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Abstract

In complex hard real-time systems with tight constraints
on system resources, small changes in one component of
a system can cause a cascade of adverse effects on other
parts of the system. We address the inherent complexity of
making architectural decisions by raising the level of ab-
straction at which the analysis is performed. Our analysis
approach gives the system architect a rigorous method for
quickly determining which system architectures should be
pursued, and it allows the architect to track and manage
the cascading effects of subsystem/component changes in
a comprehensive, quantitative manner. The end product is
a virtual architecture analysis that systematically incorpo-
rates the inherent coupling among interacting system com-
ponents that share limited system resources.

1. Introduction
System architects face a fundamental dilemma when

preparing competitive bids for complex system develop-
ment projects, especially those with hard real-time con-
straints. The inherent complexity of these projects, coupled
with the time pressures associated with the bidding process,
force an architect to make subjective judgments involving
significant uncertainties about the values of various param-
eters and their ultimate effects on the cost and performance
of the system. On the one hand, being too “optimistic” in
these judgments raises the risk of unpleasant surprises later
in the development process. On the other hand, being overly
conservative in accounting for these uncertainties can result
in a losing proposal.

Figure 1 shows a high-level view of a generic system ar-
chitecture decision process for real-time systems. The sys-
tem architect must define an architecture that has suffi-
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cient levels of system resources, while avoiding unneces-
sary costs that increase the risk of lost business. As the
development process proceeds, and more information be-
comes available, the system design must evolve to address
any changes in assumptions. If the system cannot fit within
the specified resource budgets, the system architect must
add additional resources, which results in lost profits for the
project. Problems and/or changes that occur during the anal-
ysis phase (right half of the diagram) could potentially re-
sult in significant changes at all levels of system design (e.g.
high-level design, platform architecture, etc.), as shown by
the dotted arrows.

The process of architecting such a system is highly com-
plex due to the non-linear nature of cross-effects introduced
between various components such as the processor, caches,
bus traffic and also application logic. The entire system
shows behavior akin to an ecological system where the opti-
mization of one parameter can have untold harmful effects
on other parts of, or even the overall, system1. In the ab-
sence of an end-to-end tool chain and virtual integration
techniques2, introduced in this paper, such long-range side
effects will only be discovered during the system integration
phase that will result in huge expenses. This is the reason
why system integration costs for safety-critical systems are
between 50–75% of the total system development cost [11].

Hence, we propose a set of analysis techniques to sup-
port decision making at the system architecture level. We
address the inherent complexity of the architectural deci-
sions by raising the level of abstraction at which the anal-
ysis is performed. Our techniques give the system archi-
tect the capability to select among various processor types,
cache configurations, and bus topologies. With these tech-
niques, which we instantiate in a system integration tool-
set, the architect can derive estimates of software applica-
tion performance and communication network latencies and
can incorporate these estimates into a performance analysis
of the integrated system. The end product is a virtual ar-
chitecture analysis that systematically incorporates the in-
herent coupling among the system components that inter-

1 Detailed examples follow in Sections 5, 6.2 and 6.3
2 In this context, “virtual” means that the analysis does not require a

concrete implementation of hardware or software components.
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Figure 1: Overview of Current Design and Implementation Flow for Avionics Platforms

act while sharing limited system resources. The process of
designing such a tool-set and integrating the various analy-
ses, especially for complex domains such as avionics, auto-
mobiles, etc., is extremely challenging, since it requires ex-
pertise and an in-depth understanding of the complex inter-
actions among differing domains such as scheduling, tim-
ing analysis, computer (processor) architecture, bus topol-
ogy and flow design, caching, etc., not to mention the appli-
cation logic.

In addition, these same analysis techniques have signif-
icant benefits during the system integration phase of the
development process. In hard real-time systems with tight
constraints on system resources, small changes in one com-
ponent of a system can cause a cascade of adverse effects
on other components of the system. These adverse effects
can manifest themselves in two dimensions. First, a small
change in the assumed performance of one component can
lead to negative impacts on the performance of many other
components, as could happen, for example, when one com-
ponent requires more execution time than its specification
assumes. Other components that receive inputs from this
component are then delayed in receiving their inputs, hence
their execution takes longer than expected to complete.
These delays can ripple throughout a system, as each com-
ponent is delayed and takes longer than expected to exe-
cute. Details for such an example follow in Sections 5, 6.2
and 6.3. Addressing these effects exposes the other dimen-
sion of the problem, namely, the cascade of adverse effects
can lead to a significant increase in the amount of time, ef-
fort and costs required to reach a feasible system design.

In summary, this paper proposes a set of techniques to
provide a system architect with the following capabilities:

C1 to analyze architectural trade-offs prior to any concrete
implementation of the system (in sharp contrast to tra-
ditional analysis techniques) by using a combination of
modeling languages and tools such as Simulink R© and
AADL;

C2 to perform quantitative comparisons and rapid explo-
ration of the design space, including different choices
for microprocessors and their options, different bus ar-

chitectures and transaction types, and different soft-
ware task and partition configurations; and

C3 to track and manage the cascading effects of subsys-
tem/component changes during system integration in a
comprehensive, quantitative manner.

To the best of our knowledge, this is the first work that aims
to provide such support for system architecture decisions so
early in the design phase.

