
Parametric Timing Analysis and Its Application to
Dynamic Voltage Scaling

SIBIN MOHAN, FRANK MUELLER, North Carolina State University
MICHAEL ROOT, WILLIAM HAWKINS, CHRISTOPHER HEALY, Furman Univer-
sity
DAVID WHALLEY, Florida State University
and EMILIO VIVANCOS, Universidad Politecnica de Valencia

Embedded systems with real-time constraints depend on a-priori knowledge of worst-case execution times
(WCETs) to determine if tasks meet deadlines. Static timinganalysis derives bounds on WCETs but requires
statically known loop bounds.

This work removes the constraint on known loop bounds through parametric analysis expressing WCETs as
functions. Tighter WCETs are dynamically discovered to exploit slack by dynamic voltage scaling (DVS) saving
60%-82% energy over DVS-oblivious techniques and showing savings close to more costly dynamic-priority
DVS algorithms.

Overall, parametric analysis expands the class of real-time applications to programs with loop-invariant dy-
namic loop bounds while retaining tight WCET bounds.

Categories and Subject Descriptors: D.4.1 [Operating Systems]: Process Management—scheduling; D.4.7 [Op-
erating Systems]: Organization and Design—real-time systems and embedded systems

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Real-Time Systems, Worst-Case Execution Time, Timing Analysis, Dynamic
Voltage Scaling

This work was conducted at North Carolina State University and Florida State University; it was supported in
part by NSF grants CCR-0208581, CCR-0310860, CCR-0312695,EIA-0072043, CCR-0208892, CCR-0312493
and CCR-0312531.
Author’s address: Sibin Mohan, Frank Mueller, Dept. of Computer Science, Center for Embedded Systems
Research, North Carolina State University, Raleigh, NC 27695-7534, mueller@cs.ncsu.edu, +1.919.515.7889
Christopher Healy, Michael Root, William Hawkins, Dept. ofComputer Science, Furman University, Greenville,
SC 29613, chris.healy@furman.edu
David Whalley, Dept. of Computer Science, Florida State University, Tallahassee, FL 32306, whalley@cs.fsu.edu
Emilio Vivancos, Department de Sistemas Informaticos y Computacion, Universidad Politecnica de Valencia,
46022-Valencia, Spain, vivancos@dsic.upv.es
Preliminary versions of this material appeared in LCTES’01[Vivancos et al. 2001] and RTSS’05 [Mohan et al.
2005].
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 20YY ACM 1539-9087/20YY/0200-0001 $5.00

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY, Pages 1–31.

2 ·

1. INTRODUCTION

Real-time and embedded systems are increasingly deployed in safety-critical environ-
ments. Examples include avionics, power plants, automobiles,etc. The software, in gen-
eral, must be validated, which traditionally amounts to checking the correctness of the
input/output relation. Many embedded systems also impose timing constraints, which, if
violated, may not only render a system non-functional, but may also result in fallouts dan-
gerous to the environment. Such systems are commonly referred to as real-time systems,
and they impose timing constraints (termed as deadlines) oncomputational tasks to ensure
that results are provided on time. Often, approximate results supplied on time are preferred
to more precise results that may become available late,i.e., after the deadlines have passed.
One critical piece of information required by designers of real-time systems to verify that
tasks meet their deadlines, is the worst-case execution time (WCET) of each task. Bounds
on WCETs of tasks are automatically determined by static timing analysis tools. The total
time in the schedule and each task’s WCET can subsequently beused to make scheduling
decisions.

Static timing analysis [Puschner and Koza 1989; Harmon et al. 1992; Park 1993; Lim
et al. 1994; Healy et al. 1995; Chapman et al. 1996; Li et al. 1996; Malik et al. 1997; Healy
et al. 1998; White et al. 1999; Mueller 2000; Hergenhan and Rosenstiel 2000; Bernat and
Burns 2000; Wegener and Mueller 2001; Chen et al. 2001; Engblom et al. 2001; Engblom
2002; Bernat et al. 2002; Thesing et al. 2003; Mohan et al. 2005] provides bounds on the
WCET. Thetighter these bounds relative to the true worst-case times, the greater the value
of the analysis. Of course, even a tight bound has to be asafe boundin that it must not
underestimate the true WCET; it may only match it or exceed it. In general, timing analysis
is by no means an easy or trivial task. Bounds on execution times require constraints to
be imposed on the tasks (timed code), the most striking of which is the requirement to
statically bound the number of iterations of loops within the task. These loop bounds
address the halting problem,i.e., without these loop bounds, WCET bounds cannot be
derived. The programmer must provide these upper bounds on loop iterations when they
cannot be inferred by program analysis. Hence, these statically fixed loop bounds may
present an inconvenience. They also restrict the class of programs that can be used in
real-time systems. This type of timing analysis is referredto asnumerictiming analysis
[Harmon et al. 1992; Healy et al. 1995; White et al. 1997; Healy et al. 1998; White et al.
1999; Mueller 2000] since it results in a single numeric value for WCET given the upper
bounds on loop iterations.

The constraint on the known maximum number of loop iterations is removed bypara-
metric timing analysis (PTA) [Vivancos et al. 2001]. PTA permits variable length loops.
Loops may be bounded byn iterations as long asn is known prior to loop entry during
execution. Such a relaxation widens the scope of analyzableprograms considerably and
facilitates code reuse for embedded/real-time applications.

This paper derives (a) parametric expressions to bound WCETvalues of dynamically
bounded loops as polynomial functions. The variables affecting execution time, such as a
loop boundn, constitute the formal parameters of such functions, whilethe actual value
of n at execution time is used to evaluate such a function. This paper further describes
(b) the application of static timing analysis techniques todynamic scheduling problems
and (c) assesses the benefits of PTA for dynamic voltage scaling (DVS). This work con-
tributes a novel technique that allows PTA to interact with adynamic scheduler while

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY.

· 3

discovering actual loop bounds, during execution, prior toloop entry. At loop entry, a
tighter bound on WCET can be calculated on-the-fly, which maythen trigger scheduling
decisions synchronous with the execution of the task. The benefits of PTA resulting from
this dynamically discovered slack are analyzed. This slackcould be utilized in two ways
– (a) execution of additional tasks as a result of admissions scheduling, and(b) power
management.

Recently, numerous approaches have been presented that utilize DVS for both, general-
purpose systems [Weiser et al. 1994; Govil et al. 1995; Pering et al. 1995; Grunwald et al.
2000] and for real-time systems [Gruian 2001; Shin et al. 2000; Pillai and Shin 2001; Aydin
et al. 2001; Shin et al. 2001; Aydin et al. 2001; Kang et al. 2002; Zhang and Chanson
2002; Saewong and Rajkumar 2003; Lee and Krishna 2003; Liu and Mok 2003]. Core
voltages of contemporary processors can be reduced while lowering execution frequencies.
At these lower execution rates, power is significantly reduced, as power is proportional to
the frequency and to the square of the voltage:P ∝ V 2 × f .

In the past, real-time scheduling algorithms have shown howstatic and dynamic slack
may be exploited in inter-task DVS approaches [Gruian 2001;Shin et al. 2000; Pillai and
Shin 2001; Aydin et al. 2001; Kang et al. 2002; Zhang and Chanson 2002; Saewong and
Rajkumar 2003; Lee and Krishna 2003; Liu and Mok 2003; Lee andShin 2004; Zhu and
Mueller 2004; 2005; Jejurikar and Gupta 2005; Zhong and Xu 2005] as well as intra-task
DVS algorithms [Mosse et al. 2000; Shin et al. 2001; Aydin et al. 2001; AbouGhazaleh
et al. 2001]. Early task completion and techniques to assessthe progress of execution based
on past executions of a task lead to dynamic slack discovery.

We use a novel approach towards dynamic slack discovery. Slack, in our method, can
besafely predicted for future executionby exploiting early knowledge of parametric loop
bounds. This allows us to tightly bound the remainder of execution of a task. The po-
tential for dynamic power conservation viaParaScale, a novel intra-task DVS algorithm,
is assessed. ParaScale allows tasks to beslowed downas and when more slack becomes
available. This is in sharp contrast to past real-time DVS schemes, where tasks are sped up
in later stages as they approach their deadline [Gruian 2001; Lee and Shin 2004; Zhu and
Mueller 2004; 2005; Jejurikar and Gupta 2005; Zhong and Xu 2005].

We also implemented a novel enhancement to the static DVS scheme and incorporated
it with our intra-task slack determination scheme resulting in significant energy savings.
The energy savings approach those obtained by one of the mostaggressive dynamic DVS
algorithms [Pillai and Shin 2001].

The approach is evaluated by implementing PTA in a gcc environment with a MIPS-like
instruction set. Execution is simulated on a customized SimpleScalar [Burger et al. 1996]
framework that supports multi-tasking. We bound the effectof instruction cache misses
but not data cache misses in our experiments. The framework has been modified to sup-
port customized schedulers with and without DVS policies and an enhanced Wattch power
model [Brooks et al. 2000], which aids in assessing power consumption. We also imple-
mented a more accurate leakage power model similar to [Jejurikar et al. 2004] to estimate
the amount of leakage and static power consumed by the processor. This framework is
used to study the benefits of PTA in the context of ParaScale asa means to exploit DVS.

Our results indicate that ParaScale, applied on a modified version of a static DVS algo-
rithm, provides significant savings by utilizing our parametric approach to timing analysis.
These savings are observed for generated dynamic slack and potential reduction in overall

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY.

4 ·

energy. In fact, the amount of energy saved is very close to that obtained by the lookahead
EDF-DVS scheme [Pillai and Shin 2001] – a popular, aggressivedynamicDVS algorithm.
Thus, ParaScale makes it possible for static inter-task DVSalgorithms to be used on em-
bedded systems. This helps avoid more cumbersome (and difficult to implement) DVS
schemes while still achieving similar energy savings. Our approach utilizes online intra-
task DVS to exploit parametric execution times resulting inmuch lower power consump-
tions,i.e., even without any scheduler-assisted DVS savings. Hence, even in the absence of
dynamic priority scheduling, significant power savings maybe achieved,e.g., in the case
of cyclic executives or fixed-priority policies such as rate-monotonic schedulers [Liu and
Layland 1973]. Overall, parametric timing analysis expands the class of applications for
real-time systems to include programs with dynamic loop bounds that are loop invariant
while retaining tight WCET bounds and uncovering additional slack in the schedule.

The paper is structured as follows. Sections 2 and 3 provide information on numeric
as well as parametric timing analysis. Section 4 explains derivation of the parametric
formulae and their integration into the code of tasks. This section also shows the steps
involved in obtaining accurate WCET analysis for the new, enhanced code. Section 5
discusses the context in which parametric timing results are used. Section 6 introduces
the simulation framework. Section 7 elaborates on the experiments and results. Section 8
discusses related work, and Section 9 summarizes the work.

2. NUMERIC TIMING ANALYSIS

Knowledge of worst-case execution times (WCETs) is necessary for most hard real-time
systems. The WCET must be known or safely boundeda priori, so that the feasibility of
scheduling task sets in the system may be determined, given ascheduling policy, such as
rate-monotonic or earliest-deadline-first scheduling [Liu and Layland 1973]. Timing anal-
ysis methods typically fall into two categories –staticanddynamic. It has been shown that
dynamic timing analysis methods, based on trace-driven or experimental methods, cannot
guarantee the safety of WCET values obtained [Wegener and Mueller 2001]. Architec-
tural complexities, difficulties in determining worst-case input sets and the exponential
complexity of performing exhaustive testing over all possible inputs are also reasons why
dynamic timing analysis methods are infeasible in general.

In contrast, static timing analysis methods guarantee upper bounds on WCET of tasks.
In this work, we constrain ourselves to a toolset developed in our previous work [Healy
et al. 1999; Mueller 2000; White et al. 1999; Mohan et al. 2005]. Static timing analysis
models the traversal of all possible execution paths in the code. Execution timing is deter-
mined independent of program traces or input data to programvariables. The behavior of
architectural components is captured as execution paths are traversed. Paths are composed
to form functions, loops, etc. until finally the entire application is covered. Hence, we
obtain a bound on the WCET and the worst-case execution cycles (WCECs).

