
edge of actual loops bounds becomes available. The newdyledd, tighter bound, on
the execution time for the parametric loop is passed alonlgg@cheduler. The scheduler
is able to determine newly found dynamic slack by comparingstvcase execution cycles
(WCECSs) for that particular loop with the parametricallyumaled execution time. The
WCECs for each loop and the task as a whole are provided toctiedsler by the static
timing analysis toolset. Static loop bounds for each lo@movided by hand. Automatic
detection of bounds is subject to future work.

Dynamic slack originating from the evaluation of parante#kpressions at run-time is
discovered and can be exploited by the scheduler for adomissiheduling or DVS (see
above). Our work is unique in that we exploit early knowlediparametric loop bounds,
thus allowing us to tightly bound the overall execution af tamainderof the task. To this
effect, we have developed an intra-task DVS algorithm toeloprocessor frequency and
voltage. Another unique aspect of our approach is that esecgessive parametric loop
that is encountered during the execution of the task patiyntrovides more slack and,
hence, allows us to further scale down the processor freguerhis is in sharp contrast
to past real-time schemes where DVS-regulated tasks adeLgpas execution progresses,
mainly due to approaching deadlines.

6. FRAMEWORK

An overview of our experimental framework is depicted in tiigg 10. The instruction
information fed to the timing analyzer is obtained from owedMmpiler, which preprocesses

ACM Transactions on Embedded Computing Systems, Vol. V,N\NdJonth 20YY.

14

gcc-generated PISA assembly. The C source files are alsanfiedt@neously to both the

static and the parametric timing analyzers. Safe (but, dtegt parametric nature of loops,
not necessarily tight) upper bounds for loops are provideéputs to the static timing

analyzer (STA). The worst-case execution times/cyclesakks as well as loops, provided
by the STA are provided as input to a scheduler. The C sours dile also provided to

the PTA. The PTA produces source files annotated with par&swaluation functions as

well as calls to transfer control to the schedWdeforeentry into a parametric loop. These
annotated source files form the task set for execution bydheduler.

Static Worst Case Timing Information

iming Analyze

Gce PISA
Compiler

P-Compiler
for PISA

instruction/
data info

for Loops as well as entire tasks.

C Source File:
& Parametric
Functions

Wattch
Power Mode

Parametric
iming Analyzel

SimpleScalar Simulator

&

Energy/Power Values

Fig. 10. Experimental Framework

To simplify the presentation, Figure 10 omits the loop titexidtes over parametric func-
tions till they reach a fixed point (as discussed in FigureTiis would create a feedback
between the PTA output and the C source files that providenihét to the toolset. For the
sake of this discussion, we also combine the set of timingyaisdools as one component
in Figure 10,i.e., we omit the internal structure of a static cache simulatat #he timing
analyzer depicted in Figure 1.

We have implemented an EDF scheduler that creates an iegalution schedule based
on the pessimistic WCET values provided by the STA. This daler is also capable of
lowering the operating frequency (and, hence, the voltaf&)e processor by way of its
interaction with two DVS schemes: (a) a&ter-taskDVS algorithm, which scales down
the frequency based on the execution of whole tasks (we stdiaand adynamicDVS
algorithm) and (b)ParaScale an intra-task DVS scheme that, on top of the scaled fre-
guency from (a), which provides further opportunities tduee the frequency based on
dynamic slack gains due to PTA.

The static DVS scheme is similar to the static EDF policy bigPand Shin 2001].
However, it differs in that the processor frequency andagdtare reduced to their respec-
tive minimum during idle periods. Two dynamic DVS schemegehbeen implemented.
The first one, named “greedy DVS”, is a modification of theis@@¥/'S scheme and aggres-
sively reduces the frequency below the statically deteethivalue until the next scheduler
invocation. The slack accrued from early completions okjabused to determine lower
frequencies for execution.

The second dynamic DVS algorithm is the “lookahead” EDF-DdHcy by the same
authors — it is a very aggressive dynamic DVS algorithm amneels the frequency and
voltage to very low levels. Throughout this paper, we sha# the name “ParaScale” to

ACM Transactions on Embedded Computing Systems, Vol. V,N\NdJonth 20YY.

15

refer to the intra-task DVS technique that uses the paraerletsp information to accu-
rately gauge the number of remaining cycles and lower theagelfrequency. We shall
use “ParaScale-G” and “ParaScale-L", to refer to the PaaSienplementations of the
greedy and lookahead inter-task DVS algorithms, respelgtiParaScale always starts a
task at the frequency value specified by the inter-task D\g8righm. It then dynamically
reduces the frequency and voltage according to slack gansthe knowledge on the re-
calculated bounds on execution times for parametric lodps. effect of scaling is purely
limited to intra-task schedulingge., the frequency can only be scaled down as much as the
completion due to the non-parametric WCET allows. Henceh eall to the scheduler due
to entering a parametric loop potentially results in slaakhg and lower frequency/voltage
levels.

We performed (numeric) timing analysis on the two scheduiarour system. The
worst-case execution cycles for the schedulers (TablevBhe then included in the utiliza-
tion calculations. The WCEC for the inter-task DVS alganitivas used as a preemption
overhead for all lower priority tasks. We assumed the woaste behavior while dealing
with preemptionsi.e., the upper bound on the number of preemptions of ajj@given
by the number of higher priority jobs released before j@deadline.

The execution time for the intra-task DVS algorithm (Pa@&rwas addednceto the
WCEC of each task in our system. The intra-task scheduleallisccexactly once for each
invocation of a task — prior to entry into the outermost pagéin loop.

Scheduler Type| DVS Algorithm
no dvs | static dvs | lookahead dvs
Inter-task 6874 7751 8627
Intra-task 1625 2502 3378

Table Ill. WCECsSs for inter-task and intra-task schedulersverious DVS algorithms.

The simulation environment (used in a prior study [Anamntaaa et al. 2003]) is a cus-
tomized version of the SimpleScalar processor simulatatr ¢lxecutes so-called PISA in-
structions (MIPS-like) [Burger et al. 1996]. PISA assemblgnerated by gcc, also forms
the input to the timing analyzers. The framework supportdtilasking and the use of
schedulers that operate with or without DVS policies. Ouraced SimpleScalar is con-
figured to model a static, in-order pipeline, with universalpipelined function units. We
use a 64k instruction cache and data cacheA static instruction cache simulator accu-
rately models all accesses and produces categorizatioeis as those illustrated in Table
I. The data cache module has not been implemented yet, asiotitypwvas to accurately
gauge the benefits and energy savings of using parametirgtimmalysis. For the time be-
ing, we assume a constant memory access latency for eacheflatance and leave static
data cache analysis for future work. Also, pipeline-radled@d cache-related preemption
delays (CRPD) [Lee et al. 1996; Schneider 2000; StaschothtEanst 2004; Staschulat
et al. 2005; Ramaprasad and Mueller 2006] are currently raiteted but, given accu-
rate and safe CRPD bounds, could easily be integrated. ThtetWaodel [Brooks et al.
2000], along with the following enhancements, also fornts pithe framework, in that it
closely interacts with the simulator to assess the amoupbwkr consumed. The original
Wattch model provides power estimates assuming perfeckgating for the units of the
processor. An enhancement to the Wattch model provides neatestic results in that
apart from perfect clock gating for the processor units, rage amount of fixed leakage

ACM Transactions on Embedded Computing Systems, Vol. V,N\NdJonth 20YY.