In the next section, we describe a scenario in which a sys-
tem architect wishes to assess the feasibility of incorporat-
ing an additional application into an existing system archi-
tecture. We have chosen a specific example involving a stall
warning function for an avionics system. We use this ex-
ample to demonstrate the limitations of existing approaches
to timing analysis. In Sections 3 and 4 we describe our ap-
proaches for system architecture modeling and end-to-end
analysis for virtual integration. Sections 5 and 6 describe
our experimental framework and the results we obtain for
our stall warning example. Section 7 discusses related work,
and Section 8 concludes the paper.

vsi =

s
2 [W (sinαwaxB − cosαwazB)− LT − T sin (αw + ξ0)]

CLvcrit
ρoSw

where,

vsi : Stall Speed

W : weight of aircraft

αw : angle of attack

axB : accelerometer value in Xaxis

ayB : accelerometer value in Y axis

LT : lift produced by horizontal tail

perpendicular to velocity vector

T : powerplant thrust in plane of symmetry

ξ0 : thrust inclination angle

CLvcrit
: critical(stalling) effective lift coefficient

ρ0 : air density at sea level

Sw : reference wing area

Figure 2: Stall Speed Calculations
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2. System Composition Example: Stall Warn-
ing System

To study the effects of integrating a new subsystem into
an existing architecture, we present an example of a Stall
Warning System Application (SWSA) [8, 37]. The SWSA
is a device on an aircraft used to (a) detect and (b) sug-
gest/take corrective action to prevent an impending stall .
An aircraft stall is a condition in aviation and aerodynam-
ics where the angle of attack [8] increases beyond a cer-
tain point such that the lift starts to decrease. The angle at
which an aircraft goes into a stall is known as the “critical
angle of attack” and is dependent on the wing profile, its as-
pect ratio, and other factors. When an aircraft enters the stall
mode, the pilot may notice that flight controls have become
less responsive and may also notice some buffeting. This
could cause serious problems and if not detected in time,
lead to the aircraft crashing, with potential loss of human
life. The fatal effect of an aircraft stall was in the news re-
cently (while the aircraft involved in the incident did have a
SWSA, it did not include an audible alarm, but this was not
necessarily the reason for the crash) [16]. Clearly, the ad-
dition of an SWSA to an existing avionics platform can be
quite desirable.

Figure 3: Overview of Autopilot subsystems affected by ad-
dition of Stall Warning System Application (SWSA)

There is a correlation between the “angle of attack” and
the airspeed. This is convenient, as it allows us to calcu-
late a stall speed below which an aircraft experiences a stall.
“Stall speed” is the speed below which the aircraft cannot
create enough lift to sustain the weight of the craft in 1g
flight. Hence, the stall speed can be used as an indication of
an impending stall, and the pilot can be notified and correc-
tive action proposed/taken. Figure 2 shows the inputs and
the formula for calculating the stall speed [37]. Once the
SWSA finds that the aircraft has attained stall speed, it can
send warning alarms to the pilot and/or take corrective ac-
tion, e.g. by use of a “stick shaker” [5].

An implementation of the SWSA would require close in-
teractions with various systems that form the avionics suite
of an aircraft. Figure 3 shows how an implementation of
the SWSA would require interactions with high-level com-
ponents that form a part of an Autopilot application that
includes input sensors, the main processor, servo motors,
the control surface and perhaps even feedback data from

various sensors. Hence, when a customer requests that an
SWSA be added on to existing avionics applications, sys-
tem architects must be able to make prompt assessments of
whether it is feasible to do so. They may have some infor-
mation about the resources available for such an implemen-
tation – e.g. from analyzing a similar application on another
platform, they could reach the conclusion that 5% of the
processor budget is available for implementing an SWSA.
Note: In this paper, we concentrate on the processing re-
quirements followed by related schedulability and bus delay
analysis. Memory (RAM/Flash/Non-Volatile Memory/etc.)
are left for future work. Sections 2.1 and 2.2 show how anal-
ysis (for the processor) would be conducted and limitations
imposed on such analyses.

2.1. Analysis

Function/ WCET
Construct (cycles)
main 7549
stallSpeed 7219
sqrt approx 855
pow approx 141
cosine 1184
cosine loop 957

Table 1: WCET results
for Simple implemen-
tation of Stall Speed
calculations

Traditionally, analysis of the
performance of a software ap-
plication was carried out by use
of timing analysis [36] meth-
ods to determine worst-case
bounds. This requires the use
of a processor model and an
actual implementation of the
application tasks. This is then
timed by use of either analysis
of execution traces (dynamic
timing analysis) [7, 33] or a
compile-time analysis of the
control flow graphs of the code
(static timing analysis) [22,36].

For our experiments, we implemented the stall speed cal-
culations (Figure 2) in C and then used our static timing
analysis framework [12, 23, 34], introduced in later sec-
tions (Section 4), to obtain worst-case execution times. Ta-
ble 1 lists the WCET results obtained from analysis of this
simple implementation. The first column lists the functions
and loop constructs in the program and the second column
lists the worst-case execution time (WCET) in cycles for
each. The cycles for the main function represent the to-
tal WCET for the application and includes the WCETs for
the other functions shown in the table. The stallSpeed
function (called from within main) performs most of the cal-
culations listed in Figure 2 and functions sqrt approx,
pow approx and cosine perform the calculations for
square root, power (ab) and cosine, respectively (these
functions are called multiple times from inside function
stallSpeed). The cosine loop row shows the WCET for
the main loop for the cosine function that is based on the
Taylor (Maclaurin) series expansion. The processor model
was a generic MIPS PISA [22] in-order architecture with
a 64k 4-way set associative instruction cache and no data
cache.
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We then were able to show how this application inte-
grates with an existing platform by use of schedulability
and bus delay analyses (details in Sections 5 and 6). Hence,
we are able to show how our combination of analysis tech-
niques provide an understanding of the end-to-end perfor-
mance during system integration.