The organization of this timing analysis framework is presented in Figure 1. An opti-
mizing compiler is modified to produce control-flow and branch constraint information,
as a side-effect of the compilation process. Control-flow graphs and instruction and data
references are obtained from assembly code. One of the prerequisites of traditional static
timing analysis is that an upper bound on the number of loop iterations be provided to the
system.

The control-flow information is used by a static instructioncache simulator to con-

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY.

· 5

Estimate
WCET

Configuration
Caching

Simulator

Cache

Static

Source and Constraint
Files

C Control Flow

Information

Cache

Categorizations

Instruction
Dependent
Machine

Information

Timing
Analyzer

Compiler

Fig. 1. Static Timing Analysis Framework

struct a control-flow graph of the program and caching categorizations for each instruc-
tion [Mueller 2000]. This control-flow graph consists of thecall graph and the control
flow for each function. The control-flow graph of the program is analyzed, and a caching
categorization for each instruction and data reference in the program is produced using a
data-flow equation framework. Each loop level containing the instruction and data refer-
ences is analyzed to obtain separate categorizations. These categorizations for instruction
references are described in Table I. Notice that referencesare conservatively categorized
as always-misses if static cache analysis cannot safely infer hits on one or more references
of a program line.

Cache Category Definition

always miss Instruction may not be in cache when referenced.
always hit Instruction will be in cache when referenced.
first miss Instruction may not be in cache on 1st reference

for each loop execution, but is in cache on subse-
quent references.

first hit Instruction is in cache on 1st reference for each
loop execution, but may not be in cache on subse-
quent references.

Table I. Instruction Categories for WCET

The control-flow, the constraint information, the architecture-specific information and
caching categorizations are used by the timing analyzer to derive WCET bounds. Effects
of data hazards (load-dependent instruction stalls if a useimmediately follows a load in-
struction), structural hazards (instruction dependencies due to constraints on functional
units), and cache misses (obtained from the caching categorizations) are considered by a
pipeline simulator for each execution path through a function or loop. We can accommo-
date static branch prediction in the WCET analysis by addingthe misprediction penalty to
the non-predicted path.

Path analysis is then performed to select the longest execution path, and once timing
results for alternate paths are available, a fixed-point algorithm quickly converges to safely
bound the time for all iterations of a loop. Figure 2 illustrates an abstraction of the fix-point
algorithm used to perform loop analysis. The algorithm repeatedly selects the longest path
through the loop until a fixed point is reached (i.e., the caching behavior does not change
and the cycles for the worst-case path remains constant for subsequent loop iterations).
WCETs for inner loops are predicted before those for outer loops; an inner loop is treated
as a single node for outer loop calculations, and the controlflow is partitioned if the number
of paths within a loop exceeds a specified limit [Al-Yaqoubi 1997]. The correctness of this
fixed-point algorithm has been studied in detail [Arnold et al. 1994].

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY.

6 ·

cycles = iter = 0;
do{

iter = iter + 1;
wcpath = find the longest path;
cycles = cycles + wcpath→cycles;

} while (caching behavior of wcpath changes
&& iter < max iter);

cycles += (wcpath→cycles * (maxiter - iter));

Fig. 2. Numeric Loop Analysis Algorithm

By composing the WCET bounds for adjacent paths, the WCET of loops, functions and
the entire task is then derived by the timing analyzer by the traversal of a timing tree, which
is processed in a bottom up manner. WCETs for outer loop nest/caller functions are not
evaluated until the times for inner loop nests/callees are calculated.

3. PARAMETRIC TIMING ANALYSIS

In the static timing analysis method presented above, upperbounds on loop iterations must
be known. They can be provided by the user or may be inferred byanalysis of the code.
This severely restricts the class of applications that can be analyzed by the timing analyzer.
We refer to this class of timing analyzers asnumeric timing analyzerssince they provide a
single, numeric cycle value provided that upper loop boundsare known.

Parametric timing analysis (PTA) [Vivancos et al. 2001], incontrast, makes it possible
to support timing predictions when the number of iterationsfor a loop is not known until
run-time.

Consider the example in Figure 3. The for loop denotes application code traditionally
subject to numerical timing analysis for an annotated upperloop bound of 1000 iterations.
PTA requires that the value ofn be known prior to loop entry. The bold-face code denotes
additional code generated by PTA.

call IntraTaskScheduler(eval loop k(n));
for (i = 0; i<n ; i++) // max n = 1000

loop body ;

// Parametric Evaluation Function
int eval loop k(int loop bound) {

return (102 * loop bound);
}

Fig. 3. Use of Parametric Timing Analysis

The concept is to calculate a formula (or closed form) for theWCET of a loop, such
that the formula depends onn, the number of iterations of the loop. The calculation of
this formula, [102*n in Figure 3], needs to be relatively inexpensive since it will be used
at run-time to make scheduling decisions. These decisions may entail selection/admission
of additional tasks or modulation of the processor frequency/voltage to conserve power.
Hence, instead of passing a numeric value representing the execution cycles for loops or
functions up the timing tree, a symbolic formula is providedif the number of iterations of
a loop is not known.

The algorithm in Figure 4 is an abstraction of the revised loop analysis algorithm for
PTA. This algorithm iterates to a fixed point,i.e., until the caching behavior does not
change. The number of base cycles obtained from this algorithm is then saved. The

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY.

· 7

cycles = iter = 0;
do{

iter = iter + 1;
wcpath = find the longest path;
cycles = cycles + wcpath→cycles;

} while (caching behavior of wcpath changes);
basecycles = cycles - (wcpath→cycles * iter);

Fig. 4. Parametric Loop Analysis Algorithm

base cycles denote the extra cycles cumulatively inflicted by initial loop iterations be-
fore the cycles of the worst-case path reach a fixed point (wcpath → cycles). The
base cycles are subsequently used to calculate the number ofcycles in a loop as follows:

WCETloop = wcpath → cycles ∗ n + base cycles (1)

The correctness of this approach follows from the correctness of numeric timing analysis
[Healy et al. 1999]. When instruction caches are present in the system, the approach as-
sumes monotonically decreasing WCETs as the cache behaviorof different paths through
the loop is considered. This integrates well with our past techniques on bounding the
worst-case behavior of instruction and data caches [Mueller 2000; White et al. 1999].1

Equation 1 illustrates that the WCET of the loop depends on the base cycles and the
WCET path time (both constants) as well as on the number of loop iterations, which will
only be known at run-time for variable-length loops. The potentially significant savings
from such parametric analysis over the numeric approach areillustrated and discussed
later in Figure 7. The algorithm in Figure 4 is an enhancementof the algorithm presented
in Figure 2. Since the cycles for the worst-case path for the algorithm in Figure 2 has
been shown to be monotonically decreasing, the worst-case path cycles for the algorithm
in Figure 4 also monotonically decreases.

If the actual number of iterations (say: 100) exceeds the number of iterations required
to reach the fixed point for calculating the base cycles (say:5), then the parametric result
closely approximates that calculated by the numeric timinganalyzer. If, on the other hand,
the actual number of iterations (say: 3) is lower than the fixed point (say: 5), then there
could be an overestimation due to considering cycles on top of the WCET path cost (for
iterations 4 and 5). The formulae could be modified to deal with the special case that has
fewer iterations,e.g., by early termination of our algorithm if actual bounds are lower than
the fixed point (future work).

The general constraints on loops that can be analyzed by our parametric timing analyzer
are:

(1) Loops must be structured. A structured loop is a loop witha single entry point (a.k.a
reducible loop) [Aho et al. 1986; Unger and Mueller 2002].

(2) The compiler must be able to generate a symbolic expression to represent the number
of loop iterations.

(3) Rectangular loop nests can be handled, as long as the induction variables of these
loops are independent of one other.

(4) The value of theactualloop bound must be known prior to entry into the loop

1Other cache modeling techniques or consideration of timinganomalies due to caches [Berg 2006] may require
exhaustive enumeration of all paths and cache effects within the loop or an entirely different algorithm.

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY.

8 ·

// induction variable : strictly monotonically increasing/decreasing value;

//loop invariant variable : loop invariant relative to all nested loops up to

// outermost parametric loop

induction operation value : < constant > || < loop invariant variable >

initialization : induction variable = < induction operation value >;

loop : < for, while, do > < termination condition >

#pragma max(100)

< body >

body : < statement >;

< induction variable > < op > < induction operation value >;

op : + = || − =

condition : < induction variable >< comparison op >

< induction operation value >

Fig. 5. Syntactic and Semantic specifications for constraints on analyzable loops.

Syntactic and semantic specifications that suffice to meet these constraints are presented
in Figure 5. The pragma value is the pessimistic worst-case bound for the number of loop
iterations. Figure 5 is only informative. Actual analysis is performed on the intermedi-
ate code representation. Hence, we are able to handle transformations due to compiler
optimizations,e.g., loop unrolling.

The timing analyzer processes inner loops before outer loops, and nested inner loops
are represented as single blocks when processing a path in the outer loop. We represent
loops with symbolic formulae (rather than a constant numberof cycles) when the number
of iterations is not statically known. The WCET for the outerloop is simply the symbolic
sum of the cycles associated with a formula representing theinner loop as well as the cycles
associated with the rest of the path.

The analysis becomes more complicated when paths in a loop contain nested loops with
parametric WCET calculations of their own. Consider the example depicted in Figure 6,
which contains two loops, where an inner loop (block 4) is nested in the outer loop (blocks
2, 3, 4, 5). Assume that the inner loop is also parametric witha symbolic number of

2

5

6

1

3 4

Fig. 6. Example of an outer loop with multiple paths
ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY.

· 9

iterations. The loop analysis algorithm requires that the timing analysis finds the longest
path in the outer loop. This obviously depends on the number of iterations of the inner
loop. The minimum number of iterations for a loop is one, assuming that the number of
loop iterations is the number of times that the loop header (loop entry block) is executed.
If the WCET for path A (2→3→5) is less than the WCET for path B (2→4→5), for a
single iteration, then path B is chosen, else amax() function must be used to represent
the parametric WCET of the outer loop. Equation 2 illustrates this idea of calculating the
maximum of the two paths. Note though, that the WCET of these paths is obtained after
the caching behavior reaches a steady state, and the base cycles are the extra cycles before
either of these paths reach that steady state. The first valuepassed to themax()function in
this example would be numeric, while the second value would be symbolic.

WCETloop = max(WCETpath A time, WCETpath B time) ∗ n + base cycles (2)

Similar to numeric timing analysis, certain restrictions still apply. Indirect calls and
unstructured loops (loops with more than one entry point) cannot be handled. Recursive
functions can, in theory, be handled if the recursion depth is known statically or if the
depth can be inferred dynamically prior to the first functioncall (via parametric analy-
sis). Upper bounds on the loop iterations, parametric or not, still need not be known but
the bounds can be pessimistic as the actual bounds are now discovered during runtime.
In addition, the timing analysis framework has to be enhanced to automatically generate
symbolic expressions reflecting the parametric overhead ofloops, which will be evaluated
at runtime.

Table II shows the results of predicting execution time using the two types of techniques.
For these programs we predicted pipeline and instruction cache performance.Formula is

Program Formula ItersObserved Cyc.Numeric AnalysisParam. Analysis
Est. Cyc. Ratio Est. Cyc. Ratio

Matcnt 160n
2

+ 267n + 857 100 1,622,034 1,627,533 1.003 1,627,5571.003
Matmul 33n

3
+ 310n

2
+ 530n + 851 100 33,725,782 36,153,8371.07236,153,8511.072

Stats 1049n + 1959 100 106,340 106,859 1.005 106,859 1.005

Table II. Examples of Parametric Timing Analysis

the formula returned by the parametric timing analyzer and represents the parametrized
predicted execution time of the program. In order to evaluate the accuracy of the parametric
timing analysis approach, we ensure that each loop in these test programs iterates the same
number of times. Thus, n Iters represents the number of loop iterations for each loop in the
program and n also represents that value in the formulae. Thepower of n represents the
loop nesting level and the factor represents the cycles spent at that level. Note that most of
the programs had multiple loops at each nesting level. For example,160n2 indicates that
160 cycles is the sum of the cycles that would occur in a singleiteration of all the loops
at nesting level 2 in the program. If the number of iterationsof two different loops in a
loop nest differ, then the formula would reflect this as a multiplication of these factors. For
instance, if the matrix in Matcnt had m rows and n columns, where m6=n, then the formula
would be(160n + 267)m + 857. Parametric timing analysis supports any rectangular
loop nest of independent bounds known prior to loop entry, obtaining bounds for each
loop in an inner-most-out fashion using the algorithm in Figure 4. An extension could

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY.