16

is also consumed by units of the processor that are not in@Qkeeser examination of the
leakage model of Wattch revealed that this estimation difcsppwer may resemble but
does not accurately model the leakage in practice. Statieps modeled by assuming
that unused processor components leak approximately 1a#eafynamic power of the
processor. This is inaccurate since static power is proguat to supply voltage while
dynamic power is proportional to trsgjuareof the voltage. We discuss the effect of using
the Wattch model in the following section. To reduce the maacies of the Wattch model
in determining the amount of leakage/static power consymedmplemented a more ac-
curate leakage model similar to prior work [Jejurikar et20004]. The implementation is
configurable so that we can not only study current trendsifioos technology (in terms of
leakage), but we are also able to extrapolate on future $rémdere leakage may dominate
the total energy consumption of processors).

The minimum and maximum processor frequencies under DV$@0O#&IHz and 1GHz,
respectively. Voltage/frequency pairs are loosely defiflem the XScale architecture
by extrapolating 37 pairs (five reported pairs between 118Hz and 0.76V/150MHz)
starting from 0.7V/100MHz in 0.03V/25MHz increments. ldieerhead is equivalent to
execution at 100MHz, regardless of the scheduling scheme.

7. EXPERIMENTS AND RESULTS

We created several task sets using a mixture of floatingtjaoit integer benchmarks from
the C-Lab benchmark suite [C-Lab]. The actual tasks usedlzzen in Table V. For

C Benchmarl Function WCET

Cycles [Time[mg
adpcm |Adaptive Differential 121,386,894 121.39
Pulse Code Modula-
tion
cnt Sum and count df 6,728,956| 6.73
positive and negativie
numbers in an array
Ims An LMS adaptive sigr 1,098,612 10.9
nal enhancement
mm Matrix Multiplication | 67,198,069 67.2

Table IV. Task Sets of C-Lab Benchmarks and WCETSs (at 1 GHz)

each task, the main control loop was parametrized. We hédlipiparametrized loops at
all nesting levels, but we observed diminishing returnshaslévels of nesting increased.
In fact, the large number of calls to the parametric schedide to nesting had adverse
effects on the power consumption relative to the base casacé] we limit parametric
calls to outer loops only.

Table V depicts the period (equal to deadline) of each tasktask sets have the same

Utilization Period= Deadline[mg
adpcm] cnt [Ims | mm
20% 1200 | 240 | 600 | 1200
50% 1200 75 60 600
80% 1200 50 40 240
ACM Transactions on Embedded Computi-rl;gbslss}émsl,j\?(')’ll.o\l}i,smfgzlroﬁﬁfléos\(%s

17

hyperperiod of 1200 ms. All experiments executed for eyactie hyperperiod. This
facilitates a direct comparison of energy values acrosgaaihtions of factors mentioned
in Table VI.

The parameters for the experiments are depicted in TableNd.vary utilization, the

[Parameter | Range of Values |
Utilization 20%, 50%, 80%
Ratio WCET/PET| 1x, 2x, 5x, 10x, 15x, 20x
Leakage Ratio 0.1,1.0

Base
Parametric
DVS Static DVS
algorithms Greedy DVS
ParaScale-G
Lookahead
ParaScale-L

Table VI. Parameters Varied in Experiments

ratio of worst-case to parametric execution times (PETs),BVS support as follows:

Base: Executes tasks at maximum processor frequency and apttee actual number
of loop iterations for parametric loops(not necessarily thaximum number of statically
bounded iterations). The frequency is changed to the mimirawailable frequency during
idle periods.

Parametric: Same as Base except that calls to the parametric schedelissaed prior
to parametric loops without taking any scheduling actiohisTassesses the overhead for
scheduling of the parametric approach over the base case.

Static DVS:Lowers the execution frequency to the lowest valid freqyelnased on
system utilization. For example, at 80% utilization, theguency chosen would be 80%
of the maximum frequency. Idle periods, due to early tasketion, are handled at the
minimum frequency.

Greedy DVS:This scheme is similar to static DVS in that it starts with giatically
fixed frequency but then aggressively lowers the frequencyttie current time period
based on accrued slack from previous task invocations.yHirae a job completes early,
the slack gained is passed on to the job which follows immebjiaLet jobi be the job
that completes early and generates slack and let fobthe job which follows (consumer).
The greedy DVS algorithm calculates the frequency of exenut’, for j as follows:

; Oé*Cj
“= {a*C’j —i—slack‘i] “ ®)

whereq is the frequency determined by the static DVS scheme. Nttaga) this slack
is “lost” or rather reset to zero when the next schedulingsien takes place an) Equa-
tion 3 ensures that the new frequency scales dowry jsb that it attempts to completely
utilize the slack from the previous job, but it does not stnebeyond the time originally
budgeted for its execution based on the higher, staticaltgrchined, frequency. From (a)
and (b) above, we see that the new DVS scheme will never migsadlide if the origi-
nal static DVS scheme never misses a deadline since gree@ydadomplishes at least

ACM Transactions on Embedded Computing Systems, Vol. V,N\NdJonth 20YY.

18

the same amount of work as befoies,, it never utilizes processor time which lies be-
yond the original completion time of tagk The processor switches to the lowest possible
frequency/voltage during idle time.

ParaScale-G:Combines the greedy and intra-task DVS schemes so thatttsheeir
execution at the lowest valid frequency based on systeizatin. Before a parametric
loop is entered, the frequency is scaled down further adegrib the difference between
the WCET bound of the loop and the parametric bound of the adpulated dynami-
cally. ParaScale-G also exploits savings due to alreadyptzted execution relative to the
WCET for frequency scaling. (These savings are small coetpar the savings of para-
metric loops since parametric loops generally occur earihe code). It also utilizes job
slack accrued from previous task invocations to furtheuoedthe frequency. As in the
case of the Static and Greedy DVS schemes, the processchswi the lowest possible
frequency/voltage during idle time.

Lookahead:Implements an enhanced version [Zhu and Mueller 2005] ¢diRi[Pillai
and Shin 2001JookaheadEDF-DVS algorithm — a very aggressive dynamic DVS algo-
rithm.

ParaScale-L:Combines the lookahead and intra-task DVS which utilizesupatric
loop information. It is similar in operation to ParaScaleM&hile ParaScale-G uses static
values for initial frequencies, ParaScale-L uses freqigsncalculated by the aggressive,
dynamic EDF-DVS algorithm (lookahead).

Notice that all scheduling cases result in §aene amount of wotkeing executed during
the hyperperiod (or any integer multiple thereof) due toghgodic nature of the real-time
workload. Hence, to assess the benefits in terms of powereaess, we can measure
the energy consumed over such a fixed period of time and cantparamount between
scheduling modes.

The scheduler overhead for the greedy DVS scheme diffens frmse of the static DVS
scheme by only a few cycles, as the only additional overhetiaticalculation to determine
o’ (Equation 3). This calculation is performed only once péestuler invocation because
we only calculate the new frequency for the next schedulsklitsstance. Three types of
energy measurements are carried out during the course @xpariments:

PCG: Energy used witlperfectclock gating (PCG) — only processor units that are used
during execution contribute to the energy measurementss iblates the effect of the
parametric approach on dynamic power.

PCGL: Energy consumed by leakagenly, based on prior methods [Jejurikar et al.
2004]. This attempts to capture the amount of energy exalysused due to leakage.