2.2. Limitations
The biggest hurdle in performing end-to-end analysis for

complex systems such as avionics is the need for a concrete
implementation, as illustrated above. The system architect
is unable to gauge whether the application fits into given re-
source budgets, since this analysis happens late in the de-
sign and development stage as shown in Figure 1. Hence
architects are forced to make best-guess estimates, either
from experience, or from studying requirements for other
“similar” systems as explained before. If the architects get
their estimates wrong, the result can be significant delays
and loss of revenue, since now either (a) the project cannot
be completed or (b) will require extra resources that were
not budgeted. Additional complication arise since such new
systems are typically not stand-alone in nature. They ex-
change data and interact with other important components
(e.g. autopilot system in Figure 3).

Hence it is extremely useful to have an analysis suite that
can provide information, ahead of time, on whether certain
new applications can meet their budgets. This will provide
system architects with the ability to make educated deci-
sions even before an actual hardware platform or the de-
tailed design of the system is available. Hence, they require
virtual integration techniques, i.e. studying the effects of
integration without there being an actual implementation,
hardware or software. This is achieved, in part, by the use of
a combination of our analysis techniques and existing mod-
eling platforms such as Simulink [19] and AADL [10, 31]
as explained in the following sections.

3. High Level Modeling
As mentioned in the previous sections, an estimate of

the feasibility of integrating new functionality into existing
real-time systems must often be carried out even before an
actual implementation exists. There is a need for provid-
ing accurate estimates on whether new (sub)systems will fit
into provided resource budgets early in the process. On the
other hand, the right side (analysis) of Figure 1 requires de-
tailed knowledge of both the software implementation and
the hardware platform. To obtain tight WCET results dur-
ing timing analysis, it is necessary to have accurate proces-
sor models as well as the application source code and/or the
binary.

To overcome the contradictory requirements between
early and accurate analysis, we propose the use of a mod-
eling tool, such as Simulink [19], that also has automated
code generation capabilities (Real-Time Workshop R©, Real-

Time Embedded Workshop R©) [17, 18]. The steps for the
analysis, then, are:

1. Formulate a high-level, functional model of the new
subsystem with Simulink or other modeling tool.

2. Automatically generate code. In our case, C code us-
ing either Real-Time Workshop or Real-Time Embed-
ded Workshop3. The difference between the two is that
code generated by the latter tends to be “leaner” and
more targeted towards embedded systems with pro-
cessing and memory constraints. Either one can be
used to generate code that is specific to certain pro-
cessor platforms, such as Atmel, Freescale, etc.

3. Pass the generated code through the analysis suite, de-
picted on the right-hand side of Figure 1 to calculate
estimates for worst-case timing, schedulability, bus de-
lays, etc.

While the generated code may not be as efficient as code
that can be developed specifically for certain application
areas (avionics, automobiles, etc.), it is definitely valuable
since, (a) the complete analysis suite can now be used to cal-
culate the worst-case resource requirements for the applica-
tion and to verify whether it is schedulable within given re-
source budgets, (b) it provides a mechanism to bound the
worst-case effects of the application since this generated
code will typically perform worse than code that is spe-
cially developed for the application, and (c) if it is noticed
that there exists a somewhat systematic difference in per-
formance between code that is automatically generated and
code that is not, then we can account for this difference in
our analysis.

Figure 4 shows the Simulink model we created that rep-
resents the Stall Warning System Application (SWSA) ex-
plained in Section 2. Input parameters are shown in green
ovals on the left and on the top right. These values, such as
the weight of the aircraft, accelerometer values, etc. (Fig-
ure 2) are provided by other subsystems. The “angle of at-
tack” input parameter is shown in the red oval at the top left.
The rectangular boxes represent either subsystems that per-
form specific calculations (large blue rectangles) or mathe-
matical operations (white boxes, not filled), except for the
five small orange boxes on top that represent mathemati-
cal constants (π, e, etc.). Figure 5 shows the details of one
of the subsystems (TSinat) of the stall system model; it per-
forms intermediate calculations based on the angle of attack
and some other parameters.

We used Real-Time Embedded Workshop to create code
for a “generic” processor. Our analysis techniques are still
valid for specific processor types, as long as information
that affects that particular type of analysis is provided as

3 For production systems, the resulting C code should be checked for
compliance with avionics software guidelines.
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Figure 4: Simulink model for SWSA

part of the processor description e.g., a processor model
(pipeline structure, caches, etc.) must be provided for per-
forming accurate timing analysis for that microarchitecture.
The generated code (a few hundred lines) contains 18 func-
tions: one for each of the 9 subsystems (Figure 4), 3 that
manage the behavior of the stall subsystem (initialize, start,
terminate), 5 functions that perform specific mathematical
operations (32-bit multiplication, linear interpolation, etc.)
and main. The number of functions, their types, their lo-
cation, their memory management techniques (dynamic vs
static), etc. all configurable through the Simulink code gen-
eration mechanism. Further details on the generated code,
the constituent functions, etc. are presented in later sections.

This process of creating high-level functional models
that can be used to automatically generate code helps fulfill
part of requirement C1 (Section 1). Capability C1 is com-
pletely achieved by use of our remaining analysis compo-
nents, as explained in Section 4.