10 ·

handle triangular loops with bounds dependent on outer iterators as well [Healy et al.
2000]. TheObserved Cycleswere obtained by using an integrated pipeline and instruction
cache simulator, and represents the cycles of execution given worst-case input data. The
Numeric Analysisrepresents the results using the previous version of the timing analyzer,
where the number of iterations of each loop is bounded by a number known to the timing
analyzer.Parametric Analysisrepresents cycles calculated at run-time when the number
of iterations is known and, in this case, equal to the static bound. Estimated Cyclesand
Ratio represent the predicted number of cycles by the timing analyzer and its ratio to the
Observed Cycles. The estimated parametric cycles were obtained by evaluating the number
of iterations with the formula returned by the parametric timing analyzer. These results
indicate that the parametric timing analyzer is almost as accurate as the numeric analyzer.

PTA enhances this code with a call to the intra-task scheduler and provides a dynam-
ically calculated, tighter bound on the WCET of the loop. Thetighter WCET bound is
calculated by an evaluation function generated by the PTA framework. It performs the
bounds calculation based on the dynamically discovered loop boundn. The scheduler
has access to the WCET bound of the loop derived from the annotated, static loop bound
by static timing analysis. It can now anticipate dynamic slack as the difference between
the static and the parametric WCET bounds provided by the evaluation function. Without
parametric timing analysis, the value ofn would have been assumed to be the maximum
value,i.e., 100 in this case.

�
�²
�²²
�²²²
�²²²²
�Éà²

÷
�Éà²

�
�Éà²

%
�Éà²

<
�Éà²

S
�Éà�

²
�Éà�

�

� �² �²² �²²²
��¯ÆÝ�ô�"9

Pg
~�¯

9¬P
�"

9Ã
Ú¯

ñ

�ÃÚ¯Æô~¬Pg~�¯9�6Ý�ÚÃ�
MÝÆÝÚ¯�Æô~¬~g~�¯9�6Ý�ÚÃ�
�ÃÚ¯Æô~¬Pg~�¯9�6Ý�~"�
MÝÆÝÚ¯�Æô~¬~g~�¯9�6Ý�~"�
�ÃÚ¯Æô~¬Pg~�¯9�d�Ý�9
MÝÆÝÚ¯�Æô~¬~g~�¯9�d�Ý�9

Fig. 7. WCET Bounds as a Function of the Number of Iterations

Figure 7 shows the effect of changing the number of iterations on loop bounds for para-
metric and numerical WCET analysis. Parametric analysis isable to adapt bounds to the
number of loop iterations, thereby more tightly bounding the actual number of required
cycles for a task (Table II). Hence, it can save a significant number of cycles compared to
numerical analysis (which must always assume the worst case– i.e. 1000 iterations in Fig-
ure 7). This effect becomes more pronounced as the number of actual iterations becomes
much smaller than the static bound. In such situations, parametric timing analysis is able
to provide significantly tighter bounds.

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY.

· 11

4. CREATION AND TIMING ANALYSIS OF FUNCTIONS THAT EVALUATE
PARAMETRIC EXPRESSIONS

In the previous section, the methodology for deriving WCET bounds from parametric for-
mulae was introduced. In this section, problems in embedding such formulae in application
code are discussed. An iterative reevaluation of WCETs is provided as a solution.

The challenge of embedding evaluation functions for parametric formulae is as follows.
When the code within a task is changed to include parametric WCET calculations, previous
timing estimates and the caching behavior of the task might be affected. One may either
inline the code of the formula or invoke a function that evaluates the symbolic formula.
Since both approaches affect caching, another pass of cacheanalysis has to be performed
on the modified code. We made an arbitrary design decision to pursue the latter approach.
Using this modular approach, the cache analysis can reach a fixed point in fewer iterations
as changes are constrained to functional boundaries ratherthan embedded within a function
affecting the caching of any instructions below if the inlined code changes in size. The cost
of calling an evaluation function is minimal compared to thebenefit, and a subsequent call
to the scheduler is required in any case to benefit from lower bounds.

Once a task has been enhanced with these parametric functions and their calls prior to
loops, the timing analyzer must be reinvoked to analyze the newly enhanced code. This
allows us to capture the WCET of generated functions and their invocations in the context
of a task. Notice that any re-invocation of the timing analyzer potentially changes the
parametric formulae and their corresponding functions such that we have to iterate through
the timing analysis process. This is illustrated in Figure 8where the process of generating
formulae is presented. The iterative process converges to afixed point when parametric

Use Annotated C Source File

YES

NO

Has

C Source File

C Source File
Annotated with

Parametric Evaluation
Functions

Parametric Formula
Changed ?

Send Annotated C Source
File to the Parametric Timing Analyser

Parametric
Timing Analyzer

for execution on Simulator

Fig. 8. Flow of Parametric Timing Analysis

formulae reach stable states. Typically, the parametric timing analysis and calculation of
the parametric formulae take less than a second to complete.Since this is an offline process,
it does not add to the overhead of the execution of the parametrized system.

An example is presented in Figure 9, where timing analysis isaccomplished in stages,
as parametric formulae are generated and evaluated later. In the example shown, a function

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY.

12 ·

Function

Function

Loop 2Loop 1

GeneratedAnalyzed
Numerically
Analyzed

Analyzed
Not Yet

Not Yet Not Yet

(a) Loop 2 contains a Symbolic number of iterations

Gen Function
Source code
generated

Not Yet
Analyzed

Loop 1
Numerically

Analyzed

Function

Loop 2

Analyzed
Parametrically

(b) Loop 2 is analyzed and WCET Function is gen-
erated

Parametrically

Function

Analyzed

Loop 1
Numerically

Analyzed

Loop 2

Analyzed

Not Yet

Numerically
Analyzed

Gen Function

(c) Generated Function in Analyzed

Loop 1 Loop 2
Numerically

Analysed

Function
Numerically

Analysed

Gen
Parametrically

Analyzed

Function
Parametrically

Analyzed

(d) Function containing code calling Generated
Function is analyzed

Fig. 9. Example of using Parametric Timing Predictions

is generated by the timing analyzer to calculate the WCET forloop 2, whose number of
iterations is only known at run-time.

The following sequence of operations takes place:

(1) A call to a function is inserted that returns the WCET for aspecified loop or function
based on a parameter indicating the number of loop iterations that is available at run
time. The instructions that are associated with the call andthe ones that use the return
value after the call are generated during the initial compilation. For instance, in Figure
9(a) a function calls the yet-to-be generated function to obtain the WCET of loop 2,
which contains a symbolic number of iterations.

(2) The timing analyzer generates the source code for the called function in a separate file
when processing the specified loop or function whose time needs to be calculated at
run time. For instance, Figure 9(c) shows that after loop 2 has been parametrically
analyzed, the code for the calculating function has been generated. Note that the
timing analysis tree representing the loops and functions in the program is processed
in a bottom-up fashion. The code in the function invoking thegenerated function is not
evaluated until after the generated function is produced. The static cache simulator can
initially assume that a call to an unknown function invalidates the entire cache. Figure
3 shows an example of the source code for such a generated function.

(3) The generated function is compiled and placed at the end of the executable. The for-
mula representing the symbolic WCET need not be simplified bythe timing analyzer.
Most optimizing compilers perform constant folding, strength reduction, and other
optimizations that will automatically simplify the symbolic WCET produced by the
timing analyzer. By placing the generated function after the rest of the program, in-
struction addresses of the program remain unaffected. While the caching behavior
may have changed, loops are unaffected since timing tree is processed in a bottom-up
order.

(4) The timing analyzer is invoked again to complete the analysis of the program, which
now includes calculating the WCET of the generated functionand the code invoking

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY.

· 13

this function. For instance, Figure 9(c) shows that the generated function has been
numerically analyzed and Figure 9(d) shows that the original function has been para-
metrically analyzed, which now includes the numeric WCET required for executing
the new function.

In short, this approach allows for timing analysis to proceed in stages. Parametric formu-
lae are produced when needed and source code functions representing these formulae are
produced, which are also subsequently compiled, inserted into the task code and analyzed.
This process continues until a formula is obtained for the entire program or task.

5. USING PARAMETRIC EXPRESSIONS

In this section, potential benefits of parametric formulae and their evaluation functions are
discussed. A more accurate knowledge of the remaining execution time provides a sched-
uler with information about additional slack in the schedule. This slack can be utilized in
multiple ways:

—A dynamic admission scheduler can accept additional real-time tasks due to parametric
bounds of the WCET of a task, which become tighter as execution progresses.

—Dynamic slack can also be used for dynamic voltage (and frequency) scaling (DVS) in
order to reduce power.

In the remainder of the paper, the latter case will be detailed. Recall that parametric tim-
ing analysis involves the integration of symbolic WCET formulae as functions and their
respective evaluation calls into a task’s code. Apart from these inserted function calls, we
also insert calls to transfer control to the DVS component ofan optional dynamic sched-
ulerbeforeentering parametric loops, as shown in Figure 3. The parametric expressions are
evaluated at run-time (using evaluation functions similarto the one in the figure) as knowl-
edge of actual loops bounds becomes available. The newly calculated, tighter bound, on
the execution time for the parametric loop is passed along tothe scheduler. The scheduler
is able to determine newly found dynamic slack by comparing worst-case execution cycles
(WCECs) for that particular loop with the parametrically bounded execution time. The
WCECs for each loop and the task as a whole are provided to the scheduler by the static
timing analysis toolset. Static loop bounds for each loop are provided by hand. Automatic
detection of bounds is subject to future work.

Dynamic slack originating from the evaluation of parametric expressions at run-time is
discovered and can be exploited by the scheduler for admission scheduling or DVS (see
above). Our work is unique in that we exploit early knowledgeof parametric loop bounds,
thus allowing us to tightly bound the overall execution of the remainderof the task. To this
effect, we have developed an intra-task DVS algorithm to lower processor frequency and
voltage. Another unique aspect of our approach is that everysuccessive parametric loop
that is encountered during the execution of the task potentially provides more slack and,
hence, allows us to further scale down the processor frequency. This is in sharp contrast
to past real-time schemes where DVS-regulated tasks are sped up as execution progresses,
mainly due to approaching deadlines.

6. FRAMEWORK

An overview of our experimental framework is depicted in Figure 10. The instruction
information fed to the timing analyzer is obtained from our P-compiler, which preprocesses

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY.

14 ·

gcc-generated PISA assembly. The C source files are also fed simultaneously to both the
static and the parametric timing analyzers. Safe (but, due to the parametric nature of loops,
not necessarily tight) upper bounds for loops are provided as inputs to the static timing
analyzer (STA). The worst-case execution times/cycles, for tasks as well as loops, provided
by the STA are provided as input to a scheduler. The C source files are also provided to
the PTA. The PTA produces source files annotated with parametric evaluation functions as
well as calls to transfer control to the schedulerbeforeentry into a parametric loop. These
annotated source files form the task set for execution by the scheduler.

C Source
Files

instruction/Gcc PISA
Compiler

P−Compiler
for PISA

assembly

Parametric

Static

Functions
& Parametric
C Source Files Task Set

Wattch
Power Model SimpleScalar Simulator

for Loops as well as entire tasks.

