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ABSTRACT
There exists a growing need for automated interoperabil-
ity among medical devices in modern healthcare systems.
This requirement is not just for convenience, but to prevent
the possibility of errors due to the complexity of interac-
tions between the devices and human operators. Hence, a
system supporting such interoperability is supposed to pro-
vide the means to interconnect distributed medial devices
in an open space, so must be designed to account for net-
work failures. In this paper, we introduce a generic frame-
work, the Network-Aware Supervisory System (NASS) to in-
tegrate medical devices into such a clinical interoperability
system that uses real networks. It provides a development
environment, in which medical-device supervisory logic can
be developed based on the assumptions of an ideal, robust
network. A case study shows that the NASS framework
provides the same procedural effectiveness as the original
logic based on the ideal network model but with protection
against real-world network failures.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems—Reliability, availability, and serviceability ; C.2.4
[Computer—Communication Networks]: Distributed
Systems—Distributed applications

1. INTRODUCTION
The medical field has seen significant transformations of late
with the advent of a whole plethora of medical devices that
aid in the process of diagnosis, patient monitoring and even
administering medication. Most such devices have real-time
constraints as failure to operate in a timely manner could re-
sult in patient harm or death. Furthermore, in many cases,
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safety of a medical system depends on the global distributed
state across multiple devices. For example, an accidental
burn caused during an airway surgery happens when an air-
way surgery laser is activated before the oxygen concentra-
tion is turned down from an oxygen supply. The need for
medical personnel (human operators) to enforce these inter-
operability of medical devices means there is high probabil-
ity of error. The 2006 American Society of Anesthesiologists
estimated that roughly 100 such fires occur each year in U.S.
hospitals causing roughly 20 serious injuries and even one or
two deaths [18]. In general, preventable accidents in hospi-
tals occur at alarming frequencies. Between the years of
2003 – 2005, 247,662 safety-related incidents were poten-
tially preventable [10].

To improve safety in medical environments, there is a need
to develop interoperable medical devices that can automat-
ically operate with safety interlocks i.e. without a human in
the loop. Recent initiatives have been launched to increase
interoperability among medical devices to reduce accidents
caused by human errors [11]. One such effort is the work
on the Integrated Clinical Environment (ICE) draft stan-
dard [9] published in 2009 by ASTM. The ICE standard
aims to provide standardized integration of data and de-
vices to enable real-time control decision support and safety
interlocks, thus ensuring patient safety. The Medical Device
Plug-and-Play (MD PnP) Interoperability program initiated
by CIMIT (Center for Integration of Medicine & Innovative
Technology) covers a wide range of necessary efforts in an In-
tegrated Clinical Supervisory Systems (ICSS). This includes
such efforts as eliciting high-level surgical scenarios to under-
standing regulatory pathways for patient-centric networked
medical devices and even prototype development [3, 8, 13].

As a major safety-core component of the ICSS, we focus on
developing safety supervisory system for surgical procedures.
Surgical procedures are risky since many times caregivers
must intentionally put a patient temporarily into a specu-
lative state to perform a medical operation: administering
anesthesia, cutting tissues, temporarily stopping life support
devices, etc. Design of these safety-critical supervisory sys-
tems are further complicated in a medical environment by:
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1. real-time operation: surgical procedures clearly requires
timely operation.

2. inter-device dependencies: certain device operations
must be performed in a certain order, e.g. turning
off the oxygen before starting the laser.

3. unreliable communication: ICCS cannot assume that
the underlying network that connects the medical de-
vices is reliable. For wired systems, people may trip
over the physical wires. Wireless networks are even
worse: communication signals are subject to background
noise, self fading, etc. [25].

We take into account all of these considerations into design
of a provably safe ICSS.

In this paper, we describe a safe ICSS design that can be
used to monitor the procedure of the medical operation and
prohibit an action that can threaten the safety of the patient
or enforce actions that protect the patient. For example,
when an airway-laser activation is requested an ICSS can
pause the oxygen flow and activate the laser with some la-
tency to ensure that the oxygen that was previously pumped
in is completely exhausted before the laser is turned on. This
supervision by an ICSS can avert accidents caused by human
errors by enforcing checks against medical protocols.

We propose a new Network-Aware Safety Supervision (NASS)
framework to deal with communication failures in an ICSS.
One of the main goals of our work is to delegate the burden
of handling connection failures from the application logic to
an underlying system framework. The NASS framework has
the following characteristics:

1. Basic Model: NASS provides a simple high level ab-
straction for designing for surgical-procedure supervi-
sory systems with an ideal robust network (basic su-
pervisory system model)

2. Network-Aware Framework: Using the basic model,
NASS creates a deployable ICSS that can safely oper-
ate in the presence of unreliable networks and failures.

3. Effectiveness: If no packet losses occur, the system
executing on the network-aware framework is supposed
to behave logically equivalent to the basic model as
long as the behavior is surely safe.

This means that by using NASS, we obtain the benefits of
a simple development environment (ideal synchronous com-
munication), but with safety guarantees for an actual de-
ployed system in a real medical environment (asynchronous
communication with failures). Furthermore, we can ob-
tain expected behavior when the physical network is reliable
enough.