4. End-to-End Analysis for Virtual Integra-
tion

As mentioned in previous sections, there is a need for
performing early analysis of complex systems that includes
multiple, complex parameters in order for system architects
to come up with informed estimates of system performance.
This need could result either from changes to, or from the
addition of new (sub)systems, to existing platforms. In gen-
eral, the problem is: given a set of (sub)systems, specified
using a high level modeling tool as described in Section
3, and an architectural description of the available resource

Figure 5: Detailed view of a Stall Subsystem (TSinat)

budget, can we feasibly schedule all (sub)systems on the al-
located hardware architecture?

Answering this question is not trivial, because the end-
to-end delay of a (sub)system depends not only on its com-
putation, but also on the amount and type of communica-
tion flows exchanged in the physical processing node. This
is made even more complex by the fact that embedded de-
sign is rapidly adapting COTS hardware components, such
as those found in common Personal Computers (PCs), in
an attempt to increase performance and reduce costs and
“time to market”. While COTS components can perform
much better than dedicated hardware elements (for exam-
ple, the PCI Express [1] peripheral interconnection found
in common PCs is three orders of magnitude faster than the
Safebus [13] employed used in the Boeing 777), they add
significant complexity to the analysis. In particular, periph-
erals that need to exchange high throughput traffic such as
video flows usually have DMA capabilities: they can au-
tonomously initiate data transfers without direct CPU inter-
vention. This means that the feasibility of adding the new
(sub)system depends not only on CPU schedulability, but
also on the schedulability of communication flows gener-
ated by peripherals.

To address this problem we describe, in this section, a
novel framework (Figure 6) that derives end-to-end applica-
tion characteristics that seamlessly integrates various anal-
ysis techniques. (A) Timing analysis is used to determine
the WCET of each application (in isolation) based on a pro-
cessor model. (B) Schedulability analysis is used to deter-
mine the feasibility of multiple applications executing con-
currently on a CPU that uses partition scheduling [30] and
also accounts for the effect of communication flows due to
cache misses suffered by executed tasks. Finally, (C) bus de-
lay analysis studies the mutual interference among commu-
nication flows and derives communication delays based on
the model of the bus architecture used in the system. End-to-
end delay for each (sub)system can then be obtained based
on the computation delay computed in (B) and the commu-
nication delay from (C).

The ability to support virtual integration of hardware
and software components is preserved since all analysis
techniques are based on high level models of such com-
ponents that are suited for early system-level specification:
(i) code generated from a high-level Simulink model of
the application (Section 3), (ii) the processor model(s) de-
fined in software (both, for the static timing analyzer as
well as for the schedulability analysis tool, the latter writ-
ten in AADL) [10] and (iii) the bus architecture is also de-
scribed in our analysis tool using AADL. By using an ex-
tended AADL model as the input for our tool, named ASI-
IST 4, annotated AADL designs of software tasks, commu-

4 Application-Specific I/O Integration Support Tool.
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Figure 6: Overview of the End-to-End Analysis Framework

nication flows and hardware designs will be used to au-
tomatically generate schedulability equations. AADL pro-
vides the means for specifying the hardware and the soft-
ware architecture for embedded systems. AADL provides
textual and graphical interfaces for the users while giving
APIs for tool developers and is being increasingly adopted
for use in safety-critical domains such as avionics and med-
ical devices.

Timing analysis, to determine the WCET of the appli-
cation, is performed by use of our static timing analysis
framework (Section 4.1). Schedulability analysis (Section
4.2) and bus delay analysis (Section 4.3) is done using a
preliminary tool called ASIIST (Application Specific I/O
Integration Support Tool) [24]. ASIIST reads in AADL
models and can perform schedulability analysis with I/O
cache fetch interference and I/O bus delay analysis for an
IMA system configuration. A high-level view of our end-to-
end analysis framework is depicted in Figure 6. In the fig-
ure, “RTW/RTEW” refer to Real-Time Workshop and Real-
Time Embedded Workshop, respectively.

Note: If our analysis framework confirms that the appli-
cation is actually schedulable, then it is very likely that a
final implementation is also schedulable. Each step of our
analysis (from the code generation in Simulink, through the
timing analysis, the schedulability analysis and finally the
bus delay analysis), is conservative in nature. Part of this
“conservatism” is intrinsic in the high level modeling of the
architecture: the behavior of many COTS components, such
as peripheral buses, is regulated by a large number of com-
plex parameters that are not reasonable for specification at
the system design stage. An actual implementation would
have code/hardware that is optimized, both automatically
and manually, for all analysis of stages thus making it per-
form better than the conservative models we use and there-
fore, definitely schedulable. If the model is correct and its
implementation is indeed a less optimized version of the
final code then the analysis is guaranteed to produce safe
bounds. So we say “very likely” (and not “guaranteed”) due
to the fact that we have no control on whether the model is
correct and/or whether whoever implements the final code
does it correctly (for instance, the final code performs worse
than the automatically generated code).

This analysis framework aids in performing a rapid ex-
ploration of the design space (capabilityC2 from Section 1).

It, along with modeling techniques presented in Section 3,
completes the capabilities required for analyzing architec-
tural trade-offs before a concrete implementation is avail-
able (C1). As shown in Sections 5 and 6.2, it also provides
the ability to track and manage the cascading effects of sub-
system/component changes during system integration (C3).