Worst Case Timing Information

Energy/Power Values

data info
Timing Analyzer

Timing Analyzer Scheduler

Fig. 10. Experimental Framework

To simplify the presentation, Figure 10 omits the loop that iterates over parametric func-
tions till they reach a fixed point (as discussed in Figure 8).This would create a feedback
between the PTA output and the C source files that provide the input to the toolset. For the
sake of this discussion, we also combine the set of timing analysis tools as one component
in Figure 10,i.e., we omit the internal structure of a static cache simulator and the timing
analyzer depicted in Figure 1.

We have implemented an EDF scheduler that creates an initialexecution schedule based
on the pessimistic WCET values provided by the STA. This scheduler is also capable of
lowering the operating frequency (and, hence, the voltage)of the processor by way of its
interaction with two DVS schemes: (a) aninter-taskDVS algorithm, which scales down
the frequency based on the execution of whole tasks (we use astaticand adynamicDVS
algorithm) and (b)ParaScale, an intra-task DVS scheme that, on top of the scaled fre-
quency from (a), which provides further opportunities to reduce the frequency based on
dynamic slack gains due to PTA.

The static DVS scheme is similar to the static EDF policy by [Pillai and Shin 2001].
However, it differs in that the processor frequency and voltage are reduced to their respec-
tive minimum during idle periods. Two dynamic DVS schemes have been implemented.
The first one, named “greedy DVS”, is a modification of the static DVS scheme and aggres-
sively reduces the frequency below the statically determined value until the next scheduler
invocation. The slack accrued from early completions of jobs is used to determine lower
frequencies for execution.

The second dynamic DVS algorithm is the “lookahead” EDF-DVSpolicy by the same
authors – it is a very aggressive dynamic DVS algorithm and lowers the frequency and
voltage to very low levels. Throughout this paper, we shall use the name “ParaScale” to

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY.

· 15

refer to the intra-task DVS technique that uses the parametric loop information to accu-
rately gauge the number of remaining cycles and lower the voltage/frequency. We shall
use “ParaScale-G” and “ParaScale-L”, to refer to the ParaScale implementations of the
greedy and lookahead inter-task DVS algorithms, respectively. ParaScale always starts a
task at the frequency value specified by the inter-task DVS algorithm. It then dynamically
reduces the frequency and voltage according to slack gains from the knowledge on the re-
calculated bounds on execution times for parametric loops.The effect of scaling is purely
limited to intra-task scheduling,i.e., the frequency can only be scaled down as much as the
completion due to the non-parametric WCET allows. Hence, each call to the scheduler due
to entering a parametric loop potentially results in slack gains and lower frequency/voltage
levels.

We performed (numeric) timing analysis on the two schedulers in our system. The
worst-case execution cycles for the schedulers (Table III)were then included in the utiliza-
tion calculations. The WCEC for the inter-task DVS algorithm was used as a preemption
overhead for all lower priority tasks. We assumed the worst-case behavior while dealing
with preemptions,i.e., the upper bound on the number of preemptions of a jobj is given
by the number of higher priority jobs released before jobj’s deadline.

The execution time for the intra-task DVS algorithm (ParaScale) was addedonceto the
WCEC of each task in our system. The intra-task scheduler is called exactly once for each
invocation of a task – prior to entry into the outermost parametric loop.

Scheduler Type DVS Algorithm
no dvs static dvs lookahead dvs

Inter-task 6874 7751 8627
Intra-task 1625 2502 3378

Table III. WCECs for inter-task and intra-task schedulers for various DVS algorithms.

The simulation environment (used in a prior study [Anantaraman et al. 2003]) is a cus-
tomized version of the SimpleScalar processor simulator that executes so-called PISA in-
structions (MIPS-like) [Burger et al. 1996]. PISA assembly, generated by gcc, also forms
the input to the timing analyzers. The framework supports multitasking and the use of
schedulers that operate with or without DVS policies. Our enhanced SimpleScalar is con-
figured to model a static, in-order pipeline, with universal, unpipelined function units. We
use a 64k instruction cache andno data cache. A static instruction cache simulator accu-
rately models all accesses and produces categorizations, such as those illustrated in Table
I. The data cache module has not been implemented yet, as our priority was to accurately
gauge the benefits and energy savings of using parametric timing analysis. For the time be-
ing, we assume a constant memory access latency for each datareference and leave static
data cache analysis for future work. Also, pipeline-related and cache-related preemption
delays (CRPD) [Lee et al. 1996; Schneider 2000; Staschulat and Ernst 2004; Staschulat
et al. 2005; Ramaprasad and Mueller 2006] are currently not modeled but, given accu-
rate and safe CRPD bounds, could easily be integrated. The Wattch model [Brooks et al.
2000], along with the following enhancements, also forms part of the framework, in that it
closely interacts with the simulator to assess the amount ofpower consumed. The original
Wattch model provides power estimates assuming perfect clock gating for the units of the
processor. An enhancement to the Wattch model provides morerealistic results in that
apart from perfect clock gating for the processor units, a certain amount of fixed leakage

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY.

16 ·

is also consumed by units of the processor that are not in use.Closer examination of the
leakage model of Wattch revealed that this estimation of static power may resemble but
does not accurately model the leakage in practice. Static power is modeled by assuming
that unused processor components leak approximately 10% ofthe dynamic power of the
processor. This is inaccurate since static power is proportional to supply voltage while
dynamic power is proportional to thesquareof the voltage. We discuss the effect of using
the Wattch model in the following section. To reduce the inaccuracies of the Wattch model
in determining the amount of leakage/static power consumed, we implemented a more ac-
curate leakage model similar to prior work [Jejurikar et al.2004]. The implementation is
configurable so that we can not only study current trends for silicon technology (in terms of
leakage), but we are also able to extrapolate on future trends (where leakage may dominate
the total energy consumption of processors).

The minimum and maximum processor frequencies under DVS are100MHz and 1GHz,
respectively. Voltage/frequency pairs are loosely derived from the XScale architecture
by extrapolating 37 pairs (five reported pairs between 1.8V/1GHz and 0.76V/150MHz)
starting from 0.7V/100MHz in 0.03V/25MHz increments. Idleoverhead is equivalent to
execution at 100MHz, regardless of the scheduling scheme.

7. EXPERIMENTS AND RESULTS

We created several task sets using a mixture of floating-point and integer benchmarks from
the C-Lab benchmark suite [C-Lab]. The actual tasks used areshown in Table IV. For

C Benchmark Function WCET
Cycles Time [ms]

adpcm Adaptive Differential
Pulse Code Modula-
tion

121,386,894 121.39

cnt Sum and count of
positive and negative
numbers in an array

6,728,956 6.73

lms An LMS adaptive sig-
nal enhancement

1,098,612 10.9

mm Matrix Multiplication 67,198,069 67.2

Table IV. Task Sets of C-Lab Benchmarks and WCETs (at 1 GHz)

each task, the main control loop was parametrized. We had initially parametrized loops at
all nesting levels, but we observed diminishing returns as the levels of nesting increased.
In fact, the large number of calls to the parametric scheduler due to nesting had adverse
effects on the power consumption relative to the base case. Hence, we limit parametric
calls to outer loops only.

Table V depicts the period (equal to deadline) of each task. All task sets have the same

Utilization Period= Deadline[ms]
adpcm cnt lms mm

20% 1200 240 600 1200
50% 1200 75 60 600
80% 1200 50 40 240

Table V. Periods for Task Sets
ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY.

· 17

hyperperiod of 1200 ms. All experiments executed for exactly one hyperperiod. This
facilitates a direct comparison of energy values across allvariations of factors mentioned
in Table VI.

The parameters for the experiments are depicted in Table VI.We vary utilization, the

Parameter Range of Values

Utilization 20%, 50%, 80%
Ratio WCET/PET 1x, 2x, 5x, 10x, 15x, 20x

Leakage Ratio 0.1, 1.0
Base
Parametric

DVS Static DVS
algorithms Greedy DVS

ParaScale-G
Lookahead
ParaScale-L

Table VI. Parameters Varied in Experiments

ratio of worst-case to parametric execution times (PETs), and DVS support as follows:
Base: Executes tasks at maximum processor frequency and up ton, the actual number

of loop iterations for parametric loops(not necessarily the maximum number of statically
bounded iterations). The frequency is changed to the minimum available frequency during
idle periods.

Parametric: Same as Base except that calls to the parametric scheduler are issued prior
to parametric loops without taking any scheduling action. This assesses the overhead for
scheduling of the parametric approach over the base case.

Static DVS:Lowers the execution frequency to the lowest valid frequency based on
system utilization. For example, at 80% utilization, the frequency chosen would be 80%
of the maximum frequency. Idle periods, due to early task completion, are handled at the
minimum frequency.

Greedy DVS:This scheme is similar to static DVS in that it starts with thestatically
fixed frequency but then aggressively lowers the frequency for the current time period
based on accrued slack from previous task invocations. Every time a job completes early,
the slack gained is passed on to the job which follows immediately. Let job i be the job
that completes early and generates slack and let jobj be the job which follows (consumer).
The greedy DVS algorithm calculates the frequency of execution,α′, for j as follows:

α′ =

[

α ∗ Cj

α ∗ Cj + slacki

]

α (3)

whereα is the frequency determined by the static DVS scheme. Noticethat(a) this slack
is “lost” or rather reset to zero when the next scheduling decision takes place and(b) Equa-
tion 3 ensures that the new frequency scales down jobj so that it attempts to completely
utilize the slack from the previous job, but it does not stretch beyond the time originally
budgeted for its execution based on the higher, statically determined, frequency. From (a)
and (b) above, we see that the new DVS scheme will never miss a deadline if the origi-
nal static DVS scheme never misses a deadline since greedy DVS accomplishes at least

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY.

18 ·

the same amount of work as before,i.e., it never utilizes processor time which lies be-
yond the original completion time of taskj. The processor switches to the lowest possible
frequency/voltage during idle time.

ParaScale-G:Combines the greedy and intra-task DVS schemes so that jobs start their
execution at the lowest valid frequency based on system utilization. Before a parametric
loop is entered, the frequency is scaled down further according to the difference between
the WCET bound of the loop and the parametric bound of the loopcalculated dynami-
cally. ParaScale-G also exploits savings due to already completed execution relative to the
WCET for frequency scaling. (These savings are small compared to the savings of para-
metric loops since parametric loops generally occur early in the code). It also utilizes job
slack accrued from previous task invocations to further reduce the frequency. As in the
case of the Static and Greedy DVS schemes, the processor switches to the lowest possible
frequency/voltage during idle time.

Lookahead:Implements an enhanced version [Zhu and Mueller 2005] of Pillai’s [Pillai
and Shin 2001]lookaheadEDF-DVS algorithm – a very aggressive dynamic DVS algo-
rithm.

ParaScale-L:Combines the lookahead and intra-task DVS which utilizes parametric
loop information. It is similar in operation to ParaScale-G. While ParaScale-G uses static
values for initial frequencies, ParaScale-L uses frequencies calculated by the aggressive,
dynamic EDF-DVS algorithm (lookahead).

Notice that all scheduling cases result in thesame amount of workbeing executed during
the hyperperiod (or any integer multiple thereof) due to theperiodic nature of the real-time
workload. Hence, to assess the benefits in terms of power awareness, we can measure
the energy consumed over such a fixed period of time and compare this amount between
scheduling modes.

The scheduler overhead for the greedy DVS scheme differs from those of the static DVS
scheme by only a few cycles, as the only additional overhead is the calculation to determine
α′ (Equation 3). This calculation is performed only once per scheduler invocation because
we only calculate the new frequency for the next scheduled task instance. Three types of
energy measurements are carried out during the course of ourexperiments:

PCG: Energy used withperfectclock gating (PCG) – only processor units that are used
during execution contribute to the energy measurements. This isolates the effect of the
parametric approach on dynamic power.

PCGL: Energy consumed by leakage,only, based on prior methods [Jejurikar et al.
2004]. This attempts to capture the amount of energy exclusively used due to leakage.