To the best of our knowledge, this is the first time that
a framework for the correct and safe operation of medi-
cal devices that inter-operate with each other, in the pres-
ence of communication failures, has been developed. There
have been frameworks that utilize supervisions for diagnos-
ing faults in discrete-event systems (DES) but they are dif-
ficult to be directly applied for the supervision of medical
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Figure 1: Architecture overview of basic system
model

devices. This happens because a new supervisor must be
designed and analyzed on every configuration change, no
matter how minor to apply such an approach [16,24] .

The rest of this paper is structured as follows: Section 2
presents the formal representation of the basic supervisory
system model. Section 3 shows how the NASS framework
provides a safe ICSS in the presence of network problems is
described. A case study that addresses the problems with
the airway-laser surgery example is presented in Section 4.
Related work is discussed in Section 5 and Section 6 con-
cludes the paper.

2. BASIC SYSTEM MODEL WITH IDEAL
NETWORK

The Basic Supervision System Model (or just basic model)
describes an ideal medical device supervisory logic during
surgical procedures. It assumes no failure in the supervisory
logic or the network. Through NASS, system developers
only need to specify supervisory system in terms of this basic
model. The network exception handling are automatically
done by the lower levels of the NASS framework. In this
section, we describe the details of the basic system model
(Fig. 1(a)).

The basic model has one central supervisor, connecting all
required medical devices through a star network. For each
connected device, the supervisor decides a supervisory mode,
and the device will follow this mode of operation. A super-
visory mode for a device declares a safe region of operations
for the device. These regions need not be disjoint; some-
times the region of one mode can be a subset of the region
of another mode. For example, the airway laser can have the
supervisory modes of 〈allow-usage〉 and 〈deactivated〉. When
the supervisory mode of the laser is 〈allow-usage〉, the air-
way laser can be either activated or deactivated. When the
supervisory mode is 〈deactivated〉, only the laser being deac-
tivated is allowed.

The supervisory modes of all the connected devices are peri-
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odically issued by the supervisor. Once each device receives
the supervisory mode, it replies with its device state (device
status, measured patient state, physician input, etc.). Using
all the device-state replies, the supervisor predicts the state
of the patient, and decides the next supervisory modes of op-
eration for all the devices. The period of these handshakes
between the supervisor and the devices are called a super-
vision cycle (or just cycle). The basic model assumes all
handshakes can be completed within one cycle (Fig. 1(b)).

The supervisor must generate supervisory modes that en-
force the safety of the system, while the devices are respon-
sible for operating within the declared operational region of
the given mode in each cycle. The safety of the ICSS then
follows for correctly performing these two responsibilities.

We use a centralized architecture with periodic synchronous
communication model for simplicity of the development. Dis-
tributed components and asynchronous communication are
major sources of complexity in system development [1]. The
basic model eliminates the need to consider these complex-
ities for actual system developers. Of course, these ideal
network assumptions are not valid in practice, but this will
not compromise safety because of the safety layers provided
by the NASS framework described in Section 3.

2.1 Basic Model Formalism

Device model. The definition of device model is about how
to define the supervisory modes, the device states, and their
relationships. Let D = {d1, d2, · · · , dn} denote the set of the

devices. For each d ∈ D, d = (Modes(d), •−−−−→
Modes

(d),mode
(d)
0 ,

States(d), |=(d)
Allows). Modes(d) is the set of device modes

directed by the supervisor; •−−−−→
Modes

(d)⊆ Modes(d)×Modes(d)

is a relation denoting the set of the valid mode transitions
between supervisory modes from one cycle to the next one

where notation of mode
(d)
a •−−−−→

Modes
mode

(d)
b means that the

mode transition from mode
(d)
a to mode

(d)
b is valid; mode

(d)
0 ∈

Modes(d) is the initial supervisory mode; States(d) is the set

of device states; and |=(d)
Allows⊆ Modes(d)×States(d) define the

operational region of the States when mode is given, where

notation of mode
(d)
a |=Allows state

(d)
b means that state

(d)
b is

in the operational region of mode
(d)
a . For hereon forward, we

will drop the superscript for device d when it is clear from
context.

Recall that the device must be made to ensure that each
device state state ∈ States is allowed in supervisory mode
mode if and only if mode |=Allows state. It is responsibility
of the device developer.

Supervisor model. When a new cycle starts, the supervi-
sor manages all the information of the previous cycle, in-
cluding the supervisory modes and the device states of the
devices. The supervisor updates the patient state estimated
inside, and decides the supervisory modes for the active de-
vices.

For convenience, let S∗ denote the Cartesian product of all

the D indexed sets of S for convenience. That is:

S∗ =
Y
d∈D

Sd.

For example, global mode of operation for all devices is
Modes∗ = Modes(d1)×Modes(d1)× · · · ×Modes(dn) for D =
{d1, d2, · · · , dn}.

The supervisor is defined by a tuple

S = (P,Modes∗,States∗, p−→
P
, p−−−→

Spv.
,Safe∗) (1)

P is the set of the patient states; Modes∗ is the set of global
supervisory modes of all devices; States∗ is the set of the pos-
sible acknowledgements from all devices; p−→

P
: P×States∗ →

P is the transition function of the patient state with regard
to the replied device states; p−−−→

Spv.
: P × States∗ ×Modes∗ →

Modes∗ is the compositional state transition function of the
supervisory modes of devices (notice that the transition of
p−−−→
Spv.

is deterministic because the patient context is avail-

able, while the valid mode transition within each device,
•−−−−→
Modes

, is not), and Safe∗ ⊆ P ×Modes∗ defines the safety

of the system.