4.1. Timing Analysis
Figure 7 shows the overview of our static timing analy-

sis framework [12, 23, 34] used to obtain safe WCET val-
ues for applications, such as the SWSA in this case. Source
files are fed as inputs to a compiler that extracts control flow
and constraint information. A static cache simulator also ex-
tracts instruction hit/miss data for the application using in-
formation about the cache configuration. The control flow
and constraints information, the caching categorizations as
well as the machine dependent information (stages of the
pipeline, instruction set, etc.) are provided as inputs to a tim-
ing analyzer (TA), that then derives WCET bounds. WCET
values calculated by the TA are safe since they are pes-
simistic in nature and include overestimations of the execu-
tion time. Note that the TA calculates WCET values with-
out information about program inputs.

The TA framework includes three different processor
models (MIPS, SPARC and Atmel) and has the ability to
analyze multiple instruction cache configurations (size, as-
sociativity, etc.). For our experiments, we used the MIPS
generic processor model (based on the PISA instruction set
architecture) and an instruction cache that is 64k in size and
4-way set associative. Our timing analysis framework did
not consider a data cache (all data references miss and must
go to memory) but existing [27] or new data cache analy-
sis techniques can be easily integrated to improve tightness
bounds for our results.

Figure 7: The Static Timing Analysis framework

The source files fed as input to the compiler in the first
stage, can be an actual implementation, as in the case shown
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in Section 2.1 or those generated from Simulink models
(Section 3). This situation is depicted in Figure 6.

The Simulink models and hence, the generated code
and related timing models, are as detailed as the de-
signer/architect wishes them to be. If a high-level (and
quick) analysis is required then the model (and everything
that follows from it) can be less detailed. If, on the other
hand, the designer(s) wish to spend time and effort to ob-
tain a detailed model of the system, then that can be accom-
modated as well.

4.2. Schedulability Analysis
Schedulability analysis is carried out using the informa-

tion obtained from the TA. Once the WCET of each appli-
cation is measured in isolation so that no external bus traf-
fic exists, it is specified in the AADL model that is consid-
ered to be an input to ASIIST. When multiple applications
run together on a cached CPU, interference from commu-
nication flows must be considered: since main memory is a
shared resource, when a CPU cache controller tries to fetch
a cache line after a cache miss it can be delayed by a pe-
ripheral reading/writing in memory. In turn, this will delay
the application, increasing its actual WCET. The WCET in-
crement can be very significant, up to 44% in our experi-
ments [25].

Our analysis methodology is able to compute safe up-
per bounds on WCET increases given information about
both, the task under analysis as well as the peripheral traf-
fic in main memory. The task is statically divided into a
series of S sequential superblocks {s1, . . . , sSi}. Each su-
perblock can include branches and loops but must be exe-
cuted in sequence. We assume that the WCET (without pe-
ripheral traffic) and worst case number of cache misses in
each superblock is known; in Section 6.2 we show how this
information is obtained. As for peripherals, we assume that
a bound on the total amount of traffic in main memory is
known as this can be computed according to the bus analy-
sis detailed in Section 4.3. Given this information, the algo-
rithm introduced in previous work [25] is able to compute
the maximum cache delay in each superblock and there-
fore derive a new modified WCET for the task. Using this
modified WCET ASIIST applies the schedulability algo-
rithm [30] to determine the schedulability of the applica-
tions sharing a CPU in an IMA system. ASIIST will show
a graphical table of the components and their schedulabil-
ity and parameters of interest. Users can change certain sim-
ple parameters that do not require architectural changes to
test new results without reloading the whole model. Fig-
ure 8 is an example of the output that ASIIST shows.

4.3. Bus Delay Analysis
As mentioned in the previous section, bus delay analy-

sis is also performed by using ASIIST. A logical data flow
that is specified as a connection between two processes in

AADL will, in reality, will go through multiple hardware
components to get to a destination. E.g., the PCI intercon-
nection [1] has a tree structure where peripherals transmit
on bus segments connected by bridge components. If the
source and destination applications run on different CPUs
located in separate systems, the logical flow could even go
through a network.

Depending on the type of the hardware used, data traf-
fic is regulated according to different arbitration types and
COTS protocols. A designer can also provide various I/O
configurations (Figure 9) to improve system performance.
System performance is dependent on hardware flows that
are derived from the logical data flows and I/O configura-
tions. To specify such hardware flows new properties should
be defined in AADL so that it is capable of representing the
various possibilities that could occur for the same logical
data flow. Still, the model must remain simple enough so
that users can quickly make changes. Figure 10 shows an
example of such a specification where the hardware flow is
described as a sequence of hardware components which the
data actually passes. A property is defined for each bus pro-
tocol specific transaction that is used. This enables and re-
stricts ASIIST to analyze data flows that are supported by
the tool and can be guaranteed for hard real-time proper-
ties such as delay bounds.

In particular, we previously showed [24] how ASIIST
can be used to derive delays for data flows on the PCI bus.
Our employed analysis methodology is based on the the-
ory of network calculus [6] that is flexible enough to model
a wide variety of arbitration models and buffering schemes.
Initial delay bounds can be obtained using general assump-
tions although they can be somewhat pessimistic. By refin-
ing the architectural specification during the design process
the user can obtain progressively tighter bounds. Hence, we
see that system architects have the ability to quantitatively
assess alternate hardware designs and quickly verify their
feasibility and schedulability (C1) at an early stage (C2).