PCGL-W: Energy used with perfect clock gating for the processor units includingleak-
age. Leakage power is modeled by Wattch as 10% of dynamic power, which is not com-
pletely correct, as discussed before.

We also vary the ratio of worst-case to actual (parametric) execution times to study
the effect of variations in execution times and make the experimental results more realis-
tic. More often than not, the worst-case analysis of systemsresults in overestimations of
WCET. ParaScale can take advantage of this to obtain additional energy savings.

As part of the setup for the experiments we initialized the PCGL leakage model’s operat-
ing parameters with the ratio of leakage to dynamic power forone particular experimental
point. The ratio of dynamic and leakage energies for the WCEToverestimation of 1x and

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY.

· 19

utilization of 50% was chosen for this purpose. This ratio was used to set up appropri-
ate operating parameters (number of transistors, body biasvoltage,etc.), after which the
experiments were allowed to execute freely to completion. This gave us a unique opportu-
nity to study the effects of leakage for(a) current processor technologies, where the ratio
of leakage to dynamic may be 1:10 and(b) future trends where the leakage may increase
significantly as the above ratio approaches 1:1. The “leakage ratios” mentioned in table VI
refer to these two settings.

7.1 Overall Analysis

Figure 11 depicts the dynamic energy consumption for two sets of experiments –(a) Figure
11(a) shows the dynamic energy values for the case where the WCET overestimation is
assumed to be twice that of the PET, and(b) Figure 11(b) shows the results for the instance
where the WCET overestimation is assumed to be ten times thatof the PET. Both graphs
depict results for different utilization factors for each of the DVS schemes. From these
graphs, we see that the energy consumption by the ParaScale implementations outperform
their corresponding non-ParaScale implementations. Notethat the greedy DVS scheme is
able to achieve some savings relative to the static DVS scheme. These savings are fairly
small, as the slack from the early completion of a job is passed on to the next scheduled job,
if at all. ParaScale-G, on the other hand, is able to achievesignificantsavings over both
the aggressive greedy algorithm and the static DVS algorithm. This shows that most of
the savings of ParaScale-G is due to the early discovery of dynamic slack by the intra-task
ParaScale algorithm.

ParaScale-L also showsmuchlower energy consumptions than the static DVS, greedy
DVS, and the base case, always consuming the least amount of energy for all utilizations
among the three DVS schemes. Note that higher relative savings are obtained for the higher
utilization tasksets. This is true for all DVS schemes.

²

÷²

�²²

�÷²

Ç²²

Ç÷²

�²²

�÷²

(²²

(÷²

÷²²

?Ý9¯ VÝÆÝÚ¯�Æô~ 9�Ý�ô~¬m�d jÆ¯¯ñg¬m�d MÝÆÝd~Ý�¯Ja x���Ý¦¯Ýñ MÝÆÝd~Ý�¯Jx

É"
¯Æj

g¬P
�"
9ÃÚ

V�ô
�"
½Ú

Ôë

Ç²�
÷²�
<²�

(a) 2x Overestimation Factor

²

Ç²

(²

�²

<²

�²²

�Ç²

?Ý9¯ VÝÆÝÚ¯�Æô~ 9�Ý�ô~¬m�d jÆ¯¯ñg¬m�d MÝÆÝd~Ý�¯Ja x���Ý¦¯Ýñ MÝÆÝd~Ý�¯Jx

É"
¯Æj

g¬P
�"

9ÃÚ
V�ô

�"
½Ú

Ôë

Ç²�
÷²�
<²�

(b) 10x Overestimation Factor
Fig. 11. Energy consumption for PCG Wattch Model – Dynamic Energy consumption

Also, ParaScale-L outperforms the lookahead DVS algorithm, albeit by a small margin.
The reason for this small difference is that lookahead is a very aggressive dynamic scheme,
which tries to lower the frequency and voltage as much as possible and often executes at
the lowest frequencies. ParaScale-L is able to outperform the lookahead algorithm due to
the early discovery of future slack for parametric loops, which basic lookahead is unable
to exploit fully.

One very interesting result is the relatively small difference between the ParaScale-G
and the lookahead energy consumption results (for dynamic energy consumption). Thus,

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY.

20 ·

ParaScale-G, an intra-task DVS scheme that enhances astatic inter-task DVS scheme, re-
sults in energy savings that are close to those of the most aggressivedynamicDVS schemes,
albeit at lower scheduling overhead of the static scheme.

7.2 Leakage/Static Power

The results presented in Figure 11 are for energy values assuming perfect clock gating
(PCG) within the processor,i.e., they reflect the dynamic power consumption of the pro-
cessor. These results isolate theactual gains due to the parametric approach. However,
dynamic power is not the only source of power consumption on contemporary processors,
which also have to account for an increasing amount ofleakage/static powerfor inactive
processor units.

In Figures 12 and 13, we present the energy consumed due to leakage. Figure 12 presents
energy consumption with perfect clock gating and a constantleakage for function units that
are not being utilized, as gathered by the Wattch power model. In reality, Wattch estimates
the leakage to be 10% of the dynamic energy consumption at maximum frequency. This
might not be entirely accurate. Even with this simplistic model, we see that the ParaScale
implementations outperform all other DVS algorithms, as far as leakage is concerned. No-
tice that the absolute energy levels are very similar for 2x and 10x for the corresponding
schemes. This is due to the dominating leakage in this case.

Figure 13 depicts leakage results for a more realistic and accurate leakage model similar
to prior work [Jejurikar et al. 2004]. As mentioned earlier,we performed two sets of
experiments with two ratios of leakage to dynamic energy consumptions – 0.1 and 1.0.
While the former models current processor and silicon technologies, the latter extrapolates
future trends for leakage. The top portions of the graphs in Figure 13 indicate the dynamic
energy consumed while the lower portions indicate leakage.Figures 13(a) and 13(b) show
the results for a leakage ratio of 0.1 for the 2x and 10x WCET overestimations respectively,
and Figures 13(c) and 13(d) show similar results for a leakage ratio of 1.0.

From these graphs, we see that even when the leakage ratio is small, the leakage con-
sumed might be a significant part of the total energy consumption of the processor. In fact,
as Figure 13(b) shows, with a higher amount of slack in the system, the leakage could be-
come dominant eventually accounting for more than half of the total energy consumption
of the processor. Of course, Figures 13(c) and 13(d) show that even when the amount of
slack in the system is low (2x WCET overestimation case), leakage might dominate energy
consumption for future processors.

²

÷²²

�²²²

�÷²²

Ç²²²

Ç÷²²

�²²²

?Ý9¯ VÝÆÝÚ¯�Æô~ 9�Ý�ô~¬m�d jÆ¯¯ñg¬m�d MÝÆÝd~Ý�¯Ja x���Ý¦¯Ýñ MÝÆÝd~Ý�¯Jx

É"
¯Æj

g¬P
�"

9ÃÚ
V�ô

�"
½Ú

Ôë

Ç²�
÷²�
<²�

(a) 2x Overestimation Factor

²

÷²²

�²²²

�÷²²

Ç²²²

Ç÷²²

?Ý9¯ VÝÆÝÚ¯�Æô~ 9�Ý�ô~¬m�d jÆ¯¯ñg¬m�d MÝÆÝd~Ý�¯Ja x���Ý¦¯Ýñ MÝÆÝd~Ý�¯Jx

É"
¯Æj

g¬P
�"

9ÃÚ
V�ô

�"
½Ú

Ôë

Ç²�
÷²�
<²�

(b) 10x Overestimation Factor
Fig. 12. PCGL-W – Leakage Consumption from the Wattch Model

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY.

· 21

²

�²²

Ç²²

�²²

(²²

÷²²

�²²

Ç²� ÷²� <²� Ç²� ÷²� <²� Ç²� ÷²� <²� Ç²� ÷²� <²� Ç²� ÷²� <²� Ç²� ÷²� <²� Ç²� ÷²� <²�

É"
¯Æj

g¬½
ÚÔ

ë

ñg"ÝÚô~
�¯Ý�Ýj¯

?Ý9¯ VÝÆÝÚ¯�Æô~ 9�Ý�ô~¬m�d MÝÆÝd~Ý�¯Ja ����Ý¦¯Ýñ¬¬¬¬MÝÆÝd~Ý�¯JxjÆ¯¯ñg¬m�d

¬¬

(a) 2x Overestimation Factor, 0.1 Leakage Ratio

²

Ç²

(²

�²

<²

�²²

�Ç²

�(²

Ç²� ÷²� <²� Ç²� ÷²� <²� Ç²� ÷²� <²� Ç²� ÷²� <²� Ç²� ÷²� <²� Ç²� ÷²� <²� Ç²� ÷²� <²�

É"
¯Æj

g¬½
ÚÔ

ë

ñg"ÝÚô~
�¯Ý�Ýj¯

?Ý9¯ VÝÆÝÚ¯�Æô~ 9�Ý�ô~¬m�d MÝÆÝd~Ý�¯Jd ����Ý¦¯Ýñ¬¬¬¬MÝÆÝd~Ý�¯JxjÆ¯¯ñg¬m�d
(b) 10x Overestimation Factor, 0.1 Leakage Ratio

²

�²²

Ç²²

�²²

(²²

÷²²

�²²

%²²

<²²

Ç²
�

÷²
�

<²
�

Ç²
�

÷²
�

<²
�

Ç²
�

÷²
�

<²
�

Ç²
�

÷²
�

<²
�

Ç²
�

÷²
�

<²
�

Ç²
�

÷²
�

<²
�

Ç²
�

÷²
�

<²
�

É"
¯Æj

g¬½
ÚÔ

ë

ñg"ÝÚô~
�¯Ý�Ýj¯

?Ý9¯ VÝÆÝÚ¯�Æô~ 9�Ý�ô~¬m�d MÝÆÝd~Ý�¯Ja ����Ý¦¯Ýñ MÝÆÝd~Ý�¯JxjÆ¯¯ñg¬m�d
(c) 2x Overestimation Factor, 1.0 Leakage Ratio

²

÷²

�²²

�÷²

Ç²²

Ç÷²

�²²

�÷²

Ç²� ÷²� <²� Ç²� ÷²� <²� Ç²� ÷²� <²� Ç²� ÷²� <²� Ç²� ÷²� <²� Ç²� ÷²� <²� Ç²� ÷²� <²�

É"
¯Æj

g¬½
ÚÔ

ë

ñg"ÝÚô~
�¯Ý�Ýj¯

?Ý9¯ VÝÆÝÚ¯�Æô~ 9�Ý�ô~¬m�d MÝÆÝd~Ý�¯Ja ����Ý¦¯Ýñ¬¬¬¬¬MÝÆÝd~Ý�¯JxjÆ¯¯ñg¬m�d
(d) 10x Overestimation Factor, 1.0 Leakage Ratio

Fig. 13. PCGL – Leakage Consumption from the Wattch Model

The ParaScale algorithms either outperform or are very close to their respective DVS
algorithms (greedy DVS and lookahead) in all cases. The energy consumption of
ParaScale-G often results in energy consumption similar tothat of the dynamic looka-
head DVS algorithm. This holds true for leakage as well as thetotal energy consump-
tion (dynamic+leakage). Also, the combination of lookahead and the inter-task ParaScale
(ParaScale-L) outperforms all other implementations.

The graphs in Figure 13 indicate identical static energy consumptions for all utilizations
for the base and parametric experiments. The DVS algorithms, on the other hand, leak
different amounts of static power for each of the utilizations. This effect is due to the
fact that leakage depends on the actual voltage in the system. The static DVS algorithm
consumes more leakage with increasing systems utilizations since it executes at higher,
statically determined frequencies (and,hence,voltages)for higher utilizations. The greedy
scheme performsslightlybetter as it is able to lower the frequency of execution due toslack
passing between consecutive jobs. The lookahead and all ParaScale algorithms are able
to aggressively lower their frequencies and voltage. Thus,they have a different leakage
pattern compared to the constant values seen for the non-DVScases or the increasing
pattern for static DVS.