PCGL-W: Energy used with perfect clock gating for the processoralinitludingleak-
age Leakage power is modeled by Wattch as 10% of dynamic powsghnis not com-
pletely correct, as discussed before.

We also vary the ratio of worst-case to actual (parametrecation times to study
the effect of variations in execution times and make the expmntal results more realis-
tic. More often than not, the worst-case analysis of systesglts in overestimations of
WCET. ParaScale can take advantage of this to obtain additemergy savings.

As part of the setup for the experiments we initialized th&Rdeakage model’s operat-
ing parameters with the ratio of leakage to dynamic powebofa particular experimental
point. The ratio of dynamic and leakage energies for the WO&restimation of 1x and

ACM Transactions on Embedded Computing Systems, Vol. V,N\NdJonth 20YY.

19

utilization of 50% was chosen for this purpose. This raticswaed to set up appropri-
ate operating parameters (number of transistors, bodyvoiiage,etc), after which the
experiments were allowed to execute freely to completidris fave us a unique opportu-
nity to study the effects of leakage f@a) current processor technologies, where the ratio
of leakage to dynamic may be 1:10 afij future trends where the leakage may increase
significantly as the above ratio approaches 1:1. The “leakatjps” mentioned in table VI
refer to these two settings.

7.1 Overall Analysis

Figure 11 depicts the dynamic energy consumption for twe aktxperiments {a) Figure
11(a) shows the dynamic energy values for the case where BEMWbHverestimation is
assumed to be twice that of the PET, gbyiFigure 11(b) shows the results for the instance
where the WCET overestimation is assumed to be ten time®fihe PET. Both graphs
depict results for different utilization factors for eachtbe DVS schemes. From these
graphs, we see that the energy consumption by the Para8gaknentations outperform
their corresponding non-ParaScale implementations. Matiethe greedy DVS scheme is
able to achieve some savings relative to the static DVS sehdihese savings are fairly
small, as the slack from the early completion of a job is passeto the next scheduled job,
if at all. ParaScale-G, on the other hand, is able to achéaysificantsavings over both
the aggressive greedy algorithm and the static DVS alguritiihis shows that most of
the savings of ParaScale-G is due to the early discoveryméduahyc slack by the intra-task
ParaScale algorithm.

ParaScale-L also showsuchlower energy consumptions than the static DVS, greedy
DVS, and the base case, always consuming the least amouméigfyefor all utilizations
among the three DVS schemes. Note that higher relative ggawire obtained for the higher
utilization tasksets. This is true for all DVS schemes.

500 120

020%
W50%
100 080%

100
50
0 0

ase tric ic DVS greedy DVS ParaScale-G Lookahead ParaScale-L base parametric static DVS greedy DVS ParaScale-G Lookahead ParaScale-L
(a) 2x Overestlmanon Factor () 10x Overestimation Factor
F|g 11. Energy consumption for PCG Wattch Model — Dynamierf§yg consumption

Energy Consumption(mJ)
=
&

w0
3

Also, ParaScale-L outperforms the lookahead DVS algorjgdbeit by a small margin.
The reason for this small difference is that lookahead ispaggressive dynamic scheme,
which tries to lower the frequency and voltage as much asilplesand often executes at
the lowest frequencies. ParaScale-L is able to outperfberidokahead algorithm due to
the early discovery of future slack for parametric loopsjahhbasic lookahead is unable
to exploit fully.

One very interesting result is the relatively small difiece between the ParaScale-G
and the lookahead energy consumption results (for dynameéoyy consumption). Thus,

ACM Transactions on Embedded Computing Systems, Vol. V,N\NdJonth 20YY.

20

ParaScale-G, an intra-task DVS scheme that enhanstdiainter-task DVS scheme, re-
sults in energy savings that are close to those of the mostagjgedynamidDVS schemes,
albeit at lower scheduling overhead of the static scheme.

7.2 Leakage/Static Power

The results presented in Figure 11 are for energy valuesrasguperfect clock gating
(PCG) within the processoig., they reflect the dynamic power consumption of the pro-
cessor. These results isolate ta&ual gains due to the parametric approach. However,
dynamic power is not the only source of power consumption@rt@mporary processors,
which also have to account for an increasing amounéakage/static powefor inactive
processor units.

In Figures 12 and 13, we present the energy consumed duktmgleaFigure 12 presents
energy consumption with perfect clock gating and a const¢akige for function units that
are not being utilized, as gathered by the Wattch power mddeéality, Wattch estimates
the leakage to be 10% of the dynamic energy consumption ainmax frequency. This
might not be entirely accurate. Even with this simplisticdab we see that the ParaScale
implementations outperform all other DVS algorithms, asafaleakage is concerned. No-
tice that the absolute energy levels are very similar for @d &40x for the corresponding
schemes. This is due to the dominating leakage in this case.

Figure 13 depicts leakage results for a more realistic andrate leakage model similar
to prior work [Jejurikar et al. 2004]. As mentioned earligre performed two sets of
experiments with two ratios of leakage to dynamic energysoomptions — 0.1 and 1.0.
While the former models current processor and silicon tetdgies, the latter extrapolates
future trends for leakage. The top portions of the graphsguirfe 13 indicate the dynamic
energy consumed while the lower portions indicate leak&ggires 13(a) and 13(b) show
the results for a leakage ratio of 0.1 for the 2x and 10x WCEArestimations respectively,
and Figures 13(c) and 13(d) show similar results for a leakato of 1.0.

From these graphs, we see that even when the leakage ratiaik the leakage con-
sumed might be a significant part of the total energy consiompf the processor. In fact,
as Figure 13(b) shows, with a higher amount of slack in théesysthe leakage could be-
come dominant eventually accounting for more than half efttital energy consumption
of the processor. Of course, Figures 13(c) and 13(d) shotetien when the amount of
slack in the system is low (2x WCET overestimation casekdga might dominate energy
consumption for future processors.

3000

2500

2500 1 —

2000 —

2000 —

ISOO — —

sumption(mJ)

1500 1 —

IOOU 1 —

IUUO 1 —

500 1 =
il | m
o H o L L | __:ﬂ_,_:ﬂ__:-]_,_:-:l_,_:-j_
base metric ~ static DVS greedy DVS ParaScale-G Lookahead ParaScale-L bask ametric static DVS greedy DVS ParaScale-G Lookahead ParaScale-L

(a'): 2x Overestimation Factor (b) 10x Overestimation Factor
ig. 12. PCGL-W — Leakage Consumption from the Wattch Model

Energy Consumption(mJ)

Energy Con:

ACM Transactions on Embedded Computing Systems, Vol. V,N\NdJonth 20YY.

21

M dynamic
M leakage 120

M dynamic
O leakage

400

g
8

gy (mJ)

Ener:
B

40

100 20

& £ gL & 5 g
kahead ParaScale-L HDVSngVS ScalSIknhdl’ le

(a) 2x Overestlmatlon Factor 0 1 Leakage Ratio (b) 10x Overestlmanon Factor, 0.1 Leakage Ratio

350
W dynamic

‘ M dynamic
M leakage

M leakage

matloneeFvacto , 1 0 Leaka Ratlo (d) 10x Ove
Fig. 13. PCGL — Leakage Consumption from the Wattch Mode

The ParaScale algorithms either outperform or are veryectogheir respective DVS
algorithms (greedy DVS and lookahead) in all cases. Theggneonsumption of
ParaScale-G often results in energy consumption similahab of the dynamic looka-
head DVS algorithm. This holds true for leakage as well astote energy consump-
tion (dynamic+leakage). Also, the combination of lookahead the inter-task ParaScale
(ParaScale-L) outperforms all other implementations.