5. Experimental Framework
As shown in Figure 6, we start our analysis from one of

two sources:

• The Simulink functional model of the Stall Warning
System Application (SWSA) that is then used to gen-
erate C source code using Real-Time Embedded Work-

Figure 8: Adding a New System (SWSA) to an Existing Ap-
plication
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Figure 9: I/O Configuration Examples in AADL

shop. We used RTEW instead of RTW since it gener-
ated “leaner” code with fewer overall number of lines.

• An actual implementation of the application. For this
purpose, we used the simple implementation described
in Section 2.1.

The source files are then fed to the Timing Analyzer that
generates the WCET for the application. This information
is fed to the ASIIST analysis framework that uses parti-
tion scheduling [30] for the CPU. For our experiments, we
use the following scenarios that may occur when adding a
new application, such as the SWSA, to an existing IMA sys-
tem [30]:
I. The new application can be assigned to a new partition
when the CPU has enough slack in execution time. Such a
situation would occur for fault tolerance and safety. The ad-

Figure 10: Hardware Flow Specification in AADL

Parameters FGS AP SWSA
WCET 1185 µs 23.7 µs 14.363 µs
Init. Partition Size 1 % 3 % N/A
Period 100 ms 10 ms 10 ms
Sum Input Data N/A N/A 24 Bytes
Sum Output Data N/A N/A 4 Byte

Table 2: Application Parameters

dition of a new application should not result in the failure of
existing partitions. Side-effects from the failure of the new
application can be limited to its own partition. For this sit-
uation the sizes of other partitions must be altered to make
space for the new partition. This requires a re-analysis of
the schedulability of all partitions.
II. The new application can be added to an existing CPU
partition when it has enough execution time slack. The size
of this partition must be adjusted and will affect other tasks
that reside in it. Sharing a partition has the benefit of us-
ing intra-partition communication methods (buffers, black-
boards, events) [2] that require less overhead than inter-
partition communication (global messaging).

In cases (I) and (II) above we also show how secondary
effects, such as cache interference, can cause the entire
system to fail schedulability tests—even if all tasks were
deemed to be schedulable while considering only execution
time. These problems would typically have been discovered
late in the implementation phase. Such analysis would be
extremely difficult without the use of an analysis framework
such as the one we present here. The difficulty would fur-
ther increase if the analysis needs to be performed at an
early stage. We also show how we can then modify system
parameters—quickly—and test their feasibility, thus mak-
ing the entire system with the new application schedulable
again. We do not show the trivial case where there is insuf-
ficient slack for incorporating the new application.

The system model used for our experiments is a Flight
Control System (FCS). Fight Guidance System (FGS) and
the Autopilot (AP) are the two main applications of a FCS
that runs on general computing units. FGS compares the
measured state of an aircraft (position, speed, and attitude)
to the desired state and generates pitch and roll guidance
commands to minimize the difference between the mea-
sured and desired state. When engaged, AP receives these
guidance commands and calculates the actual pitch and roll
rate commands to be sent to the control surfaces. We as-
sume that they share the CPU with other applications and
thus would have less than 100% of the CPU budget avail-
able. In Table 2 we enumerate the fixed parameters of the
applications including the SWSA. The deadline is assumed
to be the same as the period for all of these tasks.
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6. Results
We now present the results from our end-to-end analysis

framework. Section 6.1 presents the WCET values obtained
for the code generated from the Simulink models. Sections
6.2 – 6.3 present the results of the analysis for the scenarios
illustrated in Section 5.

6.1. Timing Analysis Results
Table 3 lists the WCET results for the stall speed calcula-

tion code generated from Simulink and Real-Time Embed-
ded Workshop (RTEW). The first column lists the function
names, the second lists the WCET estimates for each func-
tion (that includes time taken by callee functions).

Function Name WCET
main 13040
stall initialize 112
rt OneStep 12572
stall step 12448
stall Eqtot 225
stall H 2597
icsi log 467
my exp 812
pow approx 339
stall Vifps 1553
sqrt approx 661
stall Rho 345
stall Vtfps 490
stall TSina 508
stall TSinat 6476
ldexp approx 209
pow approx 42
my floor 23
my fmod 142
look1 iu16lu32n31ys16 even9lcf 2775
plook u32u16u32n31 even9c f 448
intrp1d is16s32 u32u32n31 l f 1175
mul s32 s32 u32 sr31 700
mul wide su32 473
stall Lt 295
stall VSikts Stall Speed 1407
stall terminate 12

Table 3: WCET Results for Stall Code generated from
Simulink/RTEW

The WCET for main presents the total worst-case time
for the entire task/program. Function main calls func-
tions stall initialize, rt OneStep and stall terminate
that represent the initialization, one pass at calculat-
ing for stalling speed and the termination of the task
respectively. In a real-time system the rt OneStep func-
tion would repeat in a cyclic loop and each iteration of
the loop would form one “instance” or “job” that ex-
ecutes on the system. The rt OneStep function calls

functions stall step, stall Eqtot, stall H, stall Vifps,
stall Rho, stall Vtfps, stall TSina, stall TSinat, stall Lt
and stall VSikts Stall Speed that represent various sub-
systems, defined in the Simulink model (Figure 4),
that perform intermediate calculations [37]. The out-
put of the stall VSikts Stall Speed function is the stall
speed for the given angle of attack (αw from Figure 2). This
can then be checked against the current airspeed to verify
whether a stall condition is imminent. Functions icsi log,
my exp, pow approx, ldexp approx, my floor and my fmod
are approximations of mathematical functions, viz., log-
arithm, exponent (ex), power (ab), ldexp (x.ex), floor
and fmod. Functions look1 iu16lu32n31ys16 even9lcf,
plook u32u16u32n31 even9c f and in-
trp1d is16s32 u32u32n31 l f are used for linear inter-
polation and table lookup that implement an approxima-
tion of the mathematical sine function. Similarly, functions
mul s32 s32 u32 sr31 and mul wide su32 perform multi-
plication for long numbers. All of the above approxima-
tions are included to obtain a close estimate of the WCET
for the task that includes the time spent in the C math li-
brary.