7.3 WCET/PET Ratio, Utilization Changes and Other Trends

We now consider the effects of changing the WCET overestimation factor and utilization
on energy consumption. We shall use the ParaScale-G algorithm as a case study and com-
pare it to static DVS and the base cases as depicted in Figures11.

We observe slightly smaller relative energy savings for higher WCET factors (10x) com-

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY.

22 ·

²

�²²

Ç²²

�²²

(²²

÷²²

�²²

�0 Ç0 ÷0 �²0 �÷0 Ç²0GPÉ^

É"
¯Æj

g¬P
�"

9Ã
ÚV

�ô�
"¬½

ÚÔ
ë

<²�¬u�ô��¬9�Ý�ô~¬m�d
<²�¬u�ô��¬MÝÆÝd~Ý�¯Ja
÷²�¬u�ô��¬9�Ý�ô~¬m�d
÷²�¬u�ô��¬MÝÆÝd~Ý�¯Ja
Ç²�¬u�ô��¬9�Ý�ô~m�d
Ç²�¬u�ô��¬MÝÆÝd~Ý�¯Ja

(a) Dynamic Energy Consumption Trends(PCG)

²

Ç²²

(²²

�²²

<²²

�²²²

�Ç²²

�0 Ç0 ÷0 �²0 �÷0 Ç²0GPÉ^

É"
¯Æj

g¬P
�"

9Ã
ÚV

�ô�
"¬½

ÚÔ
ë

<²�¬u�ô��¬9�Ý�ô~¬m�d
<²�¬u�ô��¬MÝÆÝd~Ý�¯Ja
÷²�¬u�ô��¬9�Ý�ô~¬m�d
÷²�¬u�ô��¬MÝÆÝd~Ý�¯Ja
Ç²�¬u�ô��¬9�Ý�ô~m�d
Ç²�¬u�ô��¬MÝÆÝd~Ý�¯Ja

(b) Wattch Leakage Consumption Trends(PCGL-
W)

²

÷

�²

�÷

Ç²

Ç÷

�²

�0 Ç0 ÷0 �²0 �÷0 Ç²0GPÉ^

É"
¯Æj

g¬P
�"

9Ã
ÚV

�ô�
"¬½

ÚÔ
ë

<²�¬u�ô��¬9�Ý�ô~¬m�d
<²�¬u�ô��¬MÝÆÝd~Ý�¯Ja
÷²�¬u�ô��¬9�Ý�ô~¬m�d
÷²�¬u�ô��¬MÝÆÝd~Ý�¯Ja
Ç²�¬u�ô��¬9�Ý�ô~m�d
Ç²�¬u�ô��¬MÝÆÝd~Ý�¯Ja

(c) Leakage Consumption Trends(PCGL), 0.1 Leak-
age Ratio

²

÷²

�²²

�÷²

Ç²²

Ç÷²

�²²

�0 Ç0 ÷0 �²0 �÷0 Ç²0GPÉ^

É"
¯Æj

g¬P
�"

9Ã
ÚV

�ô�
"¬½

ÚÔ
ë

<²�¬u�ô��¬9�Ý�ô~¬m�d
<²�¬u�ô��¬MÝÆÝd~Ý�¯Ja
÷²�¬u�ô��¬9�Ý�ô~¬m�d
÷²�¬u�ô��¬MÝÆÝd~Ý�¯Ja
Ç²�¬u�ô��¬9�Ý�ô~m�d
Ç²�¬u�ô��¬MÝÆÝd~Ý�¯Ja

(d) Leakage Consumption Trends(PCGL), 1.0 Leak-
age Ratio

Fig. 14. Energy Consumption Trends for increasing WCET Factors for ParaScale-G

pared to lower ones (2x). This is due to the fact that more slack is available in the system
for the static algorithm to reduce frequency and voltage. Irrespective of the overestimation
factor, ParaScale-L performs best for all utilizations, asdiscussed further in this section.
The absolute energy level of 2x overestimation is about 3.5 times that of the 10x case
without considering leakage for the highest utilization.

Furthermore, our technique performs better for higher utilizations, as seen for experi-
ments with 80% utilization in Figure 11(a). As the ParaScaletechnique is able to take
advantage of intra-task scheduling based on knowledge about past as well as future ex-
ecution for a task, it is able to lower the frequency more aggressively than other DVS
algorithms. This is more noticeable for higher utilizationtasksets because less static slack
is available to static algorithms for frequency scaling.

Figure 14 shows the trends in energy consumption across WCET/PET ratios ranging
from 1x (no overestimation) to 20x. Energy values for both DVS algorithms — static DVS
and ParaScale-G — are presented. In Figure 14(a), we see thatenergy consumption drops
as the over-estimation factor is increased, since less workhas to be done during the same
time frame. We also see that the ParaScale-G algorithm is able to obtain moredynamic
energy savings relative to the static DVS algorithm.

Similar trends exist in the results for PCGL-W (Figure 14(b)), except that the leakage,
which permeates all experiments, results in lower relativesavings compared to the PCG
measurements. When contrasting Figure 14(a) to Figure 14(b), we observe that the overall
energy consumption is higher in the latter. This is due to additional static power that is
modeled by Wattch as 10% of dynamic power.

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY.

· 23

From the graphs for leakage (PCGL) shown in Figures 14(c) and14(d), we see a more
accurate modeling of leakage prevalent in the system. As theWCET overestimation factor
is increased from 1x to 20x the leakage consumption trends appear similar, across the
board, for both – ParaScale-G as well as static DVS . We observe that more and more the
time is spent in idling(executing at the lowest frequency and operating voltage) and less in
execution. The leakage energy increases slightly from 2x to5x, but from there on remains
nearly constant until 20x.

7.4 Comparison of ParaScale-G with Static DVS and Lookahead

We now present a comparison of ParaScale with greedy DVS and lookahead since the
latter are two very effective DVS algorithms. Both algorithms have been implemented as
stand-alone versions as well as hybrids integrated with ParaScale.

We already compared ParaScale-G to static DVS based on results provided in Figure
14. The energy consumption for ParaScale-G is significantlylower than that of static DVS
across all experiments in Figure 14(a). This is because ParaScale-G can lower frequencies
more aggressively over static DVS algorithms. Static DVS can only lower frequencies
to statically determined values. We infer from Figure 14 that the relative savings drop
in lower utilization systems and in systems with a high overestimation value. Due to the
amount of static slack prevalent in such systems, the staticDVS scheme is able to lower
the frequency/voltage to a higher degree. For higher utilizations and for systems where
the PETs match WCETs more closely, ParaScale-G is able to show the largest gain. This
underlines one advantage of the ParaScale technique,viz. its ability to predict dynamic
slackjust before loops. This is particularly pronounced for higher utilization experiments
resulting in lower energy consumption.

Consider the leakage results from Figure 14(b). We observe that the differences between
the energy values for static DVS and ParaScale are much larger, especially for the lower
utilization and higher WCET ratios. There exist two reasonsfor this result. (1) Static power
depends on the voltage. When running at higher frequencies/voltages, as necessitated by
higher utilizations, both static and dynamic power increases. (2) Static power is estimated
to be 10% of the dynamic power by Wattch. Hence, higher utilizations with higher volt-
age and power values result in larger static power as well. This is compounded by the
inaccurate modeling of leakage by the Wattch model. Dynamicpower is proportional to
the square of the supply voltage, whereas static power is directly proportional to the sup-
ply voltage. By assuming that static power accounts for 10% of power, Wattch makes the
simplifying assumption that static power also scales quadratically with supply voltage.

Results from the more accurate leakage model are presented in Figures 14(c) and 14(d).
We see that for the highest utilization (80%) ParaScale-G isable to lower the frequency
and voltage enough so that the leakage energy dissipation islower than that for static DVS.
For the 50% and 20% utilizations, ParaScale-G shows a slightly worse performance. The
leakage model that we used [Jejurikar et al. 2004] biases theper-cycle energy calculation
with the inverse of the frequency (f−1), which is the delay per cycle. Hence, aggressively
lowering the frequency to the lowest possible levels may actually be counter-productive
as far as leakage is concerned. The static DVS scheme lowers the frequency of execution
to a lowest possible value of 200 MHz (for the 20% utilizationexperiments) while the
ParaScale schedulers often hit the lowest frequency value (100 MHz). It is possible that
the quadratic savings in energy due to a lower voltage are overcome by the increased delay
per cycle at the lowest frequencies. Hence, if the number of execution cycles is large

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY.

24 ·

enough, ParaScale experiments “leak” more energy than the static DVS scheme. Figure 13,
though, shows that thetotal energy savings for the system is still lower for the ParaScale
experiments compared to their equivalent non-ParaScale implementations, and ParaScale-
L still consumes the least amount of energy.

Figure 15 depicts ParaScale-G, our inter-task DVS enhancement to the static DVS al-
gorithm. It shows an energy signature that comes close to that of lookahead, one of the

²

÷²

�²²

�÷²

Ç²²

Ç÷²

�²²

�÷²

�0 Ç0 ÷0 �²0 �÷0 Ç²0GPÉ^

É"
¯Æj

g¬P
�"

9Ã
ÚV

�ô�
"¬½

ÚÔ
ë

<²�¬u�ô��¬MÝÆÝd~Ý�¯Ja
<²�¬u�ô��¬����Ý¦¯Ýñ
÷²�¬u�ô��¬MÝÆÝd~Ý�¯Ja
÷²�¬u�ô��¬����Ý¦¯Ýñ
Ç²�¬u�ô��¬MÝÆÝd~Ý�¯Ja
Ç²�¬u�ô��¬����Ý¦¯Ýñ

Fig. 15. Comparison of Dynamic Energy Consumption for ParaScale-G and Lookahead

best dynamic DVS algorithms. At times, ParaScale-G equals the performance of looka-
head. This is particularly true for lower WCET factors wherelookahead has less static
and dynamic slack to play with. Here, ParaScale-G’s performance is just as good, because
it detects future slack on entry into parametric loops. Thisimplies that we can achieve
energy savings similar to those obtained by lookahead with apotentially lower algorith-
mic and implementation complexity. In fact, ParaScale-G isanO(1) algorithm evaluating
the parameters for only thecurrent task whereas lookahead, anO(n) algorithm traversing
through all tasks in the system. This becomes more relevant as the number of tasks in the
system is increased.

7.5 Overheads

The overheads imposed by the scheduler (especially the parametric scheduler, due to mul-
tiple calls made to it during task execution) and the frequency/voltage switching overheads
are side-effects of the ParaScale technique. These scheduler overheads impose additional
execution time on the system. The scheduler overheads were modeled using our timing
analysis framework and are enumerated in Table III. When compared to the execution cy-
cles for the tasks (Table IV) in the system, we see that the scheduler overheads are almost
negligible when compared with task execution times. For example, the largest number of
cycles used during a scheduler invocation is for the inter-task lookahead scheduler (8627
cycles). This value is less than0.8% of the WCEC for the smallest task in the system,viz.
LMS. Hence, the scheduler overheads have no significant impact on the execution of the
tasks or the amount of energy savings.

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY.

· 25

7.5.1 Frequency Switch Overheads.To study the overheads imposed by the switching
of frequencies and voltages, we imposed the overhead for a synchronous switch observed
on an IBM PowerPC 405LP [Zhu and Mueller 2005]. The actual value used was162µs

for the overhead. We collected data on the number of frequency/voltage transitions for
each experiment. The exact value of switching overhead varies depending on the actual
difference between the voltages and whether it is being increased or decreased. We use
this pessimistic, worst-case value to measure the worst possible switching overhead for the
system. The highest overhead is incurred for the 20x overestimation case with utilization of
80% for ParaScale-G. The cumulative value for the overhead in this case was42ms. To put
this in perspective, let us assume that the entire simulation had executed at the maximum
frequency of 1 GHz. (thus completing in the shortest possible duration). The hyperperiod
for each experiment was1.2 seconds. All experiments were designed to execute for one
hyperperiod. Since the tasksets execute at lower frequencies than the maximum, they will
take longer to complete but still finish within their deadlines. Also, the frequency switch
overhead is typically lower than162µs (depending on the exact difference between the
voltage/frequency levels). Hence, we can safely assume that the frequency switch over-
heads would bemuchless than the worst-case value of42ms. Typically, the overheads
would be close to, or even less than, 1% of the total executiontime of all tasks.