The graphs in Figure 13 indicate identical static energysaomptions for all utilizations
for the base and parametric experiments. The DVS algorittumghe other hand, leak
different amounts of static power for each of the utilizago This effect is due to the
fact that leakage depends on the actual voltage in the syskée static DVS algorithm
consumes more leakage with increasing systems utilizatsamce it executes at higher,
statically determined frequencies (and,hence,voltages)igher utilizations. The greedy
scheme performslightly better as it is able to lower the frequency of execution distatok
passing between consecutive jobs. The lookahead and alSPale algorithms are able
to aggressively lower their frequencies and voltage. Tthey have a different leakage
pattern compared to the constant values seen for the nond2¥8s or the increasing
pattern for static DVS.

7.3 WCET/PET Ratio, Utilization Changes and Other Trends

We now consider the effects of changing the WCET overestimdactor and utilization
on energy consumption. We shall use the ParaScale-G dlgoas a case study and com-
pare it to static DVS and the base cases as depicted in Figjires

We observe slightly smaller relative energy savings fohkig/VCET factors (10x) com-

ACM Transactions on Embedded Computing Systems, Vol. V,N\NdJonth 20YY.

600 0 Tg - @ 80% Util, static DVS
° -@- 80% Util, static DVS X (i

N 80% Util. ParaScale-G N -@- 80% Util, ParaScale-G

-@-80% Util, ParaScale-G|_ 1000 . .

500 - B . A- 50% Util, static DVS
A- 50% Util, static DVS o .
. A 50% Util, ParaScale-G A~ 50% Utll, ParaScale-G
400 . s L - ©- 20% Util, staticDVS

-6+ 20% Util, staticDVS ;
. > 20% Util, ParaScale-Gi
~=20% Util, ParaScale-G o Udl, ParaScale

800

600 —0\ 7
400 A

Energy Consumption (mJ)
Energy Consumption (mJ)

0 WCET Ix 2x 5x 10x. 15% 20x
WCET 2x sx 10x 15x 20x (b) Wattch Leakage Consumption Trends(PCGL-
(a) Dynamic Energy Consumption Trends(PCG))

30 300
o ..

e}

G

S
L

%)

=3

S
L

- @ 80% Util, static DVS [~
-@- 80% Util, ParaScale-G
10 A- 50% Util, static DVS [~

A 50% Util, ParaScale-G
- ©- 20% Util, staticDVS [~

- @ 80% Util, static DVS [~
-@- 80% Util, ParaScale-G|
A 50% Util, static DVS [~
A~ 50% Util, ParaScale-G
-©- 20% Util, staticDVS [~

1=
5

Energy Consumption (mJ)
b

Energy Consumption (mJ)
7
=]

w

%3
=

——20% Util, ParaScale-G ——20% Util, ParaScale-G
0 T T T T T 0 T T T T T
WCET 2x 5x 10x 15% 20x WCET 1y 2x 5% 10x 15% 20x
(c) Leakage Consumption Trends(PCGL), 0.1 Leak{d) Leakage Consumption Trends(PCGL), 1.0 Leak-
age Ratio age Ratio

Fig. 14. Energy Consumption Trends for increasing WCET éiadbr ParaScale-G

pared to lower ones (2x). This is due to the fact that morekskavailable in the system
for the static algorithm to reduce frequency and voltagesipective of the overestimation
factor, ParaScale-L performs best for all utilizationsdéscussed further in this section.
The absolute energy level of 2x overestimation is about Bagg that of the 10x case
without considering leakage for the highest utilization.

Furthermore, our technique performs better for higheiniastlons, as seen for experi-
ments with 80% utilization in Figure 11(a). As the ParaSdatshnique is able to take
advantage of intra-task scheduling based on knowledget gzt as well as future ex-
ecution for a task, it is able to lower the frequency more agsively than other DVS
algorithms. This is more noticeable for higher utilizatiasksets because less static slack
is available to static algorithms for frequency scaling.

Figure 14 shows the trends in energy consumption across WREET ratios ranging
from 1x (no overestimation) to 20x. Energy values for both®&gorithms — static DVS
and ParaScale-G — are presented. In Figure 14(a), we seerntbi@y consumption drops
as the over-estimation factor is increased, since less hwvasko be done during the same
time frame. We also see that the ParaScale-G algorithm estabbbtain morelynamic
energy savings relative to the static DVS algorithm.

Similar trends exist in the results for PCGL-W (Figure 1(lekcept that the leakage,
which permeates all experiments, results in lower relas@eings compared to the PCG
measurements. When contrasting Figure 14(a) to Figure) Méobserve that the overall
energy consumption is higher in the latter. This is due toitaaithl static power that is
modeled by Wattch as 10% of dynamic power.

ACM Transactions on Embedded Computing Systems, Vol. V,N\NdJonth 20YY.

23

From the graphs for leakage (PCGL) shown in Figures 14(c)lai{d), we see a more
accurate modeling of leakage prevalent in the system. ABMBET overestimation factor
is increased from 1x to 20x the leakage consumption trengeapsimilar, across the
board, for both — ParaScale-G as well as static DVS . We obgbat more and more the
time is spent in idling(executing at the lowest frequenay eperating voltage) and less in
execution. The leakage energy increases slightly from Bxtdout from there on remains
nearly constant until 20x.

7.4 Comparison of ParaScale-G with Static DVS and Lookahead

We now present a comparison of ParaScale with greedy DVS auichhead since the
latter are two very effective DVS algorithms. Both algonith have been implemented as
stand-alone versions as well as hybrids integrated wita$eale.

We already compared ParaScale-G to static DVS based onggsolided in Figure
14. The energy consumption for ParaScale-G is significdomgr than that of static DVS
across all experiments in Figure 14(a). This is becauseSeata-G can lower frequencies
more aggressively over static DVS algorithms. Static DV8 oaly lower frequencies
to statically determined values. We infer from Figure 14ttthee relative savings drop
in lower utilization systems and in systems with a high oséneation value. Due to the
amount of static slack prevalent in such systems, the dDAtis scheme is able to lower
the frequency/voltage to a higher degree. For higher atilins and for systems where
the PETs match WCETs more closely, ParaScale-G is able to $telargest gain. This
underlines one advantage of the ParaScale technidzieits ability to predict dynamic
slackjust before loops. This is particularly pronounced for heghtilization experiments
resulting in lower energy consumption.

Consider the leakage results from Figure 14(b). We obsbatdhe differences between
the energy values for static DVS and ParaScale are muchr)asggecially for the lower
utilization and higher WCET ratios. There exist two reasmnshis result. (1) Static power
depends on the voltage. When running at higher frequenckages, as necessitated by
higher utilizations, both static and dynamic power incesag2) Static power is estimated
to be 10% of the dynamic power by Wattch. Hence, higher atilns with higher volt-
age and power values result in larger static power as welis iEhcompounded by the
inaccurate modeling of leakage by the Wattch model. Dynaroiger is proportional to
the square of the supply voltage, whereas static power éstlijrproportional to the sup-
ply voltage. By assuming that static power accounts for 1@%oaver, Wattch makes the
simplifying assumption that static power also scales catachlly with supply voltage.