The procedure of computing the next supervisory states of
the devices is as follows. The device states collected at cycle

(k−1), which is given by (state
(d1)
k−1, state

(d2)
k−1, · · · , state

(dn)
k−1 ) ∈

States∗, has new patient state information and the updated
physician input. Based on them, the supervisor updates its
patient state of cycle k, such that

pk−1 p
(state

(d1)
k−1 ,state

(d2)
k−1 ,··· ,state

(dn)
k−1 )

−−−−−−−−−−−−−−−−−−−−−→
P

pk (2)

where pk ∈ P is the patient state at cycle k. The state
of the surgical procedure is a part of the patient state, so
is updated together by information in an acknowledgement,
too. Then finally, it computes the supervisory mode from
the updated patient state and the device states, such that“

mode
(d1)
k−1, · · · ,mode

(dn)
k−1

”
p
pk,(state

(d1)
k−1 ,··· ,state

(dn)
k−1 )

−−−−−−−−−−−−−−−−−→
Spv.

“
mode

(d1)
k , · · · ,mode

(dn)
k

”
(3)

where mode
(d)
k is the shared notation of the supervisory

mode for for device d kept by the supervisor at cycle k.

Indeed, the system developer is supposed to define mode
(d)
k

to supervise surgical procedures. It is the core of the super-
visory logic.

Notice that the supervisory mode transition performed by
Eq. (3) must not violate the transition constraints given by
•−−−−→
Modes

:

(∀d ∈ D)(∀k), mode
(d)
k−1•−−−−→

Modes
mode

(d)
k (4)

which is the result of the projection of the global transition
function p−−−→

Spv.
. Eq. (4) is called a transition validity of the

system. Although the transition validity must be obviously
managed in the system design based on the basic model, it
is one of the major concerns of some of algorithms in the
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Figure 2: Architecture overview of NASS framework

NASS framework because the algorithms have to reform the
supervisory commands to contend with network problems,
and transition validity must be preserved during the refor-
mation of the NASS framework.

The safety of the system at each cycle is captured by the
fact that the patient is safe if and only if the containment

relation holds
“
pk,
“

mode
(d1)
k , · · · ,mode

(dn)
k

””
∈ Safe∗.

3. NASS FRAMEWORK
Using the basic model, the NASS framework preserves the
central supervisor topology with a NASS supervisor and
connected devices. Once the devices and supervisor are de-
veloped using the basic system model, the NASS framework
wraps the components of the basic model with safety layers
to deploy in unreliable networks (Fig. 2 shows an overview).

The most noticeable difference of the NASS framework from
the basic model is that the supervisor forwards a supervisory
mode vector instead of a single supervisory mode to a device.
For each device, the vector contains a plan of supervisory
modes for future cycles in the case of a network failure or
packet losses. The NASS framework generates the vectors
using the original supervisor core defined in the basic model.
The safety of the generated vectors by the supervisor core
is double checked by the supervision reshaping layer and
the safety filter of the NASS supervisor as shown in Fig. 2.
The resulting supervisory mode vector is provably safe when
employed by each device. Furthermore, any loss of vectors
in the middle of delivery cannot affect the system safety.

The device developed using the basic model is not ready
to accept supervisory mode vectors, so it must have an ad-
ditional layer called the supervisor abstraction layer. The
supervisor abstraction layer plays the role of the original su-
pervisor in the basic model: providing one supervisory mode
at a cycle. The supervisor abstraction layer takes a supervi-
sory vector and delivers a corresponding supervisory mode
per cycle to the core device logic (original device logic in the
basic model). Even if the delivery of a supervisory mode
vector over the physical network is lost, the supervisory ab-
straction layer always provides a supervisory mode at each
cycle based on an earlier supervisory vector. See the dashed
line combining the NASS supervisor with these supervisor

abstraction layers of the devices, which constitutes the vir-
tual supervisor at Fig. 2. This virtual supervisor plays the
same role of the supervisor in the basic model: generating
a supervisory mode to every device at a cycle ensuring the
safety.

The reason why we employ the supervisory vectors is to han-
dle network problems, ultimately failures. How can the sys-
tem ensure safety under network failure using such vectors?
Indeed, each element of the supervisory vector represents
a supervisory mode for one future cycle; when a new su-
pervisory vector is not delivered, the supervisor abstraction
layer consumes one element of the vector for the supervisory
mode of the cycle. When the finite length vector runs out
of commands, the last supervisory mode in every vector is
reused for the rest of the future; this last element is called
the network-fail-safe mode of the device because it is used
when network is technically disconnected. How to deal with
the network-fail-safe modes appropriately is the key of ul-
timate safety under network failures. We will discuss the
details in this section.