We also measured the energy consumption for the time period when the switching is
taking place (162µs), for all three energy schemes – PCG, PCGL and PCGL-W. The re-
spective values were 0.493 mJ, 0.007 mJ and 0.732 mJ, respectively, at 1 GHz. Considering
the energy signature of the entire task set and the experiments, we can conclude that the
energy overheads for frequency switching will be negligible.

8. RELATED WORK

Timing analysis has become an increasingly popular research topic. This can be attributed
in part to the problem of increasing architectural complexity, which makes applications
less predictable in terms of their timing behavior, but it may also be due to the abundance
of embedded systems that we have recently seen. Often, application areas of embedded
systems impose stringent timing constraints, and system developers are becoming aware
of a need for verified bounds on execution times. While dynamic timing methods cannot
provide safe bounds on the WCET, static timing analysis can [Wegener and Mueller 2001].
Nonetheless, dynamic bounds can complement static ones by providing a means to assess
their tightness.

These developments are reflected in the research community where numerous methods
for static timing analysis have been devised, ranging from unoptimized programs execut-
ing on simple CISC processors to optimized programs on pipelined RISC processors and
even uncached architectures to instruction and data cachesas well as branch prediction
and locking caches [Park 1993; Puschner and Koza 1989; Harmon et al. 1992; Lim et al.
1994; Healy et al. 1995; Mueller 2000; White et al. 1999; Ferdinand and Wilhelm 1999;
Lundqvist and Wall 1996; Li et al. 1996; Colin and Puaut 2001;Mitra and Roychoudhury
2002; Vera et al. 2003; Thesing et al. 2003].

In the past, path expressions were used to combine a source-oriented parametric ap-
proach of WCET analysis with timing annotations, verifyingthe latter with the former,
particularly by Chapmanet al. [Chapman et al. 1996]. Bernat and Burns proposed alge-
braic expressions to represent the WCET of programs [Bernatand Burns 2000]. Bernatat

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY.

26 ·

el. used probabilistic approaches to express execution boundsdown to the granularity of
basic blocks that could be composed to form larger program segments [Bernat et al. 2002].
Yet, the combiner functions are not without problems, and timing of basic blocks requires
architectural knowledge similar to static timing analysistools.

Parametric timing analysis by Vivancoset al. [Vivancos et al. 2001] first introduced
techniques to handle variable loop bounds as an extension tostatic timing analysis. That
work focuses on the use of static analysis methods to derive parametric formulae to bound
variable-length loops. Our work, in contrast, assesses thebenefits of this work, particularly
in the realm of power-awareness.

The effects of DVS on WCET have been studied in the FAST framework [Seth et al.
2003]. Here, parametrization was used to model the effect ofmemory latencies on pipeline
stalls as processor frequency is varied. In our timing analyzer, we currently do not model
these effects. This does not affect the correctness of our approach since WCET bounds are
safe without such modeling, but they may not be tight, as shown in the FAST framework.
Hence, the benefits of parametric DVS may even be better than what we report here.

The VISA framework suggested architectural enhancements to gauge progress of exe-
cution by sub-task partitioning and exploits intra-task slack with DVS techniques [Anan-
taraman et al. 2003; 2004]. Their technique did not exploit parametric loops. Our work, in
contrast, takes advantage of dynamically discovered loop bounds and does not require any
modifications at the micro-architecture level.

Lisper used polyhedral flow analysis to specify the iteration space of loop nests and
express them as parametric integer programming problems tosubsequently derive a para-
metric WCET formula suitable for timing analysis using IPET(Implicit Path Enumeration
Technique) [Lisper 2003]. Recent work by Byhlinet. al. [Byhlin et al. 2005] underlines
the importance of using parametric expressions to support WCET analysis in the presence
of different modes of execution. They parametrize their WCET predictions for automotive
software based on certain parameters, such as frame size. Their work focuses on studying
the relationship between parameters unique to modes of execution and their effect on the
WCET. Other work by Gheorghitaet al. [Gheorghita et al. 2005] also promotes a paramet-
ric approach but at the level of basic blocks to distinguish different worst-case paths.. Our
parametric expressions, predating any of this work, accurately bound the WCET values for
loops. This extends the applicability of static analysis to a new class of programs. We take
advantage of these accurate predictions at run-time for benefits such as power savings and
admission of additional tasks. Tighter bounds on the WCET inthe presence of DVS can
also be achieved through a parametric model representing the latency in cycles to access
main memory [Seth et al. 2003]. Due to DVS and constant memoryaccess times, a lower
processor frequency results in fewer cycles to access memory, which is reflected in WCET
bounds in their FAST framework. This work is orthogonal to our method of PTA. In fact,
our results could still be improved by employing FAST in the ParaScale context.

The most closely related work in terms of intra-task DVS is the idea of power manage-
ment points (PMPs) [AbouGhazaleh et al. 2001; AbouGhazalehet al. 2003; AbouGhazaleh
et al. 2003]. In this work, path-dependent power managementhints (PMHs) were used to
aggregate knowledge about “saved” execution time comparedto the worst-case execution
that would have been imposed along different paths. This work differs in that it exploits
knowledge aboutpastexecution while we discover loop bounds that let us provide tighter
bounds on past andfutureexecution within the same task. The work is also evaluated with

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY.

· 27

SimpleScalar, albeit with a more simplistic power model (E = CV 2) while we assess
power at the micro-architecture level using enhancements of Wattch [Brooks et al. 2000]
as well as a more accurate leakage model [Jejurikar et al. 2004]. Again, our results could
potentially be improved by benefiting from knowledge about past execution, which may
lead to additional power savings. This is subject to future work.

An intra-tasks DVS algorithm that “discovers” the amount ofexecution left in the system
and appropriately modifies the frequency and voltage of the system is presented in [Shin
et al. 2001]. Their work depends on inserting various instrumentation points at compile
time into various paths in the code. Evaluation of these instrumentation points at runtime
provides information about the paths taken during execution and thepossibleamount of
execution time left along that path similar to PMPs. They insert instrumentation points in
every basic block to determine the exact execution path, which would incur a significant
overhead during runtime. This may also affect the caching and, hence, timing behavior of
the task code. Our work differs significantly in that we only assess the amount of execution
time remainingonce(prior to entry into a parametric loop), thus incurring an overhead
only once. We are, thus, able to accurately gauge the amount of execution remaining with
a single overhead per loop and per task instance. We also estimate the new caching and
timing behavior of the code after the call to the intra-task scheduler by invoking our timing
analysis framework on the modified code until the parametricWCET formulae stabilize.
Another technique presented in their paper is that of ”L-type voltage scaling edges”. They
utilize the idea that loops are often executed for a smaller number of iterations than the
worst-case scenario. During run-time, they discover the actual number of loop iterations
at loop exit and then gauge the number of cycles saved. In contrast, parametric timing
analysis determines loop savingsprior to loop entry and exploits savings early,e.g., using
DVS, such as in ParaScale. This difference is a significant advantage for the parametric
approach, particularly for tasks where a single loop nest accounts for most of the execution
time.

9. CONCLUSION

In this paper, we (a) develop the novel technique of parametric timing analysis that obtains
a formula to express WCET bounds, which is subsequently integrated into the code of
tasks and (b) derive techniques to exploit parametric formulaevia online scheduling and
power-aware scheduling. We show how parametric formulae are integrated into the timing
analysis process without sacrificing the tightness of WCET bounds. A fixed-point approach
to embed parametric formulae into application code is derived, which bounds the WCET
of not only the application code but also the embedded parametric functions and their
calls once integrated into the application. Prior to entering parametric loops, the actual
loop bounds are discovered and then used to provide WCET bounds for the remainder of
execution of the tasks that are tighter than their static counterpart.

The benefit from parametric analysis is quantified in terms ofpower savings for sole
intra-task DVS as well as ParaScale-G, our combined intra-task and greedy inter-task DVS.
Processor frequency and voltage are scaled down as loop bounds of parametric loops are
discovered. Power savings ranging between 66% to 80% compared to DVS-oblivious tech-
niques are observed, depending on system utilization and the amount of overestimation for
loop bounds. These energy savings are comparable to other DVS algorithms based on
dynamic priority scheduling. Yet, our intra-task scheme lowers time complexity and can

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY.

28 ·

be implemented as an extension tostatic priority schedulingor such as cyclic executives.
Conventional timing analysis methods will be unable to achieve these benefits due to the
lack of knowledge about remaining execution times of tasks in conventional static timing
analysis. This illustrates the potential impact of PTA on the filed of timing analysis and
real-time systems practitioners.

Overall, parametric timing analysis expands the class of applications for real-time sys-
tems to programs with dynamic loop bounds that are loop invariant while retaining tight
WCET bounds and uncovering additional slack in the schedule.

REFERENCES

ABOUGHAZALEH , N., CHILDERS, B., MOSSE, D., MELHEM, R., AND CRAVEN, M. 2003. Energy manage-
ment for real-time embedded applications with compiler support. InACM SIGPLAN Conference on Language,
Compiler, and Tool Support for Embedded Systems.

ABOUGHAZALEH , N., MOSSE, D., CHILDERS, B., AND MELHEM, R. 2001. Toward the placement of power
management points in real time applications. InWorkshop on Compilers and Operating Systems for Low
Power.

ABOUGHAZALEH , N., MOSSE, D., CHILDERS, B., MELHEM, R., AND CRAVEN, M. 2003. Collaborative
operating system and compiler power management for real-time applications. InIEEE Real-Time Embedded
Technology and Applications Symposium.

AHO, A. V., SETHI, R., AND ULLMAN , J. D. 1986.Compilers – Principles, Techniques, and Tools. Addison-
Wesley.

AL-YAQOUBI, N. 1997. Reducing timing analysis complexity by partitioning control flow. M.S. thesis, Florida
State University.

ANANTARAMAN , A., SETH, K., PATIL , K., ROTENBERG, E., AND MUELLER, F. 2003. Virtual simple archi-
tecture (VISA): Exceeding the complexity limit in safe real-time systems. InInternational Symposium on
Computer Architecture. 250–261.

ANANTARAMAN , A., SETH, K., PATIL , K., ROTENBERG, E., AND MUELLER, F. 2004. Enforcing safety of
real-time schedules on contemporary processors using a virtual simple architecture (visa). InIEEE Real-Time
Systems Symposium. 114–125.

ARNOLD, R., MUELLER, F., WHALLEY, D. B., AND HARMON, M. 1994. Bounding worst-case instruction
cache performance. InIEEE Real-Time Systems Symposium. 172–181.

AYDIN , H., MELHEM, R., MOSSE, D., AND MEJIA-ALVAREZ, P. 2001. Dynamic and agressive scheduling
techniques for power-aware real-time systems. InIEEE Real-Time Systems Symposium.

BERG, C. 2006. Plru cache domino effects. In6th Intl. Workshop on Worst-Case Execution
Time (WCET) Analysis, F. Mueller, Ed. Number 06902 in Dagstuhl Seminar Proceedings. Inter-
nationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany.
<http://drops.dagstuhl.de/opus/volltexte/2006/672> [date of citation: 2006-01-01].

BERNAT, G. AND BURNS, A. 2000. An approach to symbolic worst-case execution timeanalysis. In25th IFAC
Workshop on Real-Time Programming.

BERNAT, G., COLIN , A., AND PETTERS, S. 2002. Wcet analysis of probabilistic hard real-time systems. In
IEEE Real-Time Systems Symposium.

BROOKS, D., TIWARI , V., AND MARTONOSI, M. 2000. Wattch: A framework for architectural-level power
analysis and optimizations. InProceedings of the 27th Annual International Symposium on Computer Archi-
tecture. IEEE Computer Society and ACM SIGARCH, Vancouver, BritishColumbia, 83–94.