Results from the more accurate leakage model are presemkéglires 14(c) and 14(d).
We see that for the highest utilization (80%) ParaScale-&ble to lower the frequency
and voltage enough so that the leakage energy dissipatiowés than that for static DVS.
For the 50% and 20% utilizations, ParaScale-G shows a bfiglirse performance. The
leakage model that we used [Jejurikar et al. 2004] biasepdheycle energy calculation
with the inverse of the frequency { '), which is the delay per cycle. Hence, aggressively
lowering the frequency to the lowest possible levels mayaltt be counter-productive
as far as leakage is concerned. The static DVS scheme lolefesjuency of execution
to a lowest possible value of 200 MHz (for the 20% utilizatexperiments) while the
ParaScale schedulers often hit the lowest frequency valb@ ¥Hz). It is possible that
the quadratic savings in energy due to a lower voltage arecowge by the increased delay
per cycle at the lowest frequencies. Hence, if the numbewxetion cycles is large

ACM Transactions on Embedded Computing Systems, Vol. V,N\NdJonth 20YY.

24

enough, ParaScale experiments “leak” more energy thardtie BVS scheme. Figure 13,
though, shows that thetal energy savings for the system is still lower for the Para&cal
experiments compared to their equivalent non-ParaScalkementations, and ParaScale-
L still consumes the least amount of energy.

Figure 15 depicts ParaScale-G, our inter-task DVS enhaeneto the static DVS al-
gorithm. It shows an energy signature that comes close toothaokahead, one of the

350
-@- 80% Util, ParaScale-G

300 - ®- 80% Util, lookahead
s \ A- 50% Util, ParaScale-G
§ 250 A- 50% Util, lookahead
S \ ——20% Util, ParaScale-G
? 200 - ©- 20% Util, lookahead
=
g
o
)
ol
=
=

WCET

1x 2x 5x 10x 15x 20x

Fig. 15. Comparison of Dynamic Energy Consumption for Pea#SG and Lookahead

best dynamic DVS algorithms. At times, ParaScale-G eqimgerformance of looka-
head. This is particularly true for lower WCET factors whémekahead has less static
and dynamic slack to play with. Here, ParaScale-G’s peréome is just as good, because
it detects future slack on entry into parametric loops. Thiplies that we can achieve
energy savings similar to those obtained by lookahead witbtantially lower algorith-
mic and implementation complexity. In fact, ParaScale-&ni§)(1) algorithm evaluating
the parameters for only treurrenttask whereas lookahead, &tn) algorithm traversing
through all tasks in the system. This becomes more relewthteanumber of tasks in the
system is increased.

7.5 Overheads

The overheads imposed by the scheduler (especially thengdia scheduler, due to mul-
tiple calls made to it during task execution) and the freqyéroltage switching overheads
are side-effects of the ParaScale technique. These s@re@rheads impose additional
execution time on the system. The scheduler overheads wedelsd using our timing
analysis framework and are enumerated in Table Ill. Whenpared to the execution cy-
cles for the tasks (Table 1V) in the system, we see that thedidbr overheads are almost
negligible when compared with task execution times. Fong{a, the largest number of
cycles used during a scheduler invocation is for the iraskiookahead scheduler (8627
cycles). This value is less tha@g% of the WCEC for the smallest task in the systefia,
LMS. Hence, the scheduler overheads have no significantdngrathe execution of the
tasks or the amount of energy savings.

ACM Transactions on Embedded Computing Systems, Vol. V,N\NdJonth 20YY.

25

7.5.1 Frequency Switch Overhead$o study the overheads imposed by the switching
of frequencies and voltages, we imposed the overhead fonehsynous switch observed
on an IBM PowerPC 405LP [Zhu and Mueller 2005]. The actualealsed wag62s
for the overhead. We collected data on the nhumber of frequeoltage transitions for
each experiment. The exact value of switching overheagsatepending on the actual
difference between the voltages and whether it is beingeas®d or decreased. We use
this pessimistic, worst-case value to measure the worsiipeswitching overhead for the
system. The highest overhead is incurred for the 20x ovierabn case with utilization of
80% for ParaScale-G. The cumulative value for the overheé#us case wa$2ms. To put
this in perspective, let us assume that the entire simulditaal executed at the maximum
frequency of 1 GHz. (thus completing in the shortest posdiloiration). The hyperperiod
for each experiment wak?2 seconds. All experiments were designed to execute for one
hyperperiod. Since the tasksets execute at lower fregastitan the maximum, they will
take longer to complete but still finish within their deadiin Also, the frequency switch
overhead is typically lower thah62us (depending on the exact difference between the
voltage/frequency levels). Hence, we can safely assuntdfhbdrequency switch over-
heads would benuchless than the worst-case value4¥ms. Typically, the overheads
would be close to, or even less than, 1% of the total exectitiom of all tasks.

We also measured the energy consumption for the time perfmhwhe switching is
taking place 162us), for all three energy schemes — PCG, PCGL and PCGL-W. The re-
spective values were 0.493 mJ, 0.007 mJ and 0.732 mJ, resghgcit 1 GHz. Considering
the energy signature of the entire task set and the expetémer can conclude that the
energy overheads for frequency switching will be negligibl

8. RELATED WORK

Timing analysis has become an increasingly popular reegapic. This can be attributed
in part to the problem of increasing architectural comgigxivhich makes applications
less predictable in terms of their timing behavior, but itynadso be due to the abundance
of embedded systems that we have recently seen. Oftencappti areas of embedded
systems impose stringent timing constraints, and systeralaolgers are becoming aware
of a need for verified bounds on execution times. While dyrainiing methods cannot
provide safe bounds on the WCET, static timing analysis @¢gener and Mueller 2001].
Nonetheless, dynamic bounds can complement static one®bigiimg a means to assess
their tightness.

These developments are reflected in the research commuinésevmumerous methods
for static timing analysis have been devised, ranging fromptimized programs execut-
ing on simple CISC processors to optimized programs on ppipeIRISC processors and
even uncached architectures to instruction and data cachesll as branch prediction
and locking caches [Park 1993; Puschner and Koza 1989; Haetal. 1992; Lim et al.
1994; Healy et al. 1995; Mueller 2000; White et al. 1999; keadd and Wilhelm 1999;
Lundqvist and Wall 1996; Li et al. 1996; Colin and Puaut 20@itra and Roychoudhury
2002; Vera et al. 2003; Thesing et al. 2003].

In the past, path expressions were used to combine a sotiergenl parametric ap-
proach of WCET analysis with timing annotations, verifyithge latter with the former,
particularly by Chapmaet al. [Chapman et al. 1996]. Bernat and Burns proposed alge-
braic expressions to represent the WCET of programs [BemaBurns 2000]. Bernait

ACM Transactions on Embedded Computing Systems, Vol. V,N\NdJonth 20YY.

26

el. used probabilistic approaches to express execution bailmas to the granularity of
basic blocks that could be composed to form larger programsats [Bernat et al. 2002].
Yet, the combiner functions are not without problems, andrtg of basic blocks requires
architectural knowledge similar to static timing analysisls.

Parametric timing analysis by Vivances$ al. [Vivancos et al. 2001] first introduced
technigues to handle variable loop bounds as an extensistatio timing analysis. That
work focuses on the use of static analysis methods to dearemnpetric formulae to bound
variable-length loops. Our work, in contrast, assessebehefits of this work, particularly
in the realm of power-awareness.