3.1 Supervisor abstraction for device core
Let us first see how each supervisor abstraction layer ex-
tracts a supervisory mode of each cycle from the delivered
supervisory vectors. Recall that the vectors are not guaran-
teed to be delivered due to the nature of real networks. The
supervisory vector,

−−−−−−→
mode-veck, for each device delivered at

cycle k is denoted by

−−−−−−→
mode-veck = (ṁk,k, ṁk,k+1, · · · , ṁk,k+µ)

where ṁk,j ∈ Modes, and the size of every vector is (µ+ 1).

The supervisory mode at cycle k to the device core is gen-
erated based on:

modek =

(
ṁrkk if rk + µ > k

ṁrk,rk+µ if rk + µ ≤ k
(5)

where rk is the most recent cycle at which the device received
a valid supervisory vector at the point of cycle k.1 As long
as rk can be given, modek is given at any cycle without
discontinuity of generation.2 Intuitively, Eq. (5) presents

that the i-th element of
−−−−−−→
mode-veck is given for the use in

the case that (i − 1) successive supervisory-vector packet
losses happen after cycle k. Recall that the last element of−−−−−−→
mode-veck, which is ṁk,k+µ, is the special supervisory mode
designed to be used when more than µ vectors are lost after
cycle k, called the network-fail-safe supervisory mode of the

device, and is a constant denoted by mode
(d)
safe for device

d, such that (∀k) ṁ
(d)
k,k+µ = mode

(d)
safe. For the richness of

formal expression, we generalize the notation of ṁk,j such

that (∀j > k + µ), ṁk,j , modesafe even though it is out of
the supervisory vector content.

1The meaning that a supervisory vector is valid is that the
vector does not violate the valid transition requirement, such
that modek−1•−−−−→

Modes
ṁk,k.

2If the first supervisory vector,
−−−−−−→
mode-vec0 of a device has

not been delivered, Eq. (5) is not sufficient for the claim.

We assume that
−−−−−−→
mode-vec0 is delivered at the connection

establishment transaction.
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3.2 NASS supervisor
Generation of supervisory vectors with ensured safety is in
three steps by the supervisor core, the supervision reshaping
layer, and the safety filter depicted in Fig. and 2.

• Supervisor core: initial vector is generated by the su-
pervisor core, which is delivered from the basic model.

• Supervision reshaping layer : Recall that the supervi-
sory vectors must have the transitions to the network-
fail-safe modes at the end of the vector, which the su-
pervisor core does not care for. The second step is to
make the transition by the supervision reshaping layer.

• Safety filter : The safety filter at the final stage certifies
ultimate safety of the vectors against network faults.

3.2.1 Supervisor core
According to the definition of the supervisor core (ı.e. the
supervisor of the basic model) in Eq. (1), the supervisor
core has to keep track of the supervisory modes and the
device states of all the devices. Even though it is capable
in the basic model because of the ideal network, the NASS
framework cannot always be aware of the exact status of
each device due to the unreliable network assumption. For
example, the supervisor expects a device employs the first
element of the vector (ṁk,k) at any cycle k, but the device
may not receive the vector and the second element of vector
received at the previous cycle (ṁk−1,k) can be used instead.
If we have ṁk,k 6= ṁk−1,k, the expectation of the supervisor
does not match the actual mode of operation at the device.
The same situation is applied for the device states. Thereby,
the supervisor abstraction layer of each device forwards not
only statek but also modek as an acknowledgement of the
supervisory vector at each cycle k. And the supervisor core
of the NASS supervisor uses the best knowledge of device
states and the supervisory modes of actual devices, such that

est-modek =

(
modek if acknowledgement is received

ṁk,k otherwise

est-statek =

(
statek if acknowledgement is received

ε otherwise

where est-modek and est-statek is the estimated supervisory
mode and device state at cycle k based on the best knowl-
edge of the supervisor, and ε is a special notation that means
no device state update is given.3

The generation of the first element of the vector is the same
as the one given in Eq. (2) and (3) because the element is for
the current cycle; however est-modek and est-statek is used
instead of modek and statek; for Eq. (3), the first element
of the vector is given by“

est-mode
(d1)
k−1, · · · , est-mode

(dn)
k−1

”
p
pk,(est-state

(d1)
k−1 ,··· ,est-state

(dn)
k−1 )

−−−−−−−−−−−−−−−−−−−−−→
Spv.

„
init
m

(d1)

k,k , · · · ,
init
m

(dn)

k,k

«
where the initial supervisory vector generated by the super-
visor core is denoted by The generation of the rest of the
3The supervisor core must be able to handle ε for the case
that a device state is not delivered at a cycle.

vector is given by
−−−−−→
init-veck = (

init
m k,k, · · · ,

init
m k,k+µ). For

the rest of the vector, we have„
init
m

(d1)

k,j−1, · · · ,
init
m

(dn)

k,j−1

«
p
p̂k,j ,(ε,··· ,ε)−−−−−−−−→

Spv.

„
init
m

(d1)

k,j , · · · ,
init
m

(dn)

k,j

«
for k < ∀j < k + µ where p̂k,j is the worst-case patient
state of future cycle j estimated at cycle k. By append-
ing modesafe to the initial supervisory vector at the end as
the last element, the initial supervisory vector generation is
completed.

The worst-case patient state estimator can be available be-
cause the patient state changes gradually. Some literature
about estimation of some patient states is available in [19,22]
as a different research area. We do not address how to es-
timate the worst-case patient state of future cycles, in this
paper.