The functions in Table 3 are listed in the order in which
they are called by their respective parents. Functions in-
voked by rtOneStep are called one at a time and once per
each job instance.

The WCET results for the stall speed calculation code
that is generated using Simulink/RTEW performs worse
than the simple implementation depicted in Section 2, since
Simulink/RTEW is more pessimistic in generating code for
a particular platform. The code, while of fairly good qual-
ity, can definitely be hand-tuned to be more optimal for the
hardware platform where the application finally executes.
Even though the WCET values are larger and the code more
pessimistic, this information is still useful since it forms an
approximate upper bound for the actual application, as ex-
plained in Section 4. The WCET information described here
forms the input to the next stage of analysis, viz. schedula-
bility and bus delays.

6.2. Scenario I: Integration Into New Partition
For our first experiment, let us examine the process of

adding a new partition to incorporate the new SWSA ap-
plication into the existing Flight Control System (FCS).
Schedulability analysis shows that it is schedulable when
the size of the new partition is at least 2% of the CPU. Ta-
ble 4 (also Figure 8) shows a part of the outputs from ASI-
IST, post-schedulability analysis. The first column repre-
sents the partitions, the second column shows all the threads
in each partition, the third shows the CPU budget (as a per-
centage of total CPU time), the fourth column represents the
utilization required by that particular partition, the next col-
umn shows how much of the utilization is left over after
schedulability analysis (for each partition) and the final col-
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Partition/ Thr. CPU Util. Util. Sched.
Process Margin

vm0(AP) PR 1% 0.00237 0.002643 Y
vm1(FGS) PC 3% 0.01185 0.003264 Y
vm2(SWSA) SS 2% 0.001436 0.008641 Y

Table 4: Adding SWSA to New Partition

umn indicates whether that partition is schedulable or not.
The table shows three partitions, “vm0”, “vm1” and “vm2”
that contain the AP, FGS and SWSA subsystems respec-
tively. “PR”, “PC” and “SS” are the Pitch Rate, Pitch Cmd
and Stall Speed threads, in each of these partitions, that per-
form their respective operations/calculations. Table 4 shows
that all partitions are schedulable, with a positive utiliza-
tion margin, when considering execution time slack. ASI-
IST calculates the utilization bound [30] for performing the
schedulability analysis.

The new application (SWSA) will add I/O traffic that
could interfere with other existing applications, even though
they exist in different partitions. ASIIST can then recal-
culate the WCET for each task that includes time spent
waiting for data that is delayed due to additional in-
terference from the newly added task. ASIIST imple-
ments the analysis presented in Section 4.2 and com-
putes a modified WCET that includes cache delay ef-
fects. To apply the analysis, each application or task
must be divided into a set of sequential superblocks with
given WCET and maximum number of cache misses.

Function Mem.
(Superblocks) Refs.
stall Eqtot 10
stall H 23
stall Vifps 17
stall Rho 19
stall Vtfps 42
stall TSina 17
stall TSinat 63

Table 5: Mem-
ory References for
Superblocks

As described in Section 6.1, dur-
ing each instance of the SWSA
task the rt OneStep function
calls a series of “sub”-functions
in sequence. Therefore, we can
simply create one superblock for
each such sub-function. The su-
perblock’s WCET is set to be the
total WCET of the function, and
the number of cache misses is
set to the number of memory ref-
erences for the function. Since
we do not have a data cache,
we can perform the analysis by

counting the number of data references to the memory sub-
system (Table 5). This information is derived as part of the
timing analysis phase.

ASIIST can now perform the complete analysis by con-
Partition/ Thr. CPU Util. Util. Sched.
Process Margin

vm0(AP) PR 1% 0.002903 0.002109 Y
vm1(FGS) PC 3% 0.017877 -0.00276 N
vm2(SWSA) SS 2% 0.004363 0.005723 Y

Table 6: Unschedulable after applying Secondary Effects

Partition/ Thr. CPU Util. Util. Sched.
Process Margin

vm0(AP) PR 1% 0.002903 0.002109 Y
vm1(FGS) PC 4% 0.017877 0.002326 Y
vm2(SWSA) SS 2% 0.004363 0.005723 Y

Table 7: Modifying partition size for Schedulability

sidering secondary effects, i.e., interference on the bus due
to additional memory requests introduced as a result of
adding the new SWSA partition. Table 6 shows the results
of performing such analysis. The execution time increases
for all three tasks, FG, AP and SWSA. Hence, we see that
FG (residing on a different partition from SWSA) is no
longer schedulable. The utilization margin for “vm1 (FGS)”
shows a negative value, thus indicating that the threads in
this partition have exceeded their execution time budgets.
Hence, even though the partitions are schedulable based
on the execution time/utilization characteristics (Table 4),
when one considers secondary effects such as bus and cache
interference, the system could become unschedulable. This
is a counter-intuitive effect that is hard to gauge without
the assistance of such an analysis framework such as the
one we present here. These problems would have been dis-
covered late in the implementation/testing phase, thus lead-
ing to slipped schedules and and monetary loss. Hence, we
show how capability C3 (from Section 1) is provided by our
analysis framework. On increasing the partition size of FG
(to “4” in Table 7) all partitions become schedulable again.