BURGER, D., AUSTIN, T., AND BENNETT, S. 1996. Evaluating future microprocessors: The simplescalar
toolset. Tech. Rep. CS-TR-96-1308, University of Wisconsin - Madison, CS Dept. July.

BYHLIN , S., ERMEDAHL, A., GUSTAFSSON, J.,AND PER, B. L. 2005. Applying static wcet analysis to auto-
motive communication software. InECRTS (Euromicro Conference on Real-Time Systems).

C-LAB. Wcet benchmarks. Available from http://www.c-lab.de/home/en/download.html.

CHAPMAN , R., BURNS, A., AND WELLINGS, A. 1996. Combining static worst-case timing analysis and pro-
gram proof.Real-Time Systems 11,2, 145–171.

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY.

· 29

CHEN, K., MALIK , S.,AND AUGUST, D. I. 2001. Retargetable static timing analysis for embedded software.
In Proceedings of the International Symposium on System Synthesis (ISSS).

COLIN , A. AND PUAUT, I. 2001. Worst case execution time analysis for a processorwith branch prediction.
Real-Time Systems 18,2/3, 249–174.

ENGBLOM, J. 2002. Processor pipelines and static worst-case execution time analysis. Ph.D. thesis, Dept. of
Information Technology, Uppsala University.

ENGBLOM, J., ERMEDAHL, A., SJDIN, M., GUSTAFSSON, J., , AND HANSSON, H. 2001. Execution-time
analysis for embedded real-time systems. InSTTT (Software Tools for Technology Transfer) special issue on
ASTEC.

FERDINAND, C. AND WILHELM , R. 1999. Efficient and precise cache behavior prediction for real-time systems.
Real-Time Systems 17,2/3 (Nov.), 131–181.

GHEORGHITA, V. S., STUIJK, S., BASTEN, T., AND CORPORAAL, H. 2005. Automatic scenario detection for
improved wcet estimation. InDesign Automation Conference.

GOVIL , K., CHAN , E., AND WASSERMAN, H. 1995. Comparing algorithms for dynamic speed-setting of a
low-power cpu. In1st Int’l Conference on Mobile Computing and Networking.

GRUIAN , F. 2001. Hard real-time scheduling for low energy using stochastic data and dvs processors. In
Proceedings of the International Symposium on Low-Power Electronics and Design ISLPED’01.

GRUNWALD , D., LEVIS, P., III, C. M., NEUFELD, M., AND FARKAS, K. 2000. Policies for dynamic clock
scheduling. InSymp. on Operating Systems Design and Implementation.

HARMON, M., BAKER, T. P.,AND WHALLEY, D. B. 1992. A retargetable technique for predicting execution
time. In IEEE Real-Time Systems Symposium. 68–77.

HEALY, C., SJODIN, M., RUSTAGI, V., WHALLEY, D., AND VAN ENGELEN, R. 2000. Supporting timing
analysis by automatic bounding of loop iterations.Real-Time Systems 18,2/3 (May), 121–148.

HEALY, C. A., ARNOLD, R. D., MUELLER, F., WHALLEY, D.,AND HARMON, M. G. 1999. Bounding pipeline
and instruction cache performance.IEEE Transactions on Computers 48,1 (Jan.), 53–70.

HEALY, C. A., SJÖDIN, M. ., AND WHALLEY, D. B. 1998. Bounding loop iterations for timing analysis. In
IEEE Real-Time Embedded Technology and Applications Symposium. 12–21.

HEALY, C. A., WHALLEY, D. B., AND HARMON, M. G. 1995. Integrating the timing analysis of pipelining
and instruction caching. InIEEE Real-Time Systems Symposium. 288–297.

HERGENHAN, A. AND ROSENSTIEL, W. 2000. Static timing analysis of embedded software on advanced
processor architectures. InDATE. 552–559.

JEJURIKAR, R. AND GUPTA, R. 2005. Dynamic slack reclemation with procrastination scheduling in real-time
embedded systems. InDesign Automation Conference.

JEJURIKAR, R., PEREIRA, C., AND GUPTA, R. 2004. Leakage aware dynamic voltage scaling for real-time
embedded systems. InDesign Automation Conference.

KANG, D., CRAGO, S.,AND SUH, J. 2002. A fast resource synthesis technique for energy-efficient real-time
systems. InIEEE Real-Time Systems Symposium.

LEE, C., HAHN , J., SEO, Y., M IN , S., HA , R., HONG, S., PARK , C., LEE, M., AND K IM , C. 1996. Anal-
ysis of cache-related preemption delay in fixed-priority preemptive scheduling. InIEEE Real-Time Systems
Symposium.

LEE, C.-H. AND SHIN , K. G. 2004. On-line dynamic voltage scaling for hard real-time systems using the edf
algorithm. InIEEE Real-Time Embedded Technology and Applications Symposium.

LEE, Y.-H. AND KRISHNA, C. M. 2003. Voltage-clock scaling for low energy consumption in fixed-priority
real-time systems.Real-Time Syst. 24,3, 303–317.

L I , Y.-T. S., MALIK , S.,AND WOLFE, A. 1996. Cache modeling for real-time software: Beyond direct mapped
instruction caches. InIEEE Real-Time Systems Symposium. 254–263.

L IM , S.-S., BAE, Y. H., JANG, G. T., RHEE, B.-D., MIN , S. L., PARK , C. Y., SHIN , H., AND K IM , C. S.
1994. An accurate worst case timing analysis for RISC processors. InIEEE Real-Time Systems Symposium.
97–108.

L ISPER, B. 2003. Fully automatic, parametric worst-case execution time analysis. InWCET. 99–102.

L IU , C. AND LAYLAND , J. 1973. Scheduling algorithms for multiprogramming in a hard-real-time environment.
J. of the Association for Computing Machinery 20,1 (Jan.), 46–61.

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY.

30 ·

L IU , Y. AND MOK, A. K. 2003. An integrated approach for applying dynamic voltage scaling to hard real-time
systems. InProceedings of the ninth IEEE Real-Time and Embedded Technology and Applications Symposium.

LUNDQVIST, K. AND WALL , G. 1996. Using object oriented methods in Ada 95 to implement linda. In Ada
Europe.

MALIK , S., MARTONOSI, M., AND L I , Y.-T. S. 1997. Static timing analysis of embedded software. In Pro-
ceedings of the 34th Conference on Design Automation (DAC-97). ACM Press, NY, 147–152.

M ITRA , T. AND ROYCHOUDHURY, A. 2002. A framework to model branch prediction for wcet analysis. In2nd
Workshop on Worst Case Execution Time Analysis (WCET).

MOHAN, S., MUELLER, F., HAWKINS , W., ROOT, M., HEALY, C., AND WHALLEY, D. 2005. Parascale:
Expoliting parametric timing analysis for real-time schedulers and dynamic voltage scaling. InIEEE Real-
Time Systems Symposium. 233–242.

MOSSE, D., AYDIN , H., CHILDERS, B., AND MELHEM, R. 2000. Compiler-assisted dynamic power-aware
scheduling for real-time applications. InWorkshop on Compilers and Operating Systems for Low Power.

MUELLER, F. 2000. Timing analysis for instruction caches.Real-Time Systems 18,2/3 (May), 209–239.

PARK , C. Y. 1993. Predicting program execution times by analyzing static and dynamic program paths.Real-
Time Systems 5,1 (Mar.), 31–61.

PERING, T., BURD, T., AND BRODERSEN, R. 1995. The simulation of dynamic voltage scaling algorithms. In
Symp. on Low Power Electronics.

PILLAI , P.AND SHIN , K. 2001. Real-time dynamic voltage scaling for low-power embedded operating systems.
In Symposium on Operating Systems Principles.

PUSCHNER, P.AND KOZA, C. 1989. Calculating the maximum execution time of real-time programs.Real-Time
Systems 1,2 (Sept.), 159–176.

RAMAPRASAD, H. AND MUELLER, F. 2006. Bounding preemption delay within data cache reference patterns
for real-time tasks. InIEEE Real-Time Embedded Technology and Applications Symposium. 71–80.

SAEWONG, S.AND RAJKUMAR, R. 2003. Practical voltage-scaling for fixed-priority rt-systems. InProceedings
of the ninth IEEE Real-Time and Embedded Technology and Applications Symposium.

SCHNEIDER, J. 2000. Cache and pipeline sensitive fixed priority scheduling for preemptive real-time systems.
In IEEE Real-Time Systems Symposium. 195–204.

SETH, K., ANANTARAMAN , A., MUELLER, F., AND ROTENBERG, E. 2003. Fast: Frequency-aware static
timing analysis. InIEEE Real-Time Systems Symposium. 40–51.

SHIN , D., KIM , J.,AND LEE, S. 2001. Intra-task voltage scheduling for low-energy hard real-time applications.
In IEEE Design and Test of Computers.

SHIN , Y., CHOI, K., AND SAKURAI , T. 2000. Power optimization of real-time embedded systemson variable
speed processors. InInt’l Conf. on Computer-Aided Design.

STASCHULAT, J. AND ERNST, R. 2004. Multiple process execution in cache related preemption delay analysis.
In International Conference on Embedded Sofware.

STASCHULAT, J., SCHLIECKER, S., AND ERNST, R. 2005. Scheduling analysis of real-time systems with
precise modeling of cache related preemption delay. InEuromicro Conference on Real-Time Systems.

THESING, S., SOUYRIS, J., HECKMANN, R.,ANDM. L ANGENBACH, F. R., WILHELM , R.,AND FERDINAND,
C. 2003. An Abstract Interpretation-Based Timing Validation of Hard Real-Time Avionics. InProceedings
of the International Performance and Dependability Symposium (IPDS).

UNGER, S.AND MUELLER, F. 2002. Handling irreducible loops: Optimized node splitting vs. dj-graphs.ACM
Transactions on Programming Languages and Systems 24,4 (July), 299–333.

VERA, X., L ISPER, B., AND XUE, J. 2003. Data caches in multitasking hard real-time systems. In IEEE
Real-Time Systems Symposium.

V IVANCOS, E., HEALY, C., MUELLER, F.,AND WHALLEY, D. 2001. Parametric timing analysis. InACM SIG-
PLAN Workshop on Language, Compiler, and Tool Support for Embedded Systems. ACM SIGPLAN Notices,
vol. 36. 88–93.

WEGENER, J. AND MUELLER, F. 2001. A comparison of static analysis and evolutionary testing for the verifi-
cation of timing constraints.Real-Time Systems 21,3 (Nov.), 241–268.

WEISER, M., WELCH, B., DEMERS, A., AND SHENKER, S. 1994. Scheduling for reduced cpu energy. In1st
Symp. on Operating Systems Design and Implementation.

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY.

· 31

WHITE, R., MUELLER, F., HEALY, C., WHALLEY, D., AND HARMON, M. 1997. Timing analysis for data
caches and set-associative caches. InIEEE Real-Time Embedded Technology and Applications Symposium.
192–202.

WHITE, R. T., MUELLER, F., HEALY, C., WHALLEY, D., AND HARMON, M. G. 1999. Timing analysis for
data and wrap-around fill caches.Real-Time Systems 17,2/3 (Nov.), 209–233.

ZHANG, F. AND CHANSON, S. T. 2002. Processor voltage scheduling for real-time tasks with non-preemptable
sections. InIEEE Real-Time Systems Symposium.

ZHONG, X. AND XU, C.-Z. 2005. Energy-aware modeling and scheduling of real-time tasks for dynamic
voltage scaling. InIEEE Real-Time Systems Symposium.

ZHU, Y. AND MUELLER, F. 2004. Feedback edf scheduling exploiting dynamic voltage scaling. InIEEE
Real-Time Embedded Technology and Applications Symposium. 84–93.

ZHU, Y. AND MUELLER, F. 2005. Feedback edf scheduling exploiting hardware-assisted asynchronous dynamic
voltage scaling. InACM SIGPLAN Conference on Language, Compiler, and Tool Support for Embedded
Systems. 203–212.

Received November 2005; revised April 2006; accepted September 2007

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY.