3.2.2 Reshaping initial supervisory vector
The next step is the supervision reshaping layer to provide
pessimism to the initial supervision vector for the total net-
work disconnection. The first step toward handling total
connection failure is already performed by appending the

network-fail-safe mode, modesafe at the end of
−−−−−→
init-veck.

However, it is not sufficient for the total connection fail-
ure because that appending may cause transition invalidity;

notice that
init
m k,k+µ−1•−−−−→

Modes
modesafe must hold for the

transition validity, but has not been tested in any part of
the supervisor core. Therefore, some intermediate states
making the transition valid must be inserted between the
initial vector and the network-fail-safe mode at the end if
the transition is invalid.

Moreover, the reshaping layer has to take care of the order
of the devices moving to the network-fail-safe modes. Recall
the airway surgery example, in which the laser must be de-
activated before the oxygen flow is resumed as the network-
fail-safe mode. To take care of both the transition validity
and the transition order of the devices is a little complicated.
In this paper, we presented how to reshape the initial super-
visory vector by demonstrating it with case study of airway
laser in Section 4.3.

3.2.3 Safety filter
The last step to provide the supervisory vectors to the de-
vices is to filter out yet remained unsafe supervision. Since
the initial supervisory vectors are generated based on incom-
plete information, they cannot guarantee the total safety,
and so do reshaped ones. The safety filter measures all pos-
sible cases that can be realized at the devices, and drop the
supervisory vectors that are revealed to be potentially un-
safe.

As the supervisor cannot be aware of the exact supervisory
mode that a device would employ, it investigates the set of
all the supervisory modes that a device can employ with its
best knowledge, such that

eff -modek,j =
[

βk≤i<k

{ṁi,j}

where eff -modek,j is the set of supervisory mode that a de-
vice can employ at cycle j when it is estimated by the super-

153



visory at cycle k, and βk is the most recent cycle at which
a device received a valid supervisory vector with the best of
the supervisor’s knowledge. As an induction, we can assume
that all vectors that have been delivered previously are safe
in any occasion; i.e. eff -modek,j of each device is proven
to be safe for employment in a previous cycle already. If we
send a reshaped vector to a device, the device will have more
option of supervisory mode in addition to eff -modek,j . The
safety filter evaluates whether each reshaped vector is safe
combined with eff -modek,j ’s, and other reshaped vectors for
the other devices that are generated at the same cycle. Only
safety-certified vectors by the safety filter are sent to the de-
vices, and the others are trashed. A case study how safety
filter operates is given in Section 4.

3.3 Network-fail-safe mode
In presenting the NASS framework, we have declared that
there exist the network-fail-safe modes, modesafe, but have
not addressed what they are and how they are found, yet.
One of the biggest challenges that the NASS framework con-
fronts is the fact that all the devices can be completely dis-
connected from the supervisor. Recall that the last element
of the vector is set to ṁk,k+µ = modesafe, essentially to pre-
pare for the complete network failure. Suppose that all the
devices are disconnected for a while. Then, all of them must
be in the network-fail-safe mode. When every device is in
the network-fail-safe mode, the whole system must be safe
regardless of the state of the patient. Thereby, we have

p×
Y
d∈D

mode
(d)
safe ⊂ Safe. (6)

From Eq. (6), the network-fail-safe mode is found, and a
practical algorithm is demonstrated in Section 4.3 with a
case study.

Availability of network-fail-safe mode. One of the nat-
ural questions that we can have at this point is if all the sur-
gical procedure supervisory systems have this network-fail-
safe mode. The answer can be found from traditional surgi-
cal procedures. In such a procedure, the caregivers play the
role of the network in an ICSS. If the system is not network-
fail-safe, there is no supervisory mode satisfying Eq. (6);
i.e. some device operation is totally dependent upon a pa-
tient state. That means, in a traditional procedure, there
must be a dedicated person to keep watching the patient
state and the device operation, together for the safety in
real-time, which is not practically advisable. Therefore, the
medical device manufacturers commonly put the related pa-
tient sensing function to the device, in order to make the
device maintain the safety locally. For example, an air pres-
sure sensor is always embedded in a ventilator to avoid the
safety issue of high-pressure ventilation. Because surgical
procedures and the devices used in the procedures are de-
signed by people with common senses, pursuing a network-
fail-safe mode in a surgical procedure does not seem to be
nonsense.

4. CASE STUDY: AIRWAY-LASER SURGERY
We present a case study of an airway-laser surgery system
to show how the NASS framework can be employed in prac-
tice. By presenting how the components of NASS supervi-
sor, the supervisor core, the supervision reshaping layer and
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Figure 3: Supervisory state transition diagrams for
devices in airway-laser surgery

the safety filter, generate and manipulate the supervisory
mode vectors with ensured safety.

Let us briefly recall the airway-laser surgery example. An
airway-laser surgery has a potential danger of an accidental
burn if the laser is activated while high oxygen concentration
is supplied by the ventilator. Whenever the laser is being
activated, the ICSS must block (or significantly reduce) the
air path from the oxygen concentrate, first. However, be-
fore SpO level of the patient becomes below a given thresh-
old, the laser must be deactivated to open the oxygen flow
through the ventilator; otherwise, the patient can suffer a
low-oxygen shock. This case study assumes that three de-
vices: airway-laser, ventilator and oximeter are connected
for the surgery (D = {laser, vent, oximeter}). we assumed
the operational cycle period is 200 ms.