The effects of DVS on WCET have been studied in the FAST fraomkySeth et al.
2003]. Here, parametrization was used to model the effettarhory latencies on pipeline
stalls as processor frequency is varied. In our timing arelywe currently do not model
these effects. This does not affect the correctness of qaroaph since WCET bounds are
safe without such modeling, but they may not be tight, as shiovthe FAST framework.
Hence, the benefits of parametric DVS may even be better thabwe report here.

The VISA framework suggested architectural enhancemergatige progress of exe-
cution by sub-task partitioning and exploits intra-taskckl with DVS techniques [Anan-
taraman et al. 2003; 2004]. Their technique did not explargmetric loops. Our work, in
contrast, takes advantage of dynamically discovered laambs and does not require any
modifications at the micro-architecture level.

Lisper used polyhedral flow analysis to specify the iteratspace of loop nests and
express them as parametric integer programming problemmstisequently derive a para-
metric WCET formula suitable for timing analysis using IP@mplicit Path Enumeration
Technique) [Lisper 2003]. Recent work by Byhkm. al. [Byhlin et al. 2005] underlines
the importance of using parametric expressions to supp@EWanalysis in the presence
of different modes of execution. They parametrize their WQEEedictions for automotive
software based on certain parameters, such as frame sie@.\ildrk focuses on studying
the relationship between parameters unique to modes ofiggaand their effect on the
WCET. Other work by Gheorghitat al. [Gheorghita et al. 2005] also promotes a paramet-
ric approach but at the level of basic blocks to distinguistecent worst-case paths.. Our
parametric expressions, predating any of this work, acelyr@ound the WCET values for
loops This extends the applicability of static analysis to a neag€ of programs. We take
advantage of these accurate predictions at run-time fogfitersuch as power savings and
admission of additional tasks. Tighter bounds on the WCEthépresence of DVS can
also be achieved through a parametric model representetatency in cycles to access
main memory [Seth et al. 2003]. Due to DVS and constant memaorgss times, a lower
processor frequency results in fewer cycles to access membich is reflected in WCET
bounds in their FAST framework. This work is orthogonal ta euethod of PTA. In fact,
our results could still be improved by employing FAST in tregd&Scale context.

The most closely related work in terms of intra-task DVS s iifhea of power manage-
ment points (PMPs) [AbouGhazaleh et al. 2001; AbouGhazdleh 2003; AbouGhazaleh
et al. 2003]. In this work, path-dependent power manageimaig (PMHs) were used to
aggregate knowledge about “saved” execution time compardte worst-case execution
that would have been imposed along different paths. Thikwldfers in that it exploits
knowledge aboupastexecution while we discover loop bounds that let us provigleter
bounds on past arfdture execution within the same task. The work is also evaluatélal wi

ACM Transactions on Embedded Computing Systems, Vol. V,N\NdJonth 20YY.

27

SimpleScalar, albeit with a more simplistic power modBl £ CV?2) while we assess
power at the micro-architecture level using enhancemeifgadtch [Brooks et al. 2000]
as well as a more accurate leakage model [Jejurikar et alt]2@@ain, our results could
potentially be improved by benefiting from knowledge aboastpexecution, which may
lead to additional power savings. This is subject to futuoekw

An intra-tasks DVS algorithm that “discovers” the amoungrécution left in the system
and appropriately modifies the frequency and voltage of ylstes is presented in [Shin
et al. 2001]. Their work depends on inserting various inseatation points at compile
time into various paths in the code. Evaluation of theseumséntation points at runtime
provides information about the paths taken during exeauwtiod thepossibleamount of
execution time left along that path similar to PMPs. Thegmgistrumentation points in
every basic block to determine the exact execution path¢lwivould incur a significant
overhead during runtime. This may also affect the cachirty hance, timing behavior of
the task code. Our work differs significantly in that we ondgass the amount of execution
time remainingonce(prior to entry into a parametric loop), thus incurring aredvead
only once. We are, thus, able to accurately gauge the amdereoution remaining with
a single overhead per loop and per task instance. We alsoastihe new caching and
timing behavior of the code after the call to the intra-tastkesiuler by invoking our timing
analysis framework on the modified code until the param&ECET formulae stabilize.
Another technique presented in their paper is that of "Letypltage scaling edges”. They
utilize the idea that loops are often executed for a smallenlver of iterations than the
worst-case scenario. During run-time, they discover thaamnumber of loop iterations
at loop exit and then gauge the number of cycles saved. Inasinparametric timing
analysis determines loop savinggor to loop entry and exploits savings earyg, using
DVS, such as in ParaScale. This difference is a significavarage for the parametric
approach, particularly for tasks where a single loop nesbants for most of the execution
time.

9. CONCLUSION

In this paper, we (a) develop the novel technique of pardatining analysis that obtains
a formula to express WCET bounds, which is subsequentlgiated into the code of
tasks and (b) derive techniques to exploit parametric fdamwvia online scheduling and
power-aware scheduling. We show how parametric formulaéraegrated into the timing
analysis process without sacrificing the tightness of WCEHals. A fixed-pointapproach
to embed parametric formulae into application code is @efiwhich bounds the WCET
of not only the application code but also the embedded paranfanctions and their
calls once integrated into the application. Prior to engggparametric loops, the actual
loop bounds are discovered and then used to provide WCETdsdfian the remainder of
execution of the tasks that are tighter than their staticicenpart.

The benefit from parametric analysis is quantified in termpafer savings for sole
intra-task DVS as well as ParaScale-G, our combined imts&-and greedy inter-task DVS.
Processor frequency and voltage are scaled down as looglbadmparametric loops are
discovered. Power savings ranging between 66% to 80% cadpaDV S-oblivious tech-
niques are observed, depending on system utilization andrttount of overestimation for
loop bounds. These energy savings are comparable to oth&r dyobrithms based on
dynamic priority scheduling. Yet, our intra-task scheme&dos time complexity and can

ACM Transactions on Embedded Computing Systems, Vol. V,N\NdJonth 20YY.

28

be implemented as an extensiorstatic priority schedulingr such as cyclic executives.
Conventional timing analysis methods will be unable to egéithese benefits due to the
lack of knowledge about remaining execution times of tasksoinventional static timing
analysis. This illustrates the potential impact of PTA oa fited of timing analysis and
real-time systems practitioners.

Overall, parametric timing analysis expands the class pfiegtions for real-time sys-
tems to programs with dynamic loop bounds that are loop iamamhile retaining tight
WCET bounds and uncovering additional slack in the schedule

REFERENCES

ABOUGHAZALEH, N., CHILDERS, B., MOSSE D., MELHEM, R.,AND CRAVEN, M. 2003. Energy manage-
ment for real-time embedded applications with compilemsrp InACM SIGPLAN Conference on Language,
Compiler, and Tool Support for Embedded Systems

ABOUGHAZALEH, N., MOSSE D., CHILDERS, B., AND MELHEM, R. 2001. Toward the placement of power
management points in real time applications. Wrkshop on Compilers and Operating Systems for Low
Power.

ABOUGHAZALEH, N., MOSSE D., CHILDERS, B., MELHEM, R., AND CRAVEN, M. 2003. Collaborative
operating system and compiler power management for need-tipplications. INEEE Real-Time Embedded
Technology and Applications Symposium

AHO, A. V., SETHI, R.,AND ULLMAN, J. D. 1986.Compilers — Principles, Technigues, and TooAsldison-
Wesley.