6.3. Scenario II: Integration Into Existing Parti-
tion

We now try to add SWSA to an existing partition. Let
us assume that we implement it as a new thread in parti-
tion where the FGS subsystem resides. Table 8 shows all
three stages of the analysis similar to that depicted in Sec-
tion 6.2. The system, starts off being schedulable while only
considering execution (Table 7(a)), becomes unschedulable
on considering secondary interference effects (Table 7(b))
and is schedulable again after the partition size was mod-
ified (Table 7(c)). The partition size of FG had to be in-
creased to 5% to make it schedulable. Note that there is al-
ways a minimum granularity that is used for partition sizes.
We used 1% for this minimum granularity so that if the ma-
jor cycle length is 100 milliseconds a partition size of 1%
would be 1 millisecond.

7. Related Work
Our end-to-end analysis methodology is similar to the

concept of Platform-Based Design (PBD) [28]. A platform
is a library of (usually parametric) components. A platform
instance is a set of library components selected to generate
a concrete design. In a PBD design flow, the designer first
specifies the system functionality using an implementation-
independent description language. The designer then selects
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a suitable platform and performs mapping of functional ele-
ments to platform components, thus creating a platform in-
stance. Similarly, other model-driven design methodologies
have been several of which [3, 14] support formal verifica-
tion of modeled application behavior. Our analysis frame-
work is different since we can actually perform the analy-
sis without having an actual hardware platform (or even a
software implementation). We can also target secondary ef-
fects of integrating new applications into complex, existing
ones in hard real-time domain such as avionics. While re-
cent work [26, 29, 32] shows the use of model-based en-
gineering in related areas, our work is different in that we
are able to provide analyses for systems that have hard real-
time constraints and we have been able to bring together
tools that. perform timing analysis, schedulability analysis
and network/bus delay analysis. This integration helps fill a
void in the real-time domain. We are also able to use it to
perform analysis ahead of time so that avionics vendors are
able to estimate requirements early in the design phase.

Methods to obtain upper bounds on execution time range
from dynamic observation [7, 33] to static analysis [22, 36].
Past work mainly focuses on static analysis techniques,
since dynamic techniques have been shown to be unsafe
[33]. Recently, hybrid methods [4,20,21,35] that exploit the
advantages of both static and dynamic analysis have been
proposed Most of these techniques require an actual imple-
mentation of the application and do not consider the analy-
sis of code generated from high-level functional models. De

(a) Schedulable

Partition/ Thr. CPU Util. Util. Sched.
Process Margin

vm0(AP) PR 1% 0.00237 0.002643 Y

vm1(FGS) 3% 0.013286 0.001827 Y
PC 0.01185
SS 0.001436

(b) Unschedulable after applying Secondary Effects

Partition/ Thr. CPU Util. Util. Sched.
Process Margin

vm0(AP) PR 1% 0.00237 0.002643 Y

vm1(FGS) 3% 0.022203 -0.00709 N
PC 0.017877
SS 0.004326

(c) Schedulable Again after Modifying Partition Size

Partition/ Thr. CPU Util. Util. Sched.
Process Margin

vm0(AP) PR 1% 0.002903 0.002109 Y

vm1(FGS) 5% 0.022203 0.003114 Y
PC 0.017877
SS 0.004326

Table 8: Adding SWSA as New Task to Existing Partition

Oliviera et al. [9] perform timing analysis on code gener-
ated by Matlab/Simulink. They used a simple application to
control electric motors, implemented on a DSP. Their pro-
cessor architecture was much simpler compared to ours and
they had significant difficulties in trying to capture WCET
values for individual functions. Both of these issues do no
apply to us, as indicated by the framework and results in
Sections 5 and 6. Kirner [15] also performed timing analy-
sis on code generated from Matlab/Simulink. They used a
combination of “flow facts” and the implicit path enumera-
tion technique (IPET) to perform their analysis. While these
techniques are able to capture the WCETs of applications,
they do not combine with existing schedulability and bus
analysis tools to perform complete analysis as we present
in this paper. Note: Research in timing analysis is orthog-
onal to our current work, since any existing/new TA tools
can be combined with our analysis framework to obtain re-
sults specific to different processor families.

8. Conclusion
In this paper we presented a set of analysis techniques

to support decision making at the system architecture level.
Using these techniques, the architect can rapidly derive esti-
mates of the performance of software applications and hard-
ware components and incorporate these estimates into an in-
tegrated analysis for the whole system. The end product is
a virtual architecture analysis that systematically incorpo-
rates the inherent coupling among the software applications
that interact while sharing the limited system resources. Our
analysis approach gives the architect a rigorous method for
quickly comparing possible system architectures. Hence we
have delivered capabilities C1 and C2 mentioned in the in-
troduction.

These same analysis techniques have significant bene-
fits during system integration. In hard real-time systems
with tight constraints on system resources, small changes
in one component of a system can cause a cascade of ad-
verse effects on other components of the system. Our analy-
sis techniques enable the system architect to track and man-
age the cascading effects of subsystem/component changes
in a comprehensive, quantitative manner, thereby deliver-
ing capability C3. To the best of our knowledge, this is the
first work that aims to provide such support for system ar-
chitecture decisions so early in the design phase.
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