4.1 Safety Requirements
First of all, the safety requirements for the airway surgery
must be defined. In plain English, it can be described as
follows:

R1 To allow the usage of the airway-laser, the flow of the
oxygen concentrate connected to the ventilator must
be blocked at least for a half second.

R2 To open the flow of the oxygen concentrate, the laser
must be completely deactivated.

R3 When measured SpO2 value is lower than given thresh-
old, ThSpO2 , the flow of the oxygen concentrate through
the ventilator must be open.

Recall that the safety requirements must be described as
functions of the patient states and the supervisory modes
of the device of each cycle. Notice that the requirements
have some temporal relationship between the states of the
devices: e.g. the half-second requirement between the oper-
ations in R1. Thereby, the supervisory modes of the device
to describe the safety must encapsulate time information. As
a result, some supervisory modes of some devices, depicted
in Fig. 3, have time information: e.g. the time passed af-
ter oxygen-flow blocking is represented in some supervisory
modes of the ventilator. With the given supervisory modes
in the figure, the safety requirements listed above are given
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as equations, respectively, by`
mode

(laser)
k = 〈allow-usage〉

´
⇒
`
mode

(vent)
k = 〈oxy-blocked>600ms〉

´`
mode

(vent)
k = 〈oxy-open〉

´
⇒
`
mode

(laser)
k = 〈deactivated〉

´
[(SpO2 < ThSpO2)]⇒

`
mode

(vent)
k = 〈oxy-open〉

´
.
(7)

4.2 Supervisor core logic
The supervisor core logic reflects the effectiveness of the op-
eration when the network is normal. The supervisor takes
care of the two safety interlocks in the example: the inter-
locks between the airway laser and the ventilator and be-
tween SpO2 and the ventilator. Since SpO2 is not control-
lable by the supervisor, the later interlock must have higher
priority. In the supervisory core, logic codes for multiple in-
terlocks reside, and higher priority logic is executed earlier;
SpO2 interlock logic, given in Algorithm 1 is executed first,
and then the laser interlock logic, given in Algorithm 2 is
performed. Based on Require field of each algorithm, no
assignment must have been performed before each interlock
logic is called; i.e. SpO2 interlock assigns any mode to either
laser or vent and laser interlock logic will be skipped.

Notice that the supervisory core logic does not concern any
network problem but is based on ideal network assumption.
Recall that all the network issues are addressed by the frame-
work, not the core logic.

Algorithm 1 SpO2 supervision logic

Require: vent.mode and laser.mode have been unassigned
if worst case SpO2 in 1 s < ThSpO2 then

if laser.mode 6= 〈deactivated〉 then
laser.mode ← next deactivation mode

else
vent.mode ← 〈oxy-open〉

end if
end if

Algorithm 2 Airway laser supervision logic

Require: vent.mode and laser.mode have been unassigned
if laser .reqstate = want-activation then

if vent.mode 6= 〈oxy-blocked>600ms〉 then
vent.mode ←next blocking mode

else
laser.mode ← 〈allow-usage〉

end if
end if

4.3 Network-fail-safe mode and supervision re-
shaping

One of the responsibilities of the NASS is to enforce the
devices to have appropriate mode transition to the network-
fail-safe mode when the network is disconnected. It is taken
care of by the supervision reshaping layer. After supervisor
core logic generates supervisory mode vectors, the supervi-
sion reshaping layer reshapes the vectors to add transitions
to the network-fail-safe mode at the end of the vectors for
the safety in network failures.
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Figure 4: Supervisory vectors of airway laser and
ventilator to demonstrate supervisory vector re-
shaping of airway laser

To reshape the vectors, the system must be aware of the
network fail-safe modes of the devices, which are derived
from the safety requirements. Once safety requirements are
given in Boolean logic (Eq. (7)), the network-fail-safe modes
are easily found from Eq. (6). In our case study, by assigning

mode
(laser)
safe = 〈deactivated〉 and mode

(vent)
safe = 〈oxy-open〉 all

safety requirements are resolved as network-fail-safe modes.

The reshaping layer must reshape vectors of the devices in
a certain order, which is the reverse order of a desirable
transition order of network-fail-safe mode.4 In the example,
the laser must be deactivated first, and then the ventilator
opens the oxygen flow. Thereby, the reshaping is performed
for the ventilator first, and then laser is taken care of later.
This sequence dependency is denoted by vent ; laser and
called network-fail-safe mode dependency order. This de-
pendency order can also be found from the Boolean logic of
the safety requirements as follows: Let us put each of the

network-fail-safe modes into Eq. (7). mode
(laser)
safe makes no

violation of the requirements, while mode
(vent)
safe can violate

Eq. (7) when mode
(laser)
k = 〈allow-usage〉. Then, we conclude

to have vent ; laser, which means vent depends on laser in
network-fail-safe mode safety.