AL-YAQoOusBI, N. 1997. Reducing timing analysis complexity by partitrancontrol flow. M.S. thesis, Florida
State University.

ANANTARAMAN, A., SETH, K., PaTIL, K., ROTENBERG E.,AND MUELLER, F. 2003. Virtual simple archi-
tecture (VISA): Exceeding the complexity limit in safe rémhe systems. Irdnternational Symposium on
Computer Architecture250-261.

ANANTARAMAN, A., SETH, K., PaTIL, K., ROTENBERG E.,AND MUELLER, F. 2004. Enforcing safety of
real-time schedules on contemporary processors usingualgimple architecture (visa). IEEE Real-Time
Systems Symposiufil4-125.

ARNOLD, R., MUELLER, F., WHALLEY, D. B., AND HARMON, M. 1994. Bounding worst-case instruction
cache performance. IiEEE Real-Time Systems Sympositi#2—181.

AYDIN, H., MELHEM, R., MoSSE D., AND MEJIA-ALVAREZ, P. 2001. Dynamic and agressive scheduling
techniques for power-aware real-time systemdEIBE Real-Time Systems Symposium

BERG, C. 2006. Plru cache domino effects. Bth Intl. Workshop on Worst-Case Execution
Time (WCET) AnalysijsF. Mueller, Ed. Number 06902 in Dagstuhl Seminar Procegdininter-
nationales Begegnungs- und Forschungszentrum fuer lafikn(IBFI), Schloss Dagstuhl, Germany.
<http://drops.dagstuhl.de/opus/volltexte/2006/6 7Rlate of citation: 2006-01-01].

BERNAT, G. AND BURNS, A. 2000. An approach to symbolic worst-case execution tmedysis. Ir25th IFAC
Workshop on Real-Time Programming

BERNAT, G., COLIN, A., AND PETTERS S. 2002. Wocet analysis of probabilistic hard real-timeteys. In
IEEE Real-Time Systems Symposium

BROOKS, D., TIWARI, V., AND MARTONOSI, M. 2000. Wattch: A framework for architectural-level pawe
analysis and optimizations. Proceedings of the 27th Annual International Symposium @militer Archi-
tecture IEEE Computer Society and ACM SIGARCH, Vancouver, BritiSblumbia, 83—94.

BURGER, D., AUSTIN, T., AND BENNETT, S. 1996. Evaluating future microprocessors: The simplesc
toolset. Tech. Rep. CS-TR-96-1308, University of Wiscondiladison, CS Dept. July.

BYHLIN, S., ERMEDAHL, A., GUSTAFSSON J.,AND PER, B. L. 2005. Applying static wcet analysis to auto-
motive communication software. BECRTS (Euromicro Conference on Real-Time Systems)

C-LAB. Wcet benchmarks. Available from http://www.c-lab.deffeden/download.html.

CHAPMAN, R., BURNS, A., AND WELLINGS, A. 1996. Combining static worst-case timing analysis arw p
gram proof.Real-Time Systems 14, 145-171.

ACM Transactions on Embedded Computing Systems, Vol. V,N\NdJonth 20YY.

29

CHEN, K., MALIK, S.,AND AuGuUST, D. |. 2001. Retargetable static timing analysis for emleedsoftware.
In Proceedings of the International Symposium on System &3iat{iSSS)

CoLIN, A. AND PUAUT, |. 2001. Worst case execution time analysis for a procesdtbr branch prediction.
Real-Time Systems 183, 249-174.

ENGBLOM, J. 2002. Processor pipelines and static worst-case ésrdirne analysis. Ph.D. thesis, Dept. of
Information Technology, Uppsala University.

ENGBLOM, J., ERMEDAHL, A., SIDIN, M., GUSTAFSSON J., ,AND HANSSON, H. 2001. Execution-time
analysis for embedded real-time systemsSTT T (Software Tools for Technology Transfer) speciakissu
ASTEC.

FERDINAND, C.AND WILHELM, R. 1999. Efficient and precise cache behavior predictiongfal-time systems.
Real-Time Systems 1Z/3 (Nov.), 131-181.

GHEORGHITA, V. S., STUIJK, S., BASTEN, T.,AND CORPORAAL, H. 2005. Automatic scenario detection for
improved wcet estimation. IBesign Automation Conference

GoviL, K., CHAN, E.,AND WASSERMAN, H. 1995. Comparing algorithms for dynamic speed-settihg o
low-power cpu. InLst Int'l Conference on Mobile Computing and Networking

GRUIAN, F. 2001. Hard real-time scheduling for low energy usinglséstic data and dvs processors. In
Proceedings of the International Symposium on Low-PowectEdnics and Design ISLPED’01

GRUNWALD, D., LEvis, P., lll, C. M., NEUFELD, M., AND FARKAS, K. 2000. Policies for dynamic clock
scheduling. IlSymp. on Operating Systems Design and Implementation

HARMON, M., BAKER, T. P.,AND WHALLEY, D. B. 1992. A retargetable technique for predicting exiecut
time. InIEEE Real-Time Systems Symposi68+77.

HEALY, C., SIODIN, M., RUSTAGI, V., WHALLEY, D., AND VAN ENGELEN, R. 2000. Supporting timing
analysis by automatic bounding of loop iteratiofeal-Time Systems 183 (May), 121-148.

HEALY, C. A., ARNOLD, R. D., MUELLER, F., WHALLEY, D.,AND HARMON, M. G. 1999. Bounding pipeline
and instruction cache performand&EE Transactions on Computers 48(Jan.), 53-70.

HEALY, C. A., SIODIN, M. ., AND WHALLEY, D. B. 1998. Bounding loop iterations for timing analysis |
IEEE Real-Time Embedded Technology and Applications Sgiompal2-21.

HEALY, C. A., WHALLEY, D. B., AND HARMON, M. G. 1995. Integrating the timing analysis of pipelining
and instruction caching. IEEEE Real-Time Systems Symposiagg8—297.

HERGENHAN, A. AND ROSENSTIEL, W. 2000. Static timing analysis of embedded software oraaded
processor architectures. DATE 552-559.

JEJURIKAR, R. AND GUPTA, R. 2005. Dynamic slack reclemation with procrastinatiohesluling in real-time
embedded systems. Design Automation Conference

JEJURIKAR, R., FEREIRA, C.,AND GUPTA, R. 2004. Leakage aware dynamic voltage scaling for reaa-ti
embedded systems. Design Automation Conference

KANG, D., CRAGO, S.,AND SUH, J. 2002. A fast resource synthesis technique for enefipiesft real-time
systems. IHEEE Real-Time Systems Symposium

LEE, C., HAHN, J., EO, Y., MIN, S., HA, R., HONG, S., RRK, C., LEE, M., AND KiM, C. 1996. Anal-
ysis of cache-related preemption delay in fixed-prioritggmptive scheduling. IEEEE Real-Time Systems
Symposium

LEE, C.-H.AND SHIN, K. G. 2004. On-line dynamic voltage scaling for hard réalet systems using the edf
algorithm. InIEEE Real-Time Embedded Technology and Applications Ssiomo

LEE, Y.-H. AND KRISHNA, C. M. 2003. Voltage-clock scaling for low energy consuroptin fixed-priority
real-time systemsReal-Time Syst. 28, 303-317.