Fig. 4 demonstrates a reshaping example of an airway-laser
supervisory vector. The demonstrated situation is as fol-
lows. The current cycle is 10 and µ = 30. The solid line of
each graph represents the initial supervisory vector gener-
ated by the supervisory core with the last element being the
network-fail-safe mode, modesafe, of each device. Accord-
ing to the network-fail-safe mode dependency order, venti-
lator is supposed to be reshaped first. When reshaping, the
layer checks (1) if the transition to from an initial vector to
modesafe at the end of the vector is valid, and (2) if the tran-
sition does not violate the safety of the system. Since, the
ventilator’s supervisory vector satisfies both, it is remains
unchanged at the supervision reshaping layer.

Then, the reshaping for the initial vector of the airway laser
is performed. First of all the initial vector (dashed line

4The reason why the reshaping layer takes care of the vector
in the reverse fail-safe-mode transition order is that the re-
shaping is performed from the tail of the vector back towards
the front.
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at the top of Fig. 4) has an invalid transition at the tail,
from 〈allow-activation〉 directly to 〈deactivated〉. According to
Fig. 3, there must be intermediate mode of 〈deactivating〉 as
the dotted line of Fig. 4 (the second of the legend). However,
putting intermediate mode potentially violates the safety of
the system. If the network to the ventilator is disconnected
at cycle 10, the ventilator is going to employ the supervi-
sory mode plan transmitted at cycle 9 in all the future cycle,
which is dotted line of ventilator graph. Then the ventilator
is going to open the oxygen flow at cycle 29.

Let us combine this worst-case scenario with the new laser
vector putting intermediate mode of 〈deactivating〉 at cycle
29. 〈oxy-open〉 of ventilator and 〈deactivating〉 of airway laser
violates the safety. Therefore, when reshaping laser, the su-
pervisory reshaping layer has to consider the worst-case sce-
nario to reshape the tail of each supervisory vector. To elim-
inate all the potential safety violations, the tail transition of
→ 〈deactivating〉 → 〈deactivated〉 must be performed from
cycle 28 as presented by the dashed line of the laser mode
graph (last element of legend). Consequently, the reshap-
ing layer takes care of the validity of transition by putting
intermediate modes if necessary, and puts the transition to
modesafe as late as possible but not to incur safety violation.

4.4 Safety filter
Even though the supervision reshaping layer takes care of
the safety, it only takes care of the tail part of each vector
that is reshaped for the network-fail-safe mode. The remain-
der of the vector generated by the supervisory core has not
been fully certified to be safe, and safety filter is in charge
of it. It inspects all the vectors from supervision reshaping
layer, and filter out the vectors that are potentially unsafe.

Fig. 5 shows an example that the filter actually drops a
vector in our airway-laser surgery example. The situation
is as follows: Until cycle 9, the airway laser had been in
use. Because the use has been completed, the supervisor,
at cycle 10, decides to deactivate the laser and to open the
oxygen flow. As a result, the supervisory plans, represented
by the supervisory vectors, generated at cycle 9 and cycle
10 are entirely different as shown in Fig. 5; dotted lines and
solid lines depict the vectors generated at cycle 9 and cycle
10, respectively. If devices employ the plan of cycle 9, the
laser will be allowed to be activated, and the ventilator will
block the oxygen flow between cycle 10 and cycle 26. If the
supervisory vectors of cycle 10 are applied, the laser will be
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network-fail-safe mode in the system for one million
cycles; the size of initial vector means µ

deactivated, and the ventilator will resume the oxygen flow
between cycle 11 and cycle 26.

Suppose that network of laser is only disconnected, while the
connection to the ventilator is still good at cycle 10. Then,
the laser will employ the plan of cycle 9, while the ventilator
employs the plan of cycle 10, which is a serious safety viola-
tion of laser explosion. The reason of safety violation is that
the supervisory vectors at cycle 10 are initially generated
by the supervisory core, which does not consider the plan
generated at the previous cycles. The safety filter examines
the worst-case packet delivery combinations and detect this
hazard. As a result, the reshaped vector of ventilator is fil-
tered out and not delivered to the device. If the supervisory
vector for the laser of cycle 10 is delivered successfully, the
next supervisory vector for the ventilator to open the oxy-
gen flow generated at cycle 11 will not be dropped again,
managing original effectiveness of the supervisor core.

4.5 Evaluation of procedural effectiveness
Safety is not everything. We could design a system such that
the airway laser is prohibited from operation. This system
ensures the safety from airway fires, but is useless because
the physician cannot perform the surgery. Thus, aside from
safety, the supervisory system must also provide maximal
effectiveness for the surgical procedure.

We show the effectiveness of the system through simulation
and using a real testbed. First, we performed a couple of
simulations to see how the NASS framework is affected by
packet losses. The simulation is written in Python 2.6.2
implementing the NASS framework. The cycle period is
200 ms, and µ has a value from three to 20. The simu-
lator assumes a wireless network suffering Rayleigh fading
with average packet loss rate of 0.01 (Zorzi’s Rayleigh fading
model [25]). The speeds of the object and the environments
are set to either 50 mm/s or 10 mm/s to reflect the medical
environments; the slower the speed is, the more the packet
losses collocate. The additive white Gaussian noise (AWGN)
channel is also measured for comparison. In such a channel,
all packet losses are independent of each other.

First, we measured how often the system falls into the network-
fail-safe mode in terms of the wireless environments and the
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Figure 7: The average delay of airway laser activa-
tions due to packet losses; the size of initial vector
means µ

value of µ. To measure it, the system is set to continuously
turn on the laser and to block the oxygen flow. As a metric
of effectiveness, we counted the number of discontinuities of
the airway laser. The low SpO2 case was intentionally ne-
glected for the experiment. The result is depicted in Fig. 6
in log scale. When fading is really slow, the laser falls into
the network-safe-mode, even with µ = 20. Falling into a
network-fail-safe mode is undesirable because it discontin-
ues the procedure of the surgery. If a system is in wireless
network, it is recommended to set the value of µ large enough
because the surgical environment is very steady. Thus, the
network tends to have collocated packet losses causing a sud-
den network-fail-safe mode.

The same tendency was measured in the prototype system.
We have implemented a prototype of the NASS framework
based on Java real-time system 2.2. Since an ICSS is a col-
lection of the devices made by various manufacturers, such
a property is profitable. We put the supervisor and the de-
vices in 10 m distance, and measured the occurrences of the
network-fail-safe mode for 9 hours when µ = 10. We had
one network-fail-safe mode caused by 11 consecutive packet
losses with 0.24 % of packet drop ratio, which will rarely
occur if packet losses is like a Poisson process.

Another side-effect of packet losses is the delay of operations.
If packet losses occur in a steady state of a procedure, they
are consumed with no effect to the procedure. However,
if they occur at the transitions of supervisory modes, they
cause some delays of operations. These delays are unavoid-
able because the packets for the fresh operations are lost on
the way in such cases. We have simulated 100,000 times of
airway laser activations in the same environment settings as
the previous simulation. As shown in Fig. 7, the delays are
not highly dependent on the value of µ but on the network
environments because it is fairly inherent, so unavoidable.

5. RELATED WORK
Our work is motivated by the ongoing efforts of the Medi-
cal Device Plug-and-Play Interoperability program [8]. This
program has been leading the development of the ICE stan-
dard and gap analysis work on the ability of the IEEE 11073
family of standards [21] to meet the clinical use cases de-
scribed in the ICE standard.

This work is closely related to supervision of discrete event
systems with partial observations [5,15]. There is an exten-
sive survey of the area written by Lafortune [16]. Zad et.
al presented a framework that generates a diagnosis super-
visor from a given finite-state automata [24]. It is designed
to generate a supervisor for each system. It is not easy to
apply this framework to a dynamic environment such as an
ICSS. Bhattacharyya et. al proposed a discrete event sys-
tems approach to detect and diagnose a network fault [4]. It
mainly focuses on the diagnosis of the network itself.

Real-time network issues in distributed control system have
been addressed with various approaches. Davidson et. al [6]
addressed the issue of coordinating distributed system over
a network in real-time by proposing Timed Atomic Com-
mitment (TAC). This enables real-time coordination of dis-
tributed systems in either a centralized or a distributed man-
ner. Moreover, Wang et. al introduced how to enhance
the reliability of wireless networks using cell phone network
paradigm for industrial controls [23], while Kottenstette et.
al proposed how to develop feedback-control systems regard-
ing the delays caused by a network [14].

Medical device integration is another emerging research area.
Arney et. al demonstrated synchronization techniques of
medical devices with an X-ray and a ventilator [3]. Fis-
chmeister et. al. applied their work for the Network Code
Machine [7] to be deployed in medical systems providing ver-
ifiable real-time performance demonstrated in HIMSS ’08.
Software architectures for communications in medical plug-
and-play systems have also been explored by King et. al. [13]
using publish-subscribe architectures for dynamic informa-
tion flow. Currently, much of the work for medical device
plug-and-play focuses on estabilishing dynamic connectiv-
ity of devices, device-to-device synchronization, and ensur-
ing fair access to a communication medium, while our work
focuses on providing safety constraints over unreliable net-
works.

On the other end of the spectrum, medical device safety has
been a prevalent issue dating back to the infamous incidents
in the 80’s involving the Therac 25 radiation therapy ma-
chines [17]. Since then, much work has been done to apply
formal methods to medical devices analysis [2, 3, 20]. The
use of formal methods may even start to influence actual
medical device review procedures [12]. However, much of
the formal analysis work has been done on individual de-
vices without any interoperable behavior between a network
of devices. We have taken the initiative to move forward in
this direction.

6. CONCLUSION
The task of designing a safety-critical system on top of un-
reliable networks is highly nontrivial. Our Network-Aware
Safety Supervision (NASS) framework solves this problem
in two ways: (a) by providing designers with an abstrac-
tion of a completely reliable network and (b) by providing
transformations of distributed device control vectors to en-
sure safety. Even though this framework uses a non-trivial
pipeline planning method, all complications are hidden from
the application logic.

Our design is guaranteed to be safe by pessimistic construc-

157



tion. To evaluate the practicality of our framework, a pro-
totype and a simulator were implemented. We also showed
how safety invariants are not violated in real networks and
how the operational effectiveness is affected by network sta-
tus in our framework.

This paper illustrates the NASS framework through an im-
portant example, viz. the airway-laser case study. In the
future, we plan to consider other types of medical safety
interlocks that will involve more devices. Also, we plan to
consider plug-and-play safety where medical configurations
may change during run-time.
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