L1,Y.-T. S., MALIK, S.,AND WOLFE, A. 1996. Cache modeling for real-time software: Beyonéctimapped
instruction caches. IFEEE Real-Time Systems Symposiagd—263.

LiM, S.-S., BAE, Y. H., NG, G. T., RHEE, B.-D., MIN, S. L., BRK, C. Y., SHIN, H.,AND KiM, C. S.
1994. An accurate worst case timing analysis for RISC psmss InIEEE Real-Time Systems Symposium
97-108.

LisPER B. 2003. Fully automatic, parametric worst-case exeauiime analysis. IWCET 99-102.

Liu, C.AND LAYLAND, J. 1973. Scheduling algorithms for multiprogramming ireechreal-time environment.
J. of the Association for Computing Machinery 2QJan.), 46—61.

ACM Transactions on Embedded Computing Systems, Vol. V,N\NdJonth 20YY.

30

Liu, Y. AND MOK, A. K. 2003. An integrated approach for applying dynamidagé scaling to hard real-time
systems. IfProceedings of the ninth IEEE Real-Time and Embedded Tghnand Applications Symposium

LUNDQVIST, K. AND WALL, G. 1996. Using object oriented methods in Ada 95 to implenieda. InAda
Europe

MALIK, S., MARTONOSI, M., AND LI, Y.-T. S. 1997. Static timing analysis of embedded softwarePro-
ceedings of the 34th Conference on Design Automation (DACAZM Press, NY, 147-152.

MITRA, T. AND ROYCHOUDHURY, A. 2002. A framework to model branch prediction for wcet lgsi. In2nd
Workshop on Worst Case Execution Time Analysis (WCET)

MOHAN, S., MUELLER, F., HAWKINS, W., RooT, M., HEALY, C., AND WHALLEY, D. 2005. Parascale:
Expoliting parametric timing analysis for real-time schits and dynamic voltage scaling. [IBEE Real-
Time Systems Symposiu@33—-242.

MossEg D., AYDIN, H., CHILDERS, B., AND MELHEM, R. 2000. Compiler-assisted dynamic power-aware
scheduling for real-time applications. Workshop on Compilers and Operating Systems for Low Power

MUELLER, F. 2000. Timing analysis for instruction cach&eal-Time Systems 1&3 (May), 209-239.

PARK, C. Y. 1993. Predicting program execution times by analyatatic and dynamic program pathReal-
Time Systems 1§, (Mar.), 31-61.

PERING, T., BURD, T.,AND BRODERSEN R. 1995. The simulation of dynamic voltage scaling ald¢pons. In
Symp. on Low Power Electronics

PiLLAI, P.AND SHIN, K. 2001. Real-time dynamic voltage scaling for low-powerbedded operating systems.
In Symposium on Operating Systems Principles

PUSCHNER P.AND K0OzA, C. 1989. Calculating the maximum execution time of realetprogramsReal-Time
Systems 12 (Sept.), 159-176.

RAMAPRASAD, H. AND MUELLER, F. 2006. Bounding preemption delay within data cache eefgz patterns
for real-time tasks. INEEE Real-Time Embedded Technology and Applications Ssitmo71-80.

SAEWONG, S.AND RAJKUMAR, R. 2003. Practical voltage-scaling for fixed-prioritysgstems. IProceedings
of the ninth IEEE Real-Time and Embedded Technology andcatiphs Symposium

SCHNEIDER, J. 2000. Cache and pipeline sensitive fixed priority schiegdor preemptive real-time systems.
In IEEE Real-Time Systems Symposit85—-204.

SETH, K., ANANTARAMAN, A., MUELLER, F., AND ROTENBERG E. 2003. Fast: Frequency-aware static
timing analysis. INEEE Real-Time Systems Symposidt-51.

SHIN, D., Kim, J.,AND LEE, S. 2001. Intra-task voltage scheduling for low-energydhaal-time applications.
In IEEE Design and Test of Computers

SHIN, Y., CHol, K., AND SAKURAI, T. 2000. Power optimization of real-time embedded systemsgariable
speed processors. Int'l Conf. on Computer-Aided Design

STASCHULAT, J.AND ERNST, R. 2004. Multiple process execution in cache related pptiem delay analysis.
In International Conference on Embedded Sofware

STASCHULAT, J., SSHLIECKER, S.,AND ERNST, R. 2005. Scheduling analysis of real-time systems with
precise modeling of cache related preemption delajuromicro Conference on Real-Time Systems

THESING, S., UYRIS, J., HHCKMANN, R.,ANDM. LANGENBACH, F. R., WILHELM, R.,AND FERDINAND,
C. 2003. An Abstract Interpretation-Based Timing Validatiof Hard Real-Time Avionics. |fProceedings
of the International Performance and Dependability SympoqIPDS)

UNGER, S.AND MUELLER, F. 2002. Handling irreducible loops: Optimized node $plif vs. dj-graphsACM
Transactions on Programming Languages and Systemé @4ily), 299-333.

VERA, X., LISPER B., AND XUE, J. 2003. Data caches in multitasking hard real-time systein IEEE
Real-Time Systems Symposium

VIVANCOS, E., HEALY, C., MUELLER, F.,AND WHALLEY, D. 2001. Parametric timing analysis. ACM SIG-
PLAN Workshop on Language, Compiler, and Tool Support fdoétided System8CM SIGPLAN Notices,
vol. 36. 88-93.

WEGENER J.AND MUELLER, F. 2001. A comparison of static analysis and evolutionasfitg for the verifi-
cation of timing constraintsReal-Time Systems 23 (Nov.), 241-268.

WEISER, M., WELCH, B., DEMERS, A., AND SHENKER, S. 1994. Scheduling for reduced cpu energylsh
Symp. on Operating Systems Design and Implementation

ACM Transactions on Embedded Computing Systems, Vol. V,N\NdJonth 20YY.

31

WHITE, R., MUELLER, F., HEALY, C., WHALLEY, D., AND HARMON, M. 1997. Timing analysis for data
caches and set-associative cacheslEEEE Real-Time Embedded Technology and Applications Ssiomo
192-202.

WHITE, R. T., MUELLER, F., HEALY, C., WHALLEY, D., AND HARMON, M. G. 1999. Timing analysis for
data and wrap-around fill cacheReal-Time Systems 123 (Nov.), 209-233.

ZHANG, F.AND CHANSON, S. T. 2002. Processor voltage scheduling for real-timiestasth non-preemptable
sections. INEEE Real-Time Systems Symposium

ZHONG, X. AND XU, C.-Z. 2005. Energy-aware modeling and scheduling of tiea- tasks for dynamic
voltage scaling. INEEE Real-Time Systems Symposium

ZHU, Y. AND MUELLER, F. 2004. Feedback edf scheduling exploiting dynamic geltacaling. InlEEE
Real-Time Embedded Technology and Applications Sympo8i4A3.

ZHU, Y. AND MUELLER, F. 2005. Feedback edf scheduling exploiting hardwarestessasynchronous dynamic
voltage scaling. IPACM SIGPLAN Conference on Language, Compiler, and Tool @tfpr Embedded
Systems203-212.

Received November 2005; revised April 2006; accepted &dme 2007

ACM Transactions on Embedded Computing Systems, Vol. V,N\NdJonth 20YY